[go: up one dir, main page]

JPH05264257A - Measuring device - Google Patents

Measuring device

Info

Publication number
JPH05264257A
JPH05264257A JP4064997A JP6499792A JPH05264257A JP H05264257 A JPH05264257 A JP H05264257A JP 4064997 A JP4064997 A JP 4064997A JP 6499792 A JP6499792 A JP 6499792A JP H05264257 A JPH05264257 A JP H05264257A
Authority
JP
Japan
Prior art keywords
measuring
measured
measurement
error
positioning error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4064997A
Other languages
Japanese (ja)
Inventor
Koji Nakamura
孝二 中村
Masao Asano
正雄 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4064997A priority Critical patent/JPH05264257A/en
Publication of JPH05264257A publication Critical patent/JPH05264257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

PURPOSE:To simplify and expedite measuring work by providing a plurality of standard and general measuring points on a material to be measured, and correcting each measurement value by numerical conversion so that the positioning error calculated from the measurement value of the standard measuring point and a set standard value is 0. CONSTITUTION:A master data processing means A reserves and processes the data related to a work 1 to be measured such as a vehicle body. Measuring means 7, 7,... measure a plurality of standard and general measuring points set on the work 1 from respective determined positions. An error arithmetic means B calculates the positioning error of the work 1 on the basis of the measurement value of the standard measuring point and the design standard value of the standard measuring point read from the means A. A work assembling error arithmetic means C corrects the measurement value of each measuring point by numerical conversion so that the positioning error in the error arithmetic means B is 0. Thus, the positioning error is eliminated from the measurement value of each measuring point, and a precise work assembling error can be determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、計測装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring device.

【0002】[0002]

【従来の技術】例えば、自動車の組み立てラインにおい
ては、シェル状の車体の開口部に対して順次ドアとかボ
ンネット等の部材を組み付けてゆくが、この場合、該車
体の形成精度が十分でないと、例えばドア等を車体開口
部へ組み付けた場合のその周囲の隙間寸法が不均一とな
ったり、あるいは車体部分とドアとの間に段差が生じ、
場合によっては製品として成り立たないということも有
り得る。
2. Description of the Related Art For example, in an automobile assembly line, members such as a door and a hood are sequentially assembled to the opening of a shell-shaped vehicle body. In this case, if the vehicle body is not formed with sufficient accuracy, For example, when a door or the like is attached to a vehicle body opening, the clearance dimension around it becomes uneven, or a step is generated between the vehicle body part and the door.
In some cases, it may not be a product.

【0003】このため、従来より、ドア等の部品を組み
付ける前に、車体の開口部等における寸法精度をチエッ
クし、寸法精度がある許容値よりも悪い場合にはその時
点で車体をラインアウトさせて以後のドア等の組み付け
作業を行わないようにすることが行なわれている。
Therefore, conventionally, before assembling parts such as doors, the dimensional accuracy at the opening of the vehicle body is checked, and when the dimensional accuracy is worse than a certain allowable value, the vehicle body is lined out at that time. Therefore, the subsequent assembling work of doors and the like is not performed.

【0004】[0004]

【発明が解決しようとする課題】ところが、この場合に
おける従来一般的な方法としては、例えば特開昭62ー
216876号公報に開示されるように、車体の開口部
の寸法を視覚センサにより計測してその計測値から直接
に寸法精度を判断するようにしていたため、車体精度を
直感的に評価するということが困難であり、車体精度の
評価の容易化あるいは確実性という点において改善の余
地があった。
However, as a conventional general method in this case, as disclosed in, for example, Japanese Patent Laid-Open No. 62-216876, the size of the opening of the vehicle body is measured by a visual sensor. Since the dimensional accuracy is determined directly from the measured value, it is difficult to intuitively evaluate the vehicle body accuracy, and there is room for improvement in terms of easiness or certainty in evaluating the vehicle body accuracy. It was

