JPH05263175A - Aluminum alloy sheet for stay-on tab - Google Patents
Aluminum alloy sheet for stay-on tabInfo
- Publication number
- JPH05263175A JPH05263175A JP9003492A JP9003492A JPH05263175A JP H05263175 A JPH05263175 A JP H05263175A JP 9003492 A JP9003492 A JP 9003492A JP 9003492 A JP9003492 A JP 9003492A JP H05263175 A JPH05263175 A JP H05263175A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- tab
- manufacturing
- bendability
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Conductive Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はビール缶、炭酸飲料缶等
のタブ材に係り、更に詳しくは、強度および曲げ性にお
いては現行材と同等であり、かつ経時変化による軟化の
少ないステイオンタブ付エンド用のタブ材に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tab material for beer cans, carbonated drinks cans, and the like. More specifically, it has the same strength and bendability as those of the current materials, and is a Steion tab which is less softened by aging. The present invention relates to a tab material for an attached end.
【0002】[0002]
【従来の技術】現在、ビール缶、炭酸飲料缶等の飲料缶
の開口方法には、缶切りなどの器具を使わずに手で容易
に開缶できるイージーオープンエンドが主流となってい
る。このイージーオープンエンドとしては開口時に缶体
からタブが離れるパーシャルオープンエンド及びフルオ
ープンエンドと、開口時に缶体からタブが離れないステ
イオンタブ付エンド及びプッシュオンタブエンドとがあ
り、後者のステイオンタブ付エンドはタブが分離しない
という環境問題、資源リサイクル等の観点から特に欧米
にて広く用いられている。このステイオンタブ付エンド
に適するタブ材にはAA5082、AA5042等のM
g4.0前後を含有するアルミニウム合金が用いられて
おり、該アルミニウム合金鋳塊を均熱化処理及び熱間圧
延した後、高圧下率で冷間圧延し、その後、最終熱処理
にて強度を調整する製造方法にて製造されている。例え
ば、米国特許第3502448号明細書に開示されてい
るように、仕上冷延率を85%以上と高くする方法であ
る。タブ材はこの工程後に強度調整および安定化ために
最終熱処理が施される。2. Description of the Related Art At present, as a method of opening a beverage can such as a beer can or a carbonated beverage can, an easy open end, which can be easily opened by hand without using a device such as a can opener, is predominant. This easy open end includes partial open end and full open end where the tab separates from the can at the time of opening, and Steion tab end and push-on tab end where the tab does not separate from the can during opening. Ends with tabs are widely used especially in Europe and the United States from the viewpoints of environmental problems such as tabs not separating and resource recycling. The tab material suitable for this end with the Steion tab is M such as AA5082 and AA5042.
An aluminum alloy containing around g4.0 is used, and the aluminum alloy ingot is subjected to soaking treatment and hot rolling, followed by cold rolling at a high pressure reduction rate, and then strength is adjusted by final heat treatment. It is manufactured by the manufacturing method. For example, as disclosed in US Pat. No. 3,502,448, it is a method of increasing the finish cold rolling rate to 85% or more. After this step, the tab material is subjected to final heat treatment for strength adjustment and stabilization.
【0003】[0003]
【発明が解決しようとする課題】従来のステイオンタブ
材に用いられているアルミニウム合金は、比較的Mgの
添加量が多く高冷間圧延されるため、最終熱処理により
強度調整および安定化が施されている。しかし、最終熱
処理は比較的高温(280℃程度)で行われるため、前
処理として圧延油の焼付を防止する目的で脱脂処理が必
要となる。また、仕上焼鈍温度の範囲が狭いため、焼鈍
温度の精度が重要となり焼鈍設備も温度管理等の精度の
良いものが必要となる。さらに、タブに成形された後の
状態では、安定化処理後、加工を受けて硬化しているこ
とから、加工部に新たに発生した転位が経時変化により
ベータ相等の析出を起こし、このため固溶Mg量が少な
くなり強度が軟化するという現象が発生する。この結
果、ステイオンタブのように挺の原理でスコアー部を抉
じ開けるようなメカニズムでは、タブ強度が不足して開
口不良という問題が起る。この対策としては、タブ材の
厚みを増したり、または初期強度を不必要なまで高める
必要があるが、このためパーシャルオープンエンド用タ
ブ材に比べて製造コスト・素材コストが高くなったり、
不具合が起りやすくなるという問題が生じており、缶公
害の点ではステイオンタブ付エンドの方が有利なことは
確かであるにもかかわらず、日本国内ではそれほど採用
されず普及しない要因の1つとなっている。経時軟化を
防ぐ別の方法として、Mg添加量を少なくするという方
法も考えられる。しかし、近年ステイオンタブの薄肉化
に伴い、比較的強度が高いことがステイオンタブ材とし
て重要な特性の1つとなってきているにもかかわらず、
単に従来合金のMg添加量を少なくするだけでは従来の
製造方法では強度が充分ではなく、必要強度を得るため
には高冷間圧延を要するが、その結果成形性、特に曲げ
加工性に問題が生じる。本発明は、かかる状況のもとで
なされたものであって、特に成形性および強度は従来レ
ベルを維持して、経時による軟化の少ないことが要求さ
れる成形加工用途の特にステイオンタブ用アルミニウム
合金板を提供することを目的とするものである。Since the aluminum alloy used in the conventional stion tab material has a relatively large amount of Mg added and is subjected to high cold rolling, strength adjustment and stabilization are performed by the final heat treatment. Has been done. However, since the final heat treatment is performed at a relatively high temperature (about 280 ° C.), a degreasing treatment is necessary as a pretreatment for the purpose of preventing seizure of rolling oil. Further, since the range of the finish annealing temperature is narrow, the accuracy of the annealing temperature is important, and the annealing equipment is required to have high accuracy such as temperature control. Furthermore, in the state after being formed into tabs, since it has undergone processing and hardening after the stabilization treatment, dislocations newly generated in the processed part cause precipitation of beta phase, etc. due to aging, and this causes solidification. The phenomenon that the amount of dissolved Mg decreases and the strength softens occurs. As a result, with a mechanism such as the Stein tab that opens the score portion by the principle of pulling, the tab strength is insufficient and there is a problem of poor opening. As a countermeasure for this, it is necessary to increase the thickness of the tab material or increase the initial strength to an unnecessary degree, but as a result, the manufacturing cost and material cost are higher than the tab material for partial open end,
One of the factors is that it is not adopted so much in Japan and is not widely used, despite the fact that malfunctions tend to occur and the end with Stein tab is certainly more advantageous in terms of can pollution. Is becoming As another method of preventing softening with time, a method of reducing the amount of added Mg can be considered. However, in recent years, with the thinning of the Steion tab, relatively high strength has become one of the important characteristics as the Steion tab material.