【0005】また、視覚センサは搬送装置の側部に配置
した計測ロボットに設けられる一方、車体はこの搬送装
置により搬送される載置台に対して所定位置に位置決め
された状態で搬送され、この搬送状態のまま上記視覚セ
ンサによる計測が行なわれる。そして、この場合、各視
覚センサは載置台との間において予じめ設定された計測
位置において計測を行うようになっている。従って、計
測が精度良く行なわれるためには、該車体の載置台に対
する位置決めができるだけ正確であることが要求され
る。しかし、この車体と載置台との位置決めは必ずしも
正確ではなく、いくらかの誤差があるのが普通である。
このため、従来は計測に先立ってこの車体と載置台との
位置決め誤差を測定し、この測定された位置決め誤差を
実際の計測値に反映させてこれを修正するようにしてい
たが、このようにした場合には計測作業が繁雑となり作
業性に欠けるという問題があった。
Further, the visual sensor is provided on a measuring robot arranged on the side of the carrying device, while the vehicle body is carried while being positioned at a predetermined position with respect to a mounting table carried by the carrying device. Measurement is performed by the above visual sensor as it is. In this case, each visual sensor performs measurement at a preset measurement position with the mounting table. Therefore, in order to perform the measurement with high accuracy, the positioning of the vehicle body with respect to the mounting table is required to be as accurate as possible. However, the positioning between the vehicle body and the mounting table is not always accurate, and there are usually some errors.
Therefore, conventionally, the positioning error between the vehicle body and the mounting table was measured prior to the measurement, and the measured positioning error was reflected in the actual measurement value to correct it. In that case, there is a problem that the measurement work becomes complicated and the workability is poor.

【0006】そこで本願発明は、被計測ワークの精度を
直感的に容易且つ的確に評価するとともに、被計測ワー
クの位置決め誤差を計測制御中においてキャンセルする
ことで計測作業そのものを簡略化してその迅速化を図る
ようにした計測装置を提供せんとしてなされたものであ
る。
Therefore, the present invention simplifies and speeds up the measurement work itself by intuitively and easily and accurately evaluating the accuracy of the work to be measured and canceling the positioning error of the work to be measured during measurement control. It was made as an attempt to provide a measuring device designed to achieve this.

【0007】[0007]

【課題を解決するための手段】本願発明ではかかる課題
を解決するための具体的手段として、請求項1記載の発
明では図1に例示するように、車体等の被計測ワーク1
に関するマスターデータを保存・処理するマスターデー
タ処理手段Aと、上記被計測ワーク1に設定した複数の
基準計測点と複数の通常計測点をそれぞれ所定の計測位
置から計測してその計測値を出力する計測手段7,7,・
・と、上記計測手段7,7,・・から出力される基準計測
点における計測値と上記マスターデータ処理手段Aから
読み出される上記基準計測点における設計基準値とに基
づいて現在の計測状態下における被計測ワークの位置決
め誤差を演算する位置決め誤差演算手段Bと、該位置決
め誤差演算手段Bにより求められる被計測ワーク1の位
置決め誤差を零にするように上記各計測点の計測値を数
値変換により補正することで各計測点のワーク組付誤差
を求めるワーク組付誤差演算手段Cとを備えたことを特
徴としている。
In the invention of claim 1, as a concrete means for solving such a problem in the present invention, as shown in FIG.
Master data processing means A for storing and processing the master data regarding the above, a plurality of reference measurement points and a plurality of normal measurement points set on the workpiece 1 to be measured, are measured from predetermined measurement positions, and the measured values are output. Measuring means 7,7, ...
Based on the measured value at the reference measuring point output from the measuring means 7, 7, ... And the design reference value at the reference measuring point read from the master data processing means A Positioning error calculating means B for calculating the positioning error of the workpiece to be measured, and the measured values at the respective measuring points are corrected by numerical conversion so that the positioning error of the workpiece to be measured 1 obtained by the positioning error calculating means B becomes zero. By doing so, a work assembling error calculating means C for obtaining a work assembling error at each measurement point is provided.

【0008】また請求項2記載の発明では、図1に例示
するように請求項1記載の計測装置において、上記ワー
ク組付誤差演算手段Cから出力される各計測点における
補正後の計測値をベクトル変換して出力するベクトル変
換手段Dと、該ベクトル変換手段Dから出力されるベク
トル信号をモニター上に表示せしめる表示手段Eとを備
えたことを特徴としている。
According to the second aspect of the invention, as shown in FIG. 1, in the measuring apparatus according to the first aspect, the corrected measured value at each measuring point output from the work assembling error calculating means C is displayed. It is characterized in that it is provided with a vector converting means D for converting and outputting the vector, and a display means E for displaying the vector signal outputted from the vector converting means D on a monitor.

【0009】[0009]

【作用】本願各発明ではかかる構成とすることによって
それぞれ次のような作用が得られる。
With each of the inventions of the present application, the following effects can be obtained by adopting such a configuration.

【0010】請求項1記載の発明では、計測手段7,7,
・・により被計測ワーク1の各基準計測点と各通常計測
点とを順次計測する場合、上記各基準計測点における実
際の計測値とマスターデータ処理手段Aから取り出され
る該各基準計測点における設計基準値とに基づいて被計
測ワーク1の位置決め誤差が演算される。この求められ
た位置決め誤差を零にするように上記各通常計測点にお
ける実際の計測値を数値変換により補正することで、該
各通常計測点における計測値から位置決め誤差が排除さ
れ、該各通常計測点における正確なワーク組付誤差が求
められることとなる。
According to the first aspect of the invention, the measuring means 7, 7,
.. When sequentially measuring each reference measurement point and each normal measurement point of the work 1 to be measured, the actual measurement value at each reference measurement point and the design at each reference measurement point extracted from the master data processing means A The positioning error of the workpiece 1 to be measured is calculated based on the reference value. By correcting the actual measurement value at each normal measurement point by numerical conversion so that the obtained positioning error becomes zero, the positioning error is eliminated from the measurement value at each normal measurement point, and each normal measurement point An accurate work assembly error at a point will be required.

【0011】請求項2記載の発明では、上述のようにし
て求められた各通常計測点におけるワーク組付誤差はベ
クトル変換手段Dによりベクトル変換されて表示手段E
によりモニターにベクトル表示される。従って、モニタ
ーにより各通常計測点におけるベクトルの大きさと方向
とを視認することで該各通常計測点における精度を直感
的に且つ的確に評価することが可能となるものである。
According to the second aspect of the invention, the work assembling error at each normal measurement point obtained as described above is vector-converted by the vector converting means D, and the display means E is displayed.
Is displayed on the monitor as a vector. Therefore, by visually observing the magnitude and direction of the vector at each normal measurement point on the monitor, it is possible to intuitively and accurately evaluate the accuracy at each normal measurement point.

【0012】[0012]

【発明の効果】従って、請求項1記載の計測装置によれ
ば、一連の計測作業の中においてソフト的に被計測ワー
クの位置決め誤差が排除され、各通常計測点の計測点そ
のものを真のワーク組付誤差として評価できることか
ら、例えば従来のように各計測点の計測作業に先立って
被計測ワークの位置決め誤差を測定してこれを実際の計
測値に反映させて評価するというような必要がなく、そ
れだけ計測作業が簡易且つ迅速となりその作業性が向上
せしめられるものである。
Therefore, according to the measuring device of the first aspect, the positioning error of the workpiece to be measured is eliminated by software in a series of measuring operations, and the measuring point itself of each normal measuring point is a true workpiece. Since it can be evaluated as an assembly error, it is not necessary to measure the positioning error of the workpiece to be measured prior to the measurement work at each measurement point and reflect this in the actual measurement value for evaluation as in the past. Therefore, the measurement work becomes simple and quick, and the workability is improved.

【0013】また、請求項2記載の計測装置によれば、
各通常計測点における真の組付誤差がそのままモニター
にベクトル表示され、作業者はこのベクトルから直感的
に各通常計測点における精度を評価することができるの
で、例えば従来のように計測された数値そのものから精
度の評価を行う場合に比して、被計測ワークの精度評価
が容易且つ迅速ならしめられるものである。
According to the measuring device of the second aspect,
The true assembly error at each normal measurement point is displayed as a vector on the monitor as it is, and the operator can intuitively evaluate the accuracy at each normal measurement point. Compared to the case where the accuracy is evaluated from the itself, the accuracy of the work to be measured can be evaluated easily and quickly.