The strength of the conventional manufacturing method is not sufficient by simply reducing the amount of Mg added to the conventional alloy, and high cold rolling is required to obtain the required strength. As a result, there is a problem in formability, especially bending workability. Occurs. The present invention has been made under such circumstances, and in particular, aluminum for a Stein tab, which is required for a molding process in which the moldability and the strength are kept at the conventional level and the softening with time is small. It is intended to provide an alloy plate.
【0004】[0004]
【課題を解決するための手段】前記目的を達成するた
め、本発明者らは経時軟化が起らない組成で曲げ加工性
および強度については従来材並の特性を得られるように
化学成分調整、組織並びに製造条件等について総合的に
研究を重ねた。その結果、Mgを含めた成分調整、組
織、製造条件を規制するならば、所期の材料特性が得ら
れることが判明した。In order to achieve the above-mentioned object, the present inventors have adjusted the chemical composition so that bending composition and strength can be obtained in the same composition as conventional materials with a composition that does not soften with time. We conducted comprehensive research on the organization and manufacturing conditions. As a result, it was found that the desired material properties could be obtained if the composition control including Mg, the structure, and the manufacturing conditions were regulated.
【0005】すなわち、合金成分面では従来のステイオ
ンタブ用アルミニウム合金5082,5182ではMg
の添加量が4〜5%,5042は3〜4%であるのに対
して、本発明においてはMgの添加量を3%以下と少な
くすることにより経時軟化を少なくし、かつ強度を補う
ためにMn、Si、CuおよびCrの添加量を調節する
とともに、FeおよびMnによる晶出化合物の分散およ
びサイズをコントロールして曲げ性の劣化を防ぎ、ま
た、添加元素の組成に応じて鋳造方法、均質化処理温
度、冷間圧延率および仕上の熱処理方法を選択すること
により、必要強度が得られ、かつ曲げ性の点で劣ること
のない材料が得られることを見出した。That is, in terms of alloy composition, the conventional aluminum alloys 5082 and 5182 for a stab tab are Mg.
In the present invention, the addition amount of Mg is 4 to 5% and 5042 is 3 to 4%, whereas in the present invention, the softening with time is reduced and the strength is supplemented by reducing the addition amount of Mg to 3% or less. In addition to controlling the amount of Mn, Si, Cu and Cr added, the dispersion and size of the crystallized compound due to Fe and Mn can be prevented to prevent deterioration of bendability, and a casting method depending on the composition of the additive element, It has been found that by selecting the homogenization treatment temperature, the cold rolling rate and the finishing heat treatment method, it is possible to obtain a material that can obtain the required strength and is not inferior in terms of bendability.
【0006】すなわち本発明は、請求項1記載のごと
く、重量%で、Mg:1〜3%および組織微細化・安定
化のためTi:0.005〜0.20%を単独であるい
はB:0.0005〜0.04%とともに含有し、さら
にFe:0.01〜0.6%、Mn:0.1〜1.2
%、Si:0.05〜0.5%、Cu:0.05〜0.
5%、Cr:0.05〜0.3%、Zn:0.1〜0.
5%のうちの1種又は2種以上を含み、このうち、Fe
およびMnは少なくともいずれか一方を必ず含みかつF
e+Mn≦1.6%以下とし、残部がAl及び不可避不
純物からなり、耐力が250N/mm2以上で経時軟化
しにくいステイオンタブ用アルミニウム合金板である。That is, according to the present invention, as in claim 1, Mg: 1 to 3% and Ti: 0.005 to 0.20% alone or B: Included with 0.0005 to 0.04%, Fe: 0.01 to 0.6%, Mn: 0.1 to 1.2
%, Si: 0.05 to 0.5%, Cu: 0.05 to 0.
5%, Cr: 0.05 to 0.3%, Zn: 0.1 to 0.
One or more of 5% is included, of which Fe
And Mn always include at least one of them and F
It is an aluminum alloy plate for a steion tab having e + Mn ≦ 1.6% or less, the balance consisting of Al and unavoidable impurities, and a yield strength of 250 N / mm 2 or more, which is hard to soften with time.
【0007】[0007]
【作用】以下に本発明を更に詳細に説明する。まず、本
発明における化学成分の限定理由を説明する。 Mg:Mgは強度を付与する重要な元素であり、所定量
の添加により、ステイオンタブ材として使用し得る強度
を確保する必要がある。しかし、3%をこえる添加では
加工部の転位が経時変化によりベータ相等の析出を起こ
し、このため固溶Mg量が少なくなり強度が軟化すると
いう経時軟化が起りやすくなる。また1%より少ない
と、他の添加元素では不足する強度を補えない。したが
って、Mg量は1〜3%の範囲とする。 Ti,B:Ti,Bは組織を微細化・安定化させるため
の有効な元素である。しかし添加量が少ないと効果がな
く、多いと巨大化合物を生成し曲げ加工性を低下させる
ので、Ti0.005〜0.20%を単独であるいはB
0.0005〜0.04%とともに添加する。 Si:Siの添加は、Mg2Siの生成による時効硬化
により、強度向上に寄与する。0.05%未満ではその
効果もなく、0.5%を越えると強度向上には寄与する
ものの、硬化しすぎて成形性を悪くする。したがって、
Si量は0.05〜0.5%の範囲とする。 Cu:Cu添加はAl−Cu−Mgの時効析出による時
効硬化により、強度向上に寄与する。しかし、0.05
%未満ではその効果も少なく、0.5%を超えて過多に
添加されると強度が高すぎることによる成形加工性の低
下を招く。したがって、Cu量は0.05〜0.5%の
範囲とする。 Zn:Znの添加はMg2Zn3Al2の時効析出により
強度向上を望めるが、0.1%未満ではその効果はなく
0.5%を超えると強度の寄与に対しては問題無いが、
耐食性を劣化させるのでこれ以下に規制する必要があ
る。したがって、Zn量は0.1〜0.5%の範囲とす
る。以上のSi、CuおよびZnの添加で強度を補う場
合には、中間焼鈍はCALのように高温での急速加熱及
び冷却による溶体化効果をもたせる方法を用いることが
好ましい。 Mn:Mnの添加は強度向上に大きな効果を示す。しか
し、Mnが0.1%未満ではその効果も少なく、1.2
%を越えると晶出物のサイズを大きく、しかも数を多く
して曲げ性の低下を招くので好ましくない。したがっ
て、Mn量は0.1〜1.2%の範囲とする。 Cr:Crの添加は強度向上に大きな効果を示す。Cr
が0.05%未満ではその効果もなく、0.3%を超え
て過多に添加されると巨大晶出物生成により、曲げ性の
低下を招くため、好ましくない。したがって、Cr量は
0.05〜0.3%の範囲とする。 Fe:Feの添加は強度向上に効果を示す。しかし、F
eが0.01%未満ではその効果はなく、0.6%を超
えると晶出物のサイズを大きく、しかも数を多くして曲
げ性の低下を招くので好ましくない。したがって、Fe
量は0.01〜0.6%の範囲とする。またMnとFe
とは共に曲げ性の低下を招く作用があるため、FeとM
nの総量でも規制する必要があり、Fe+Mn≦1.6