【0014】[0014]

【実施例】以下、本願発明の計測装置を具体的に説明す
ると、図1には本願発明の実施例にかかる計測装置の全
体システムが示されており、同図において符号1は被計
測ワークとなるシェル状の車体である。この車体1は、
搬送手段2により所定速度で搬送されるとともに、これ
が所定の位置に達した時、上記搬送手段2の両側方に搬
送方向に前後してそれぞれ配置された四つの計測用ロボ
ット3〜6にそれぞれ設けた計測器7,7,・・によりそ
の各部の計測が行なわれる。具体的には、各計測用ロボ
ット3〜6は、上記車体1が搬送される間に、所定の計
測位置において該計測位置から車体1の所定の計測点ま
での面直寸法を計測する。そして、この計測値が設計上
定めた基準設定値と合致していれば問題はないが、これ
が大きく掛け離れている場合には組付誤差が大きく精度
不良と判定するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measuring device of the present invention will be described in detail below. FIG. 1 shows the entire system of the measuring device according to the embodiment of the present invention. In FIG. It is a shell-shaped car body. This car body 1
It is carried by the carrying means 2 at a predetermined speed, and when it reaches a predetermined position, it is provided on each of the four measuring robots 3 to 6, which are arranged on both sides of the carrying means 2 in the carrying direction. .. are measured by the measuring instruments 7, 7 ,. Specifically, each of the measuring robots 3 to 6 measures the vertical dimension of the vehicle body 1 at a predetermined measurement position from the measurement position to a predetermined measurement point while the vehicle body 1 is being transported. There is no problem if this measured value agrees with the reference set value determined by design, but if this measured value is significantly different, the assembly error is large and it is determined that the accuracy is poor.

【0015】そして、この場合、搬送手段2に対する車
体1の位置決めになんら誤差がない場合には格別の配慮
をする必要はないが、実際にはこの車体1の位置決め誤
差を全く無くすることは不可能であり、従って良好な組
付誤差の判定精度を確保するためにはこの位置決め誤差
を計測値から排除することが必要であり、このため後述
するマスターデータ処理手段Aと位置決め誤差演算手段
Bとワーク組付誤差演算手段Cとを設けたものである。
さらに、例え位置決め誤差を排除した状態で各符部の計
測値が得られたとしても、この数値そのものから組付誤
差の適否を判断することは作業性という点において問題
があり、このためこの実施例においては後述するように
ベクトル変換手段Dと表示手段Eを設けるとともに、さ
らに現場への指示用に指示手段Fを設け、上記組付誤差
の適否を視覚により直感的に評価できるようにしたもの
である。以下、これら各手段による計測制御の実際を図
2以下を参照して詳述することとする。
In this case, if there is no error in the positioning of the vehicle body 1 with respect to the conveying means 2, it is not necessary to take special consideration, but it is actually impossible to eliminate the positioning error of the vehicle body 1 at all. This is possible, and therefore it is necessary to eliminate this positioning error from the measured value in order to ensure good assembly error determination accuracy. Therefore, the master data processing means A and the positioning error calculation means B, which will be described later, are required. The work assembling error calculating means C is provided.
Furthermore, even if the measured value of each code part is obtained with the positioning error removed, there is a problem in workability to judge the suitability of the assembly error from this numerical value itself. In the example, as will be described later, a vector converting means D and a display means E are provided, and further an instruction means F is provided for instructing to the site so that the suitability of the assembly error can be visually and intuitively evaluated. Is. Hereinafter, the actual measurement control by each of these means will be described in detail with reference to FIG.

【0016】マスターデータ処理手段Aは、被計測ワー
クである車体1に関するデータ、例えば、車種毎に必要
な計測点及び各計測点における設計基準値(即ち、上記
搬送手段2に対する位置決め誤差がないとした場合にお
ける所定の計測位置から各計測点までの面直寸法値であ
り、実際には座標値(設計座標値)で与えられる)、組付
精度判定の公差、上記計測器7の極性等を保存し且つ必
要に応じて処理するものである。そして、このマスター
データ処理手段Aで所定の車種の車体計測を指示した場
合には、マスターデータとしてモニター(図示省略)には
図3に示すように当該車体が画像表示される。
The master data processing means A has data relating to the vehicle body 1 as the work to be measured, for example, measurement points required for each vehicle type and design reference values at each measurement point (that is, if there is no positioning error with respect to the above-mentioned conveying means 2). In the case of the above, it is the vertical dimension value from the predetermined measurement position to each measurement point, which is actually given by the coordinate value (design coordinate value)), the tolerance of the assembly accuracy judgment, the polarity of the measuring instrument 7, etc. It is stored and processed as needed. When the master data processing means A gives an instruction to measure the vehicle body of a predetermined vehicle type, the vehicle body is displayed as an image on the monitor (not shown) as master data as shown in FIG.

【0017】尚、この実施例においては、図3に●ある
いは○で示すように車体各部の要所に複数の計測点を設
定している。ここで、●で示される4つの計測点は、そ
の計測値が車体1の搬送手段2に対する位置決め誤差の
補正基準となる計測点であり、これに対して○で示され
る通常計測点はその計測値が実際に車体精度の評価に利
用される計測点である。そして、これら各計測点の位置
が上記各計測器7,7,・・により計測される。
In this embodiment, a plurality of measuring points are set at important points of each part of the vehicle body as indicated by ● or ○ in FIG. Here, the four measurement points indicated by ● are the measurement points whose measured values serve as the reference for correcting the positioning error of the vehicle body 1 with respect to the conveyance means 2, whereas the normal measurement points indicated by ○ are the measurement points. The value is the measurement point that is actually used to evaluate the vehicle body accuracy. The positions of these measurement points are measured by the measuring instruments 7, 7 ,.

【0018】位置決め誤差演算手段Bは、上記マスター
データ処理手段Aから出力される各基準計測点における
設計基準値と、上記各計測器7,7,・・から出力される
各基準計測点の実際の計測値とに基づいて上記車体1の
搬送手段2に対する位置決め誤差を演算するものであ
り、またワーク組付誤差演算手段Cは位置決め誤差演算
手段Bにより求められた上記位置決め誤差を数値変換に
より各通常計測点の計測値から排除するものであり、こ
れら位置決め誤差演算手段Bとワーク組付誤差演算手段
Cの演算内容は次の通りである。
The positioning error calculation means B is a design reference value at each reference measurement point output from the master data processing means A and an actual reference measurement point output from each of the measuring instruments 7, 7 ,. Is used to calculate the positioning error of the vehicle body 1 with respect to the conveying means 2, and the work assembly error calculating means C numerically converts the positioning error obtained by the positioning error calculating means B into numerical values. It is to be excluded from the measured value at the normal measurement point, and the calculation contents of these positioning error calculation means B and work assembly error calculation means C are as follows.

【0019】例えば、座標上において、マスターボディ
(即ち、設計座標値)と被計測車体との間に図5に示すよ
うな位置決め誤差が実際に生じており、且つこの場合に
おける各通常計測点の面直方向における計測値がそれぞ
れd1,d2,・・であったと仮定する。また、同様に各基準
計測点の面直方向における計測値が例えば、d01,d02,・
・(図示省略)であったとする。
For example, in terms of coordinates, the master body
A positioning error as shown in FIG. 5 actually occurs between the (that is, the design coordinate value) and the measured vehicle body, and in this case, the measured values in the in-plane direction of the respective normal measurement points are d 1 , It is assumed that d 2 , ... Further, similarly, the measurement value in the direction perpendicular to each reference measurement point is, for example, d 01 , d 02 , ...
-(Not shown).