%とする。1.6%までであれば、凝固速度の速い鋳造
方法(例えば50℃/s以上の連続鋳造圧延法等)を選
ぶことにより、曲げ性に悪影響を及ぼさない。なお、本
発明においては、Mgと、組織を微細化・安定化させる
Tiおよび/またはBは必須であるが、強度を得るのに
必要な元素(Si,Cu,Zn,MnおよびCr,F
e)は選択添加元素とし、それぞれ少なくとも1種を必
要に応じて添加し、特にFe,Mnについてはいずれか
一方を必ず添加する。Al合金に含まれる上記以外の元
素も各々0.05%未満であるなら本発明の効果を損な
うことはない。特にZr,Vは0.3%未満までは組織
安定化に有効である。The present invention will be described in more detail below. First, the reasons for limiting the chemical components in the present invention will be described. Mg: Mg is an important element that imparts strength, and it is necessary to secure a strength that can be used as a steion tab material by adding a predetermined amount. However, when the content exceeds 3%, dislocations in the worked portion cause precipitation of a beta phase and the like due to a change with time, so that the amount of solid solution Mg decreases and the strength is softened, so that softening with time easily occurs. On the other hand, if it is less than 1%, the strength which is insufficient with other additive elements cannot be supplemented. Therefore, the amount of Mg should be in the range of 1 to 3%. Ti, B: Ti, B is an effective element for refining and stabilizing the structure. However, if the addition amount is small, there is no effect, and if the addition amount is large, a huge compound is formed and bending workability is deteriorated. Therefore, 0.005 to 0.20% Ti alone or B is added.
Add with 0.0005-0.04%. Si: Addition of Si contributes to strength improvement by age hardening due to generation of Mg 2 Si. If it is less than 0.05%, there is no effect, and if it exceeds 0.5%, although it contributes to the improvement of strength, it is excessively hardened to deteriorate the moldability. Therefore,
The amount of Si shall be 0.05 to 0.5%. Cu: Cu addition contributes to strength improvement by age hardening by age precipitation of Al-Cu-Mg. But 0.05
If it is less than 0.5%, the effect is small, and if it is added in excess of 0.5%, the strength becomes too high, resulting in deterioration of moldability. Therefore, the amount of Cu is set to the range of 0.05 to 0.5%. The addition of Zn: Zn is expected to improve strength by aging precipitation of Mg 2 Zn 3 Al 2 , but if it is less than 0.1%, there is no effect, and if it exceeds 0.5%, there is no problem with the contribution of strength.
Corrosion resistance deteriorates, so it is necessary to regulate below this value. Therefore, the Zn amount is set to the range of 0.1 to 0.5%. When the strength is supplemented by the addition of Si, Cu and Zn as described above, it is preferable to use a method such as CAL in which intermediate annealing has a solution treatment effect by rapid heating and cooling at high temperature. Addition of Mn: Mn has a great effect on strength improvement. However, when Mn is less than 0.1%, the effect is small and 1.2
If it exceeds%, the size of the crystallized product becomes large, and the number of crystallized products becomes large, resulting in a decrease in bendability, which is not preferable. Therefore, the Mn content is set to the range of 0.1 to 1.2%. Cr: Addition of Cr has a great effect on the strength improvement. Cr
Is less than 0.05%, there is no such effect, and if it is added in excess of 0.3%, a large crystallized product is formed, resulting in a decrease in bendability, which is not preferable. Therefore, the Cr amount is set to the range of 0.05 to 0.3%. Fe: Addition of Fe is effective in improving strength. But F
If the content of e is less than 0.01%, there is no effect, and if it exceeds 0.6%, the size of the crystallized product is large, and the number is increased, resulting in a decrease in bendability. Therefore, Fe
The amount is in the range of 0.01 to 0.6%. Also Mn and Fe
And Fe have the effects of reducing bendability, so Fe and M
It is necessary to regulate even the total amount of n, and Fe + Mn ≦ 1.6
%. If it is up to 1.6%, the bendability is not adversely affected by selecting a casting method with a high solidification rate (for example, a continuous casting and rolling method at 50 ° C./s or more). In addition, in the present invention, Mg and Ti and / or B for refining and stabilizing the structure are indispensable, but the elements (Si, Cu, Zn, Mn and Cr, F) necessary for obtaining the strength are required.
e) is a selective addition element, and at least one of them is added as necessary, and in particular, for Fe and Mn, either one is always added. If the content of each element other than the above contained in the Al alloy is less than 0.05%, the effect of the present invention is not impaired. In particular, Zr and V are effective for stabilizing the structure up to 0.3%.