【0020】この場合、上記各基準計測点の計測値d01,
d02,・・は、車体1の位置決め誤差がない場合にはそれ
ぞれ零となるべきものである。即ち、この各基準計測点
における計測値d01,d02,・・の値そのものが車体1の位
置決め誤差として把握されるものである。従って、この
位置決め誤差を上記各通常計測点の計測値から排除する
ために、上記各計測値d01,d02,・・を全て零にすべく座
標変換を行う。この座標変換を行った状態が図6に示さ
れている。
In this case, the measured values d 01 ,
d 02 , ... Should be zero when there is no positioning error of the vehicle body 1. That is, the values themselves of the measured values d 01 , d 02 , ... At the respective reference measurement points are grasped as the positioning error of the vehicle body 1. Therefore, in order to eliminate this positioning error from the measurement values at the above-mentioned normal measurement points, coordinate conversion is performed so that the above-mentioned measurement values d 01 , d 02 , ... Are all zero. FIG. 6 shows a state in which this coordinate conversion is performed.

【0021】このように座標変換を行うと、上記各通常
計測点の計測値d1,d2,・・は、それぞれ位置決め誤差に
対応する補正量s1,s2,・・が減じられた値h1,h2,・・と
なる。この補正後の各通常計測点の計測値h1,h2,・・
が、各通常計測点における真の組付誤差量となる。
When the coordinate conversion is performed in this way, the correction values s 1 , s 2 , ... Corresponding to the positioning error are subtracted from the measured values d 1 , d 2 ,. The values are h 1 , h 2 , .... Measured values at each normal measurement point after this correction h 1 , h 2 ,
Is the true assembly error amount at each normal measurement point.

【0022】このように、各通常計測点の計測値を車体
1の位置決め誤差に対応して数値変換により補正するこ
とで、該各計測値から位置決め誤差が完全に排除され、
補正後の各通常計測点の計測値は全て真の誤差量を表示
するものであり、従って、従来のように車体1各部の計
測とは別に位置決め誤差を測定してこれを上記各計測値
に反映させる方法に比して、計測作業が簡易ならしめら
れるものである。
As described above, by correcting the measurement values at the respective normal measurement points by numerical conversion corresponding to the positioning error of the vehicle body 1, the positioning error is completely eliminated from the respective measurement values,
The corrected measurement values at each normal measurement point all indicate the true error amount. Therefore, the positioning error is measured separately from the measurement of each part of the vehicle body 1 as in the conventional case, and this is used as each of the above measurement values. Compared to the reflection method, the measurement work can be simplified.

【0023】一方、ベクトル変換手段Dは、上述の如く
して求められた各通常計測点の真の誤差量をそれぞれベ
クトル変換し、これを図4に示すように各通常計測点の
誤差量としてモニターに表示させるものである。従っ
て、作業者はこのモニター画像で各点のベクトルの大き
さ及び方向を視認することで各部の精度の適否を直感的
に評価することができるものである。
On the other hand, the vector conversion means D vector-converts the true error amount of each normal measurement point obtained as described above, and uses this as the error amount of each normal measurement point as shown in FIG. It is what is displayed on the monitor. Therefore, the operator can intuitively evaluate the suitability of the accuracy of each part by visually observing the magnitude and direction of the vector of each point on the monitor image.

【0024】また、この場合、この数値変換結果のベク
トル表示とは別に、各部の計測値が所定の公差内にある
かどうかを判断し、公差範囲を逸脱する場合にはこれを
指示手段Fによって作業現場等へ指示するようにしてい
る。
Further, in this case, apart from the vector display of the numerical conversion result, it is judged whether or not the measured value of each part is within a predetermined tolerance, and if the measured value deviates from the tolerance range, this is indicated by the instruction means F. I am instructing the work site.

【0025】以上の計測制御の全体の流れを図2に示し
ている。即ち、先ずステップS1において適用車種につ
いてのマスターデータを読み込むとともに、ステップS
2において車体の各計測点のデータを入力し、さらにス
テップS3において各計測点の設計基準値を算出する。
このステップS1〜ステップS3の制御が上記マスター
データ処理手段Aにより行なわれる。
The overall flow of the above measurement control is shown in FIG. That is, first, in step S1, the master data about the applicable vehicle type is read, and
In step 2, data of each measurement point of the vehicle body is input, and in step S3, a design reference value of each measurement point is calculated.
The control of steps S1 to S3 is performed by the master data processing means A.

【0026】次に、ステップS4において、各計測点の
計測を実行し、各計測値(d)を求める。これは上記各計
測器7,7,・・により行なわれる。
Next, in step S4, each measurement point is measured to obtain each measurement value (d). This is performed by the measuring instruments 7, 7, ..

【0027】更に、ステップS5においては、基準計測
点の計測値に基づいて数値変換により車体1の位置決め
誤差(s)を算出する。この制御は、上記位置決め誤差演
算手段Bにおいて行なわれる。
Further, in step S5, the positioning error (s) of the vehicle body 1 is calculated by numerical conversion based on the measurement value at the reference measurement point. This control is performed in the positioning error calculating means B.

【0028】次に、ステップS6において、上記各計測
値(d)と位置決め誤差(s)とから、計測値を補正して補正
後の計測値(h)を求める。この制御は上記ワーク組付誤
差演算手段Cにより行なわれる。
Next, in step S6, the measured value is corrected from the measured value (d) and the positioning error (s) to obtain a corrected measured value (h). This control is performed by the work assembly error calculating means C.

【0029】さらに、補正後の計測値(h)をベクトル変
換(ステップS7)するとともに、これをモニターに表示
させる(ステップS8)。また、その補正後の計測値(h)
と設定値Aとを比較し(ステップS10)、(h>A)であ
る場合には組付誤差は許容値以上であるとしてNG指示
を行い(ステップS11)、これに対して(h<A)である
場合には組付精度は良好であるとして車体1のラインO
FF指示をする(ステップS12)。以上で計測作業が完
了する。
Further, the corrected measured value (h) is vector-converted (step S7) and displayed on the monitor (step S8). Also, the measured value after the correction (h)
Is compared with the set value A (step S10), and if (h> A), an NG instruction is given because the assembly error is greater than or equal to the allowable value (step S11), and (h <A ), It is assumed that the assembling accuracy is good, and the line O of the vehicle body 1
An FF instruction is given (step S12). This completes the measurement work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の実施例にかかる計測装置のシステム
図である。
FIG. 1 is a system diagram of a measuring device according to an embodiment of the present invention.

【図2】図1の表示装置における制御フロ−チャ−トで
ある。
FIG. 2 is a control flow chart in the display device of FIG.

【図3】被計測ワークとしての車体における計測点の位
置を示すモニター表示画像である。
FIG. 3 is a monitor display image showing a position of a measurement point on a vehicle body as a work to be measured.

【図4】各計測点の計測値をベクトルで示したモニター
表示画像である。
FIG. 4 is a monitor display image in which the measurement values at each measurement point are shown as a vector.

【図5】計測方法の説明図である。FIG. 5 is an explanatory diagram of a measuring method.

【図6】位置決め誤差及び真の誤差の演算方法説明図で
ある。
FIG. 6 is a diagram illustrating a method of calculating a positioning error and a true error.

【符号の説明】[Explanation of symbols]