【0008】上記、本発明のアルミニウム合金板に適す
る製造方法について説明する。上記の化学成分を有する
Al合金は、製造方法が強化機構や晶出物のサイズに影
響を与えるため、各合金の成分(特にFe+Mn量)に
より製法を適宜選択することが望ましい。本発明で採り
得る主な製造方法を以下にリストアップする。 DC鋳造 冷却速度10℃/s程度 (1)DC鋳造→加熱→熱延→中間焼鈍(CAL)
→冷延→熱処理 (2)DC鋳造→加熱→熱延→冷延→中間焼鈍(CA
L)→冷延→熱処理 (3)DC鋳造→加熱→熱延→冷延→中間焼鈍(バッ
チ)→冷延→熱処理 連続鋳造圧延(以下CCと略す) 冷却速度50℃/s
以上 (4)CC →冷延→中間焼鈍(CA
L)→冷延→熱処理 (5)CC→加熱→冷延 →中間焼鈍(CA
L)→冷延→熱処理 (6)CC→加熱→冷延 →中間焼鈍(バッ
チ)→冷延→熱処理 (7)CC→冷延→加熱→冷延 →中間焼鈍(CA
L)→冷延→熱処理 (8)CC→冷延→加熱→冷延 →中間焼鈍(バッ
チ)→冷延→熱処理 上記各製造方法のうち、Fe+Mn量に応じた最適な製
法について以下説明する。 a.Fe+Mn<0.7% この範囲では、いずれの鋳造方法を選択しても、晶出物
による曲げ性の劣化は少ないので、最終冷間圧延率によ
る強度アップは90%程度まで許容できる。ただし最終
冷間圧延率が30%以上無いと必要強度が得られない。
しかし、Mnによる強化は期待できないので、中間焼鈍
時に溶体化効果のあるCALを採用することが強度向上
のため必須である。従って、製造方法2,4,5,7が
望ましい。また冷却速度が速く鋳造時の固溶が期待でき
るCCを組み合わせた製造方法4,5,7が更に好まし
い。 b.0.5%<Fe+Mn<1.2% 晶出化合物が曲げ性に影響を与えるために、均質化の加
熱処理が必須と成る。従って製造方法1,2,3,5,
6,7,8が望ましい。またMnによる強度向上が期待
でき、その他の添加元素と組合わせることによりバッチ
タイプの中間焼鈍を用いても、曲げ性が許容される最終
冷間圧延率以内で必要強度が得られる。しかしこの組成
範囲の場合、最終冷間圧延率が多くなると、晶出化合物
の周辺に転位が優先的に蓄積して、曲げ加工時の割れの
基点となりやすい。また、これは晶出物のサイズにも影
響を受け、大きい方がより転位の偏析が大きくなり曲げ
性を悪くするので次の冷延率が好ましい。 DC材の場合:晶出物サイズはその平均径が3μm以上
あるので最終冷延率は80%以下とするのが好ましい。 CC材の場合:晶出物サイズはその平均径が2μm以下
であるので最終冷延率は90%まで許容できる。 なお、最終冷延率は、30%以上でないと必要強度は得
られない。 c.1<Fe+Mn≦1.6% この組成範囲の場合、DC鋳造では粗大な晶出物が多く
なる。具体的には5μm以上のサイズの晶出物が板表面
で100個/0.2mm2以上生成する。このような晶
出物の分散では、圧下率を少なくしても、曲げ加工時に
加わる転位とあわさって、曲げ加工時に割れが生じてし
まう。従って、鋳造方法はCCの採用が必須となる。ま
た、晶出物を球状化・分散させるために加熱処理が必須
となる。CC材を加熱(加熱温度はb.の場合と同じ条
件)することによりデンドライト樹枝間の晶出物を球状
化・分散させ、5μm以上の粒子を10個/0.2mm
2より少なく微細晶出物をランダムに分散させることが
できる。しかし、この場合1μm以上の晶出物が200
0個/0.2mm2以上となるため、最終冷延率は80
%以下が望ましい。ただし最終冷延率は、30%以上で
ないと必要強度は得られない。この場合、強度への寄与
の大きなMnも充分に添加されているので、中間焼鈍は
CALでもバッチでもよい。したがって、製造方法5,
6,7,8が望ましい。Fe+Mnが上記の各区分にま
たがっている、0.5〜0.7%,1.0〜1.2%の
範囲は、Fe+Mnだけで一元的に製法が決まらずMn
以外の強化成分量・冷間圧延率・中間焼鈍方法によりど
ちらの製造方法でも可能である。Fe+Mn>1.6%
では鋳造方法としてCCを採用することにより晶出物の
3μm未満への微細化は達成できるが、1μm以上の個
数が4000個/mm2より多くなり晶出物個々での転
位の蓄積は少ないが、晶出物粒子間の距離が短くなるの
で複数個の晶出物のまわりに転位が集積してあたかも一
つの粗大な晶出物粒子があるような作用をしてしまう。
したがって、Fe+Mn≦1.6%以下とする。The manufacturing method suitable for the aluminum alloy sheet of the present invention will be described. As for the Al alloy having the above-mentioned chemical components, the manufacturing method affects the strengthening mechanism and the size of the crystallized substance, so that it is desirable to appropriately select the manufacturing method depending on the components (especially Fe + Mn amount) of each alloy. The main manufacturing methods that can be adopted in the present invention are listed below. DC casting Cooling rate about 10 ° C / s (1) DC casting → heating → hot rolling → intermediate annealing (CAL)
→ Cold rolling → Heat treatment (2) DC casting → Heating → Hot rolling → Cold rolling → Intermediate annealing (CA
L) → cold rolling → heat treatment (3) DC casting → heating → hot rolling → cold rolling → intermediate annealing (batch) → cold rolling → heat treatment continuous casting and rolling (hereinafter abbreviated as CC) cooling rate 50 ° C / s
Above (4) CC → cold rolling → intermediate annealing (CA
L) → cold rolling → heat treatment (5) CC → heating → cold rolling → intermediate annealing (CA
L) → cold rolling → heat treatment (6) CC → heating → cold rolling → intermediate annealing (batch) → cold rolling → heat treatment (7) CC → cold rolling → heating → cold rolling → intermediate annealing (CA)
L) → Cold rolling → Heat treatment (8) CC → Cold rolling → Heating → Cold rolling → Intermediate annealing (batch) → Cold rolling → Heat treatment Among the above manufacturing methods, the optimum manufacturing method according to the amount of Fe + Mn will be described below. a. Fe + Mn <0.7% Within this range, the bendability due to the crystallized material is less deteriorated regardless of which casting method is selected. Therefore, the strength increase by the final cold rolling rate can be allowed up to about 90%. However, the required strength cannot be obtained unless the final cold rolling rate is 30% or more.
However, since strengthening by Mn cannot be expected, it is indispensable to adopt CAL which has a solution treatment effect during the intermediate annealing in order to improve the strength. Therefore, the manufacturing methods 2, 4, 5, and 7 are desirable. Further, the manufacturing methods 4, 5 and 7 in which CCs having a high cooling rate and capable of expecting a solid solution during casting are combined are more preferable. b. 0.5% <Fe + Mn <1.2% Since the crystallized compound affects the bendability, heat treatment for homogenization is essential. Therefore, the manufacturing methods 1, 2, 3, 5,
6, 7 and 8 are desirable. Further, strength improvement by Mn can be expected, and even if batch type intermediate annealing is used by combining with other additive elements, required strength can be obtained within the final cold rolling rate at which bendability is allowed. However, in the case of this composition range, when the final cold rolling rate increases, dislocations preferentially accumulate around the crystallized compound, which easily becomes a base point of cracking during bending. Further, this is also affected by the size of the crystallized product, and the larger the size, the larger the dislocation segregation and the worse the bendability. In the case of DC material: Since the crystallized material has an average diameter of 3 μm or more, the final cold rolling rate is preferably 80% or less. In the case of CC material: Since the crystallized material has an average diameter of 2 μm or less, the final cold rolling rate is acceptable up to 90%. The required strength cannot be obtained unless the final cold rolling rate is 30% or more. c. 1 <Fe + Mn ≦ 1.6% In this composition range, coarse crystallized substances increase in DC casting. Specifically, 100 / 0.2 mm 2 or more of crystallized substances having a size of 5 μm or more are generated on the plate surface. In such dispersion of crystallized substances, even if the reduction ratio is reduced, cracking occurs during bending work together with dislocations added during bending work. Therefore, CC is essential for the casting method. In addition, heat treatment is indispensable for spheroidizing and dispersing the crystallized substance. The CC material is heated (the heating temperature is the same as in the case of b.) To spheroidize and disperse the crystallized substances between the dendrite dendrites, and 10 particles of 5 μm or more / 0.2 mm
Fine crystallized substances less than 2 can be dispersed randomly. However, in this case, there are 200 crystallized substances of 1 μm or more.
Since the number is 0 pieces / 0.2 mm 2 or more, the final cold rolling rate is 80
% Or less is desirable. However, the required strength cannot be obtained unless the final cold rolling rate is 30% or more. In this case, since Mn, which makes a large contribution to the strength, is also sufficiently added, the intermediate annealing may be CAL or batch. Therefore, the manufacturing method 5,
6, 7 and 8 are desirable. In the range of 0.5 to 0.7% and 1.0 to 1.2% in which Fe + Mn spans each of the above-mentioned categories, the manufacturing method is not determined centrally by Fe + Mn alone, and Mn is Mn.
Either manufacturing method is possible depending on the amount of strengthening components other than the above, the cold rolling ratio, and the intermediate annealing method. Fe + Mn> 1.6%
However, by adopting CC as a casting method, it is possible to reduce the size of crystallized substances to less than 3 μm, but the number of 1 μm or more is greater than 4000 / mm 2 , and dislocations are less accumulated in each crystallized substance. Since the distance between the crystallized substance particles is shortened, dislocations are accumulated around the plurality of crystallized substances, and it acts as if there is one coarse crystallized substance particle.
Therefore, Fe + Mn ≦ 1.6% or less.
【0009】上記製造方法のうち、共通するプロセスの
条件を以下に記す。 加熱:500℃以上の温度が必要で高温である方がよい
が、最高温度はMg添加量により決まり、 (−25M
g重量%+655)℃より低くする必要があり、これ以
上では共晶融解が起る。 中間焼鈍 CAL:加熱速度・冷却速度は1℃/s以上、到達温度
は380〜600℃、保持時間0〜10分とする。 バッチ:加熱速度・冷却速度は10〜100℃/Hr、
到達温度は300〜500℃、保持時間は30分以上と
する。 最終熱処理 バッチ:到達温度が100℃以上にならないと、転位の
回復が進まず材料が脆く曲げ性が劣る。しかし250℃
を超えると強度制御が難しい。よって温度範囲は100
〜250℃とする。保持時間は5分以上必要であるが、
あまり長時間熱処理しても効果が変わらないことから1
0時間以内がよい。なお最終熱処理は、無塗装の場合の
圧延板製造工程でのバッチ炉による処理だけでなく、塗
装有りの場合のバッチタイプの塗装ラインでの塗装焼付
け処理もここで言う最終熱処理に含まれる。 CAL:保持は短時間なので、到達温度は200℃以上
無いと転位の回復が進まず材料が脆く曲げ性が劣る。た
だし350℃を超えると再結晶温度近傍で、強度制御が
難しい。よって到達温度は200〜350℃とする。ま
た連続処理装置という設備上の特徴から保持時間は0〜
5分が好ましい。なお、無塗装の場合の圧延板製造工程
でのCALによる処理だけでなく、塗装有りの場合の連
続塗装ラインでの塗装焼付け等の連続加熱処理もここで
言う最終熱処理に含まれる。Among the above manufacturing methods, common process conditions are described below. Heating: A temperature of 500 ° C. or higher is required and it is better that the temperature is high, but the maximum temperature is determined by the amount of Mg added,
g wt% +655) ° C., and eutectic melting occurs above this. Intermediate annealing CAL: heating rate / cooling rate is 1 ° C./s or more, ultimate temperature is 380 to 600 ° C., and holding time is 0 to 10 minutes. Batch: heating rate / cooling rate is 10-100 ° C / Hr,
The ultimate temperature is 300 to 500 ° C. and the holding time is 30 minutes or longer. Final heat treatment batch: If the reached temperature does not reach 100 ° C or higher, dislocation recovery does not proceed and the material becomes brittle and the bendability deteriorates. But 250 ℃
If it exceeds, strength control is difficult. Therefore, the temperature range is 100
~ 250 ° C. Hold time should be 5 minutes or more,
Because the effect does not change even if it is heat-treated for too long, 1
0 hours or less is good. The final heat treatment includes not only the treatment by the batch furnace in the rolling plate manufacturing process in the case of no coating but also the coating baking treatment in the batch type coating line in the case of coating, which is included in the final heat treatment. CAL: Since the holding time is short, the dislocation recovery does not proceed and the material is brittle and the bendability is poor unless the ultimate temperature is 200 ° C. or higher. However, if it exceeds 350 ° C., strength control is difficult near the recrystallization temperature. Therefore, the ultimate temperature is set to 200 to 350 ° C. In addition, the holding time is 0 to 0 due to the facility features of the continuous processing equipment.
5 minutes is preferred. In addition, not only the treatment by CAL in the rolled plate manufacturing process in the case of no coating but also the continuous heat treatment such as coating baking in the continuous coating line in the case of coating is included in the final heat treatment.
【0010】元板の耐力は250N/mm2未満では、
タブ成形後1年経過した段階で経時軟化によりタブの強
度が不足してしまい、開缶した時にタブが折れ曲がり開
缶不良を起こす。これを防止するには板厚を厚くしたタ
ブ材を使用しなければならずコスト増となってしまう。
したがって、元板の耐力が250N/mm2以上である
ことが必要である。If the yield strength of the base plate is less than 250 N / mm 2 ,
At the stage of one year after tab formation, the strength of the tab becomes insufficient due to softening over time, and when the can is opened, the tab bends and causes a can opening failure. To prevent this, it is necessary to use a tab material having an increased plate thickness, resulting in an increase in cost.
Therefore, it is necessary that the yield strength of the base plate is 250 N / mm 2 or more.