1は車体、2は搬送手段、3〜6は計測用ロボット、7
は計測器である。
1 is a vehicle body, 2 is a conveyance means, 3 to 6 are measuring robots, 7
Is a measuring instrument.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車体等の被計測ワークに関するマスター
データを保存・処理するマスターデータ処理手段と、 上記被計測ワークに設定した複数の基準計測点と複数の
通常計測点をそれぞれ所定の計測位置から計測してその
計測値を出力する計測手段と、 上記計測手段から出力される基準計測点における計測値
と上記マスターデータ処理手段から読み出される上記基
準計測点における設計基準値とに基づいて現在の計測状
態下における被計測ワークの位置決め誤差を演算する位
置決め誤差演算手段と、 該位置決め誤差演算手段により求められる被計測ワーク
の位置決め誤差を零にするように上記各計測点の計測値
を数値変換により補正することで各計測点のワーク組付
誤差を求めるワーク組付誤差演算手段とを備えたことを
特徴とする計測装置。
1. A master data processing means for storing and processing master data relating to a workpiece to be measured such as a vehicle body, a plurality of reference measuring points and a plurality of normal measuring points set on the workpiece to be measured from predetermined measuring positions, respectively. Measuring means for measuring and outputting the measured value, current measurement based on the measured value at the reference measuring point output from the measuring means and the design reference value at the reference measuring point read from the master data processing means Positioning error calculating means for calculating the positioning error of the workpiece to be measured under the state, and the measurement values of the respective measuring points are corrected by numerical conversion so that the positioning error of the workpiece to be measured, which is obtained by the positioning error calculating means, becomes zero And a work assembling error calculating means for obtaining a work assembling error at each measurement point by performing .
【請求項2】 請求項1において、上記ワーク組付誤差
演算手段から出力される各計測点における補正後の計測
値をベクトル変換して出力するベクトル変換手段と、該
ベクトル変換手段から出力されるベクトル信号をモニタ
ー上に表示せしめる表示手段とを備えたことを特徴とす
る計測装置。
2. The vector conversion means according to claim 1, which converts and outputs the corrected measurement value at each measurement point outputted from the work assembling error calculation means, and the vector conversion means. A measuring device comprising a display means for displaying a vector signal on a monitor.
JP4064997A 1992-03-23 1992-03-23 Measuring device Pending JPH05264257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064997A JPH05264257A (en) 1992-03-23 1992-03-23 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064997A JPH05264257A (en) 1992-03-23 1992-03-23 Measuring device

Publications (1)

Publication Number Publication Date
JPH05264257A true JPH05264257A (en) 1993-10-12

Family

ID=13274216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064997A Pending JPH05264257A (en) 1992-03-23 1992-03-23 Measuring device

Country Status (1)

Country Link
JP (1) JPH05264257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133347A (en) * 2015-01-16 2016-07-25 スズキ株式会社 Shape inspection device, shape inspection method, and program
JP2020204556A (en) * 2019-06-18 2020-12-24 トヨタ自動車株式会社 Measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133347A (en) * 2015-01-16 2016-07-25 スズキ株式会社 Shape inspection device, shape inspection method, and program
JP2020204556A (en) * 2019-06-18 2020-12-24 トヨタ自動車株式会社 Measurement device

Similar Documents

Publication Publication Date Title
US20180021955A1 (en) Robot zero-point calibration device and method
US10618166B2 (en) Teaching position correction device and teaching position correction method
JP3733364B2 (en) Teaching position correction method
EP1607194B1 (en) Robot system comprising a plurality of robots provided with means for calibrating their relative position
EP0884141B1 (en) Force control robot system with visual sensor for inserting work
WO1995008143A1 (en) Method of correcting teach program for robot
EP1703349A2 (en) Off-line teaching device
EP1798616A2 (en) Offline programming device
EP1315056A2 (en) Simulation apparatus for working machine
GB2327289A (en) Job Aiding Apparatus for Assembly Line
JPH06262563A (en) Force display for position teaching support of industrial robot
JPH09128549A (en) Relative position attitude detecting method for robot system
JPH0775982A (en) Automatic teaching device for laser robot
JP3169174B2 (en) Teaching Data Correction Method for Work Path Following Robot Manipulator
JPH05264257A (en) Measuring device
JPH03287343A (en) Base coordinate system correcting device
US7684897B2 (en) Robot program generating device and robot program analyzing device
JP2006088160A (en) Apparatus and program for inspecting welded position
JP3432343B2 (en) Plant monitoring equipment
JPH07501412A (en) Inspection method for machining accuracy of NC machine tools
JPH09193059A (en) Origin position calibrating method of robot, its origin position calibrating device, calibrating jig and arm positioning device of robot
JPH0774964B2 (en) Robot positioning error correction method
JPH06315882A (en) Force control work machine weight / center of gravity position correction device
JPS59173805A (en) Industrial robot having instruction data converting function
JPH0580836A (en) Method for generating teaching data for image pickup device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20031202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040212

A521 Written amendment

Effective date: 20040218

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130409

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140409

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250