【0011】また成形直後の耐力が高いだけでなく、経
時軟化しにくいことがステイオンタブ用アルミニウム合
金に要求される。経時軟化量は、本発明ではタブ成形後
の耐力と常温に放置して1年経過後の耐力との差(以
下、耐力差と略す)が50N/mm2未満であることが
望ましい。50N/mm2以上の耐力差が生ずると、成
形直後の強度が強くても経時軟化によりしだいに強度不
足となり、ステイオンタブのように梃子の原理でスコア
ー部をこじ開けるメカニズムでは開缶時にタブが屈曲し
て開缶不良を起こす。Further, the aluminum alloy for a steion tab is required not only to have a high yield strength immediately after molding but also to be resistant to softening with time. In the present invention, the amount of softening with time is preferably less than 50 N / mm 2 between the proof stress after tab molding and the proof stress after one year of standing at room temperature (hereinafter referred to as the proof stress difference). If a proof stress difference of 50 N / mm 2 or more occurs, even if the strength immediately after molding is strong, the strength gradually becomes insufficient due to softening over time, and the mechanism of prying the score part on the principle of leverage like the Stein tab causes the tab to open when opening. It bends and causes poor opening.
【0012】[0012]
【実施例】次に本発明の実施例を示す。表1は実施例に
用いたアルミニウム合金の合金成分組成である。ここで
A,B,Cは各々製造方法において上述した各組成範囲
に入るものでありAはFe+Mn<0.7%、Bは0.
5%<Fe+Mn<1.2%、Cは1<Fe+Mn≦
1.6%の条件を満たすものである。またDは、従来合
金の5182に相当するものである。またEは、本発明
の条件であるFe+Mn≦1.6%から外れたものであ
る。EXAMPLES Examples of the present invention will be described below. Table 1 shows the alloy composition of the aluminum alloy used in the examples. Here, A, B, and C are in the respective composition ranges described above in the manufacturing method, A is Fe + Mn <0.7%, and B is 0.
5% <Fe + Mn <1.2%, C is 1 <Fe + Mn ≦
It satisfies the condition of 1.6%. Further, D corresponds to the conventional alloy 5182. Further, E is out of the condition of the present invention, Fe + Mn ≦ 1.6%.
【0013】[0013]
【表1】 [Table 1]
【0014】表2に各実施例の製造方法を示す。鋳造は
DC鋳造で厚さ500mm、CCで厚さ7mmの2通り
行なった。中間焼鈍はCALで行ったものはで加熱速度
・冷却速度とも約20℃/s、保持無しの条件で、バッ
チ炉(BAFと略す)で行ったものは加熱速度・冷却速
度約35℃/h、保持2時間の条件で行った。最終熱処
理は、160℃または190℃x2hrのものはバッチ
タイプの焼鈍炉で行い、200℃x20minのものは
バッチタイプの塗装焼付炉相当の炉で行い、270℃x
20sのものは連続タイプの塗装焼付炉相当の炉で行っ
た。表2に示す各試料番号について説明すると、 ・No1は、Fe+Mn<0.7%を満たす合金Aに前
述した製造方法(4)を適用したものである。 ・No2〜5は、0.5%<Fe+Mn<1.2%を満
たす合金Bに対して、No2は前述した製造方法(2)
を、No3は製造方法(3)を、No4は製造方法
(5)を、No5は製造方法(6)を適用したものであ
る。 ・No6はNo5に対して元板の耐力を250N/mm
2未満となるような製造条件としたものである。 ・No7、No8は1<Fe+Mn≦1.6%を満たす
C合金に対して、前述した製造方法(7)を適用したも
のである。No7は最終熱処理をバッチで行ったもので
あり、No8はCALで行ったものである。 ・No9は従来合金Dを用いて従来法で製造したもので
ある。 ・No10は成分組成が本発明を外れる合金Eに前述し
た製造方法(5)を用いて製造したものである。Table 2 shows the manufacturing method of each example. Casting was carried out in two ways: DC casting with a thickness of 500 mm and CC with a thickness of 7 mm. The intermediate annealing was performed by CAL at a heating rate / cooling rate of about 20 ° C / s, and in a batch furnace (abbreviated as BAF) without heating, the heating rate / cooling rate was about 35 ° C / h. The holding time was 2 hours. The final heat treatment is carried out in a batch type annealing furnace for 160 ° C. or 190 ° C. × 2 hr, and in a furnace equivalent to a batch type coating baking furnace for 200 ° C. × 20 min.
For 20 s, a continuous type paint baking furnace was used. Explaining each sample number shown in Table 2, No. 1 applies the manufacturing method (4) described above to the alloy A satisfying Fe + Mn <0.7%. No. 2 to 5 are alloys B satisfying 0.5% <Fe + Mn <1.2%, while No2 is the manufacturing method (2) described above.
No. 3 applies the manufacturing method (3), No 4 applies the manufacturing method (5), and No 5 applies the manufacturing method (6).・ No6 has a proof stress of the original plate of 250 N / mm with respect to No5.
The manufacturing conditions are set so as to be less than 2 . -No7 and No8 apply the manufacturing method (7) mentioned above to C alloy with which 1 <Fe + Mn <= 1.6%. In No. 7, the final heat treatment was performed in batch, and in No. 8, the final heat treatment was performed by CAL. -No. 9 is manufactured by the conventional method using the conventional alloy D. -No. 10 is manufactured by using the manufacturing method (5) described above for the alloy E having a component composition outside the scope of the present invention.
【0015】[0015]
【表2】 [Table 2]
【0016】各試料について強度、成形性、組織の評価
を行なった。その結果を表3に示す。ここで「15%圧
延後」とは、タブに成形することに相当する圧延率15
%の冷間圧延を施したものであり、「150℃x1h加
熱後」とは、タブに成形し常温下で1年経過した後の状
態に相当する促進加熱を施したものである。TSは引張
強度をあらわし、YSは0.2%耐力をあらわし、とも
に単位はN/mm2である。またElは伸びをあらわし
単位は%である。耐力差は、「15%圧延後」と「15
0℃x1h加熱後」との耐力の差、すなよち1年間にお
ける経時軟化量に相当する経時軟化量を示している。曲
げ性の評価は繰り返し曲げ試験及び曲げ試験で行った。
繰り返し曲げ試験は図1に示すように、試験片をつかみ
両側で90°の角度に曲げる行程を1回とし破断するま
での回数を示してある。また曲げ試験は図2に示すよう
な形状に曲げ半径1/2×(板厚)で曲げ、曲げ面2を
観察し、従来材を○とした比較を示してある。なお図で
RDは試験片の圧延方向を示す。組織の観察は、晶出物
として板表面を観察し1μm以上の粒子の個数を個/
0.2mm2単位で示してある。また晶出物として板
表面を観察し5μm以上の粗大な粒子の個数を個/0.
2mm2単位で示してある。また開缶性の評価はタブに
成形して缶蓋に取り付けた後、1年経過に相当する15
0℃x1hの促進加熱処理を行い開缶して開缶できたも
のを○、開缶時に強度不足のためタブが屈曲して開缶で
きなかったものを×とした。The strength, moldability and structure of each sample were evaluated. The results are shown in Table 3. Here, "after 15% rolling" means a rolling ratio of 15 which corresponds to forming into a tab.
% Cold-rolled, and “after heating at 150 ° C. × 1 h” means that the tab was formed and accelerated heating corresponding to the state after one year had passed at room temperature was applied. TS represents tensile strength, YS represents 0.2% proof stress, and the unit is N / mm 2 . Also, El represents elongation and the unit is%. The yield strength difference is "15% after rolling" and "15% after rolling".
The difference in proof stress after heating at 0 ° C. × 1 h ”, that is, the amount of softening with time corresponding to the amount of softening with time in one year is shown. The bendability was evaluated by a repeated bending test and a bending test.
In the repeated bending test, as shown in FIG. 1, the number of times until the test piece is grasped and bent at an angle of 90 ° on both sides is defined as one and the fracture is shown. In the bending test, the shape shown in FIG. 2 was bent at a bending radius of 1/2 × (plate thickness), the bending surface 2 was observed, and the conventional material was compared with ◯. In the figure, RD indicates the rolling direction of the test piece. The structure is observed by observing the plate surface as crystallized substances and determining the number of particles of 1 μm or more
It is shown in units of 0.2 mm 2 . Also, the plate surface was observed as crystallized substances, and the number of coarse particles of 5 μm or more was counted as 0/0.
It is shown in units of 2 mm 2 . In addition, the evaluation of the can openability is equivalent to one year after the tab is formed and attached to the can lid.
The case where the can was opened after being subjected to the accelerated heat treatment at 0 ° C. × 1 h was indicated as ◯, and the case where the tab could not be opened due to insufficient strength at the time of opening the can was indicated as x.
【0017】[0017]
【表3】 [Table 3]
【0018】上記表3に示す通り、いずれの条件におい
ても従来例・比較例に対して発明例は強度、曲げ性は従
来材と同等もしくは良好であり、しかも耐力の減少すな
わち経時軟化は従来材より少なく、1年経過後相当の促
進加熱後の耐力は発明例の方が従来例より高い値を示し
ている。以下、個々について説明する。 [No1]Fe+Mn<0.7%を満たす合金Aに前述
した製造方法(4)を適用したものである。引張強さ、
耐力は元板、15%圧延後とも従来例No9と同等であ
り、しかも促進加熱後も耐力の減少は少なく従来例No
9よりも高い強さを示す。また粗大晶出物量が少なく、
曲げ性、繰り返し曲げ性とも従来例No9と同等の値で
あり、開缶性も問題ない。 [No2]0.5%<Fe+Mn<1.2%を満たす合
金Bを用いて前述した製造方法(2)により製造したも
のである。強度は従来例No9よりやや低いもののほぼ
同等であり、しかも耐力の減少が少ない。 また繰り返
し曲げ性は微細な晶出物、粗大な晶出物ともに従来
例No9と同等に晶出しているため同程度の性能となっ
ているが、発明例No1よりもやや劣る。 [No3]0.5%<Fe+Mn<1.2%を満たす合
金Bを用いて前述した製造方法(3)により製造しても
のである。No2と同様の性能であるが、中間焼鈍をバ
ッチにより行っているため強度がNo2よりは低めにな
っている。 [No4]0.5%<Fe+Mn<1.2%を満たす合
金Bを用いて前述した製造方法(5)により製造したも
のである。強度は元板、15%圧延後ともに従来例No
9と同じ強さとなっており、しかも経時軟化が少なく1
年間経過相当の状態でも従来例No9では耐力が294
N/mm2まで落ちているのに対して発明例No4は3
45N/mm2であり、充分な強度を維持している。ま
た微細な晶出物は多くなっているものの曲げ性、繰り
返し曲げ性でも従来例No9と同等である。 [No5]0.5%<Fe+Mn<1.2%を満たす合
金Bを用いて前述した製造方法(6)により製造したも
のである。中間焼鈍をバッチで行ったため、No4と比
較して強度はやや下がったものの繰り返し曲げ性が向上
している。 [No6]No5に対して元板の耐力を250N/mm
2未満とした比較例である。経時軟化は少ないものの、
1年経過後の耐力が245N/mm2と他の材料に比較
して低く、このため開缶性が悪い。 [No7]1<Fe+Mn≦1.6%を満たす合金Cを
用いて前述した製造方法(7)により製造したものであ
る。No1〜No6までの合金に対してMg量がさらに
少ない組成だが、Mn量を多くしてあることにより従来
例No9とほぼ同等の強度となっている。また耐力差も
小さい。晶出物が他の発明例よりも多いが曲げ性、繰り
返し曲げ性とも同等の性能となっている。 [No8]No7に対して最終熱処理をCALにより行
ったものである。15%圧延後における強度はNo7よ
りやや低いが、耐力差は20N/mm2と最も経時軟化
量が少なく、また引張強さの減少も少ない。また成形
性、開缶性ともNo7と同等の性能を示す。 [No9]従来合金Dを用いて従来法で製造したもので
ある。元板および15%圧延後すなわちタブ成形後相当
時には高い強度を示すものの1年間経過相当の150℃
x1hの促進加熱後には耐力は76N/mm2も低下し
ており、大きな経時軟化を示している。また引張強さも
29N/mm2低下している。また粗大な晶出物が多
くなっているため、繰り返し曲げ性もそれほど良くはな
い。 [No10]成分組成が本発明の請求の範囲から外れる
合金Eを用いた比較例である。Mn+Fe量が多いため
Mg量が少なくても従来例と同等の強度を示す。しか
し、微細な晶出物が非常に多く晶出しているため、曲
げ性、繰り返し曲げ性ともに極めて悪い。 以上述べたように、本発明にかかるアルミニウム合金板
は元板およびタブ成形直後での引張強さ、耐力は従来材
と同等であるか多少低い程度であり、しかも経時軟化し
にくいものである。また曲げ性、繰り返し曲げ性等の成
形性においても従来材と同等ないしは従来材以上の性能
となっている。As shown in Table 3 above, under any of the conditions, the invention example has strength or bendability equal to or better than that of the conventional material as compared with the conventional material and the comparative material, and the decrease of proof stress, that is, softening with time, of the conventional material. The yield strength after accelerated heating, which is less after one year, is higher in the invention example than in the conventional example. Hereinafter, each will be described. [No1] The alloy A that satisfies Fe + Mn <0.7% is obtained by applying the manufacturing method (4) described above. Tensile strength,
The yield strength is the same as that of the conventional example No. 9 even after the base plate and 15% rolling, and the yield strength is less decreased even after the accelerated heating.
It shows a strength higher than 9. Also, the amount of coarse crystallized substances is small,
The bendability and the repetitive bendability are the same values as those of Conventional Example No. 9, and there is no problem in the can openability. [No2] An alloy B satisfying 0.5% <Fe + Mn <1.2% is manufactured by the manufacturing method (2) described above. Although the strength is slightly lower than that of Conventional Example No. 9, the strength is almost the same, and the yield strength is not significantly reduced. Further, the repetitive bendability is equivalent to that of the conventional example No. 9 because both the fine crystallized substance and the coarse crystallized substance are crystallized similarly to the conventional example No. 9, but are slightly inferior to the invention example No. 1. [No3] The alloy B satisfying 0.5% <Fe + Mn <1.2% is manufactured by the above-mentioned manufacturing method (3). It has the same performance as No. 2, but the strength is lower than that of No. 2 because the intermediate annealing is performed in batch. [No4] It is manufactured by the manufacturing method (5) described above using the alloy B satisfying 0.5% <Fe + Mn <1.2%. The strength is the same as that of the conventional example for both the base plate and after 15% rolling.
It has the same strength as 9 and has less softening over time.
Even in the state equivalent to the passage of the year, the proof stress of the conventional example No. 9 is 294.
Inventive Example No. 4 is 3 while it has fallen to N / mm 2.
It is 45 N / mm 2 , and maintains sufficient strength. Further, although the number of fine crystallized substances is increased, the bendability and the repetitive bendability are the same as those of Conventional Example No. 9. [No5] It is manufactured by the manufacturing method (6) described above using the alloy B satisfying 0.5% <Fe + Mn <1.2%. Since the intermediate annealing was performed in a batch, the strength was slightly reduced as compared with No. 4, but the repetitive bendability was improved. [No6] The yield strength of the base plate is 250 N / mm with respect to No5.
This is a comparative example with less than 2 . Although there is little softening over time,
The yield strength after one year is 245 N / mm 2 , which is low compared to other materials, and therefore the can openability is poor. [No7] It is manufactured by the above-described manufacturing method (7) using the alloy C satisfying 1 <Fe + Mn ≦ 1.6%. Although the composition has a smaller amount of Mg than the alloys of No. 1 to No. 6, the strength is almost the same as that of the conventional example No. 9 by increasing the amount of Mn. The difference in yield strength is also small. Although the amount of crystallized substances was larger than that of the other invention examples, the bendability and the repetitive bendability were equivalent. [No8] The final heat treatment is performed on No7 by CAL. Although the strength after 15% rolling is slightly lower than that of No. 7, the difference in proof stress is 20 N / mm 2, which is the smallest amount of softening with time and the decrease in tensile strength. In addition, the moldability and can openability are equivalent to those of No7. [No9] A conventional alloy D was manufactured by a conventional method. After the original plate and 15% rolling, that is, after forming the tab, it shows high strength at the equivalent time, but 150 ° C which is equivalent to one year
After accelerated heating for x1 h, the proof stress decreased by 76 N / mm 2 , showing a large softening with time. The tensile strength is also reduced by 29 N / mm 2 . Further, since the number of coarse crystallized substances is large, the cyclic bendability is not so good. [No10] This is a comparative example using alloy E having a component composition outside the scope of the claims of the present invention. Since the amount of Mn + Fe is large, the strength is the same as that of the conventional example even if the amount of Mg is small. However, since many fine crystallized substances are crystallized out, both bendability and repetitive bendability are extremely poor. As described above, the aluminum alloy sheet according to the present invention has a tensile strength and a proof stress immediately after forming the base sheet and the tabs, which are equal to or slightly lower than those of the conventional material, and are less likely to soften with time. Further, the moldability such as bendability and repetitive bendability is equal to or higher than that of the conventional material.
【0019】[0019]
【効果】以上詳述したように、本発明によれば、ビール
缶、炭酸飲料缶等のステイオンタブ材において要求され
る強度ならびに曲げ加工性を満し、かつタブ成形後の経
時軟化が少ないという優れたステイオンタブ用アルミニ
ウム合金板を提供することができる。すなわち、元板お
よびタブ成形後の強度は従来材と同等の充分な強さを示
すとともに、経時軟化による強度低下が少ないことから
タブ材成形後ないしは製品製造後から長期間経過した後
でもタブ材として必要な強度を維持することができる。
従って、缶を開けるときにタブが強度不足で屈曲してし
まい開けられないという問題がない。更には充分な強度
を長期間維持することができるため、近年タブ材に要求
されている高強度薄肉化に対しても充分対応できる。ま
た、詳述したように本発明に係るアルミニウム合金板の
製造では特殊な設備・厳しい製造条件を必要とせず、各
工程そのものは実施可能な方法を最適となるような組合
せで行なうことにより優れたステイオンタブ用アルミニ
ウム合金板を得ることができる。従ってコスト等の製造
面においても優れたものである。さらに、合金成分組成
に応じて製造方法を適宜選択することにより元板強度、
成形性、経時軟化量のいずれかにおいて特に優れた性能
を示すアルミニウム合金板を得ることができる。従っ
て、必要度の高い性能に着目して製造条件を選択するこ
とにより、よりコストを下げることができる。このよう
に、本発明に係るステイオンタブ用アルミニウム合金板
は強度、成形性等の性能の安定性でもコスト等の製造面
でも優れたものである。[Effect] As described in detail above, according to the present invention, the strength and bending workability required for a steion tab material for beer cans, carbonated beverage cans, etc. are satisfied, and there is little softening with time after tab formation. That is, it is possible to provide an excellent aluminum alloy plate for a Steion tab. That is, the strength after forming the base plate and the tab shows sufficient strength equivalent to that of the conventional material, and since the decrease in strength due to the softening with time is small, the tab material can be formed even after the tab material has been formed or a long time has passed after the product is manufactured. The required strength can be maintained.
Therefore, when opening the can, there is no problem that the tab bends due to insufficient strength and cannot be opened. Furthermore, since sufficient strength can be maintained for a long period of time, it is possible to sufficiently cope with the thinning of high strength required for tab materials in recent years. In addition, as described in detail, the production of the aluminum alloy sheet according to the present invention does not require special equipment and strict production conditions, and each step itself is superior by performing a combination of the most practicable methods. An aluminum alloy plate for a Steion tab can be obtained. Therefore, it is excellent in terms of manufacturing cost and the like. Further, by appropriately selecting the manufacturing method according to the alloy component composition, the original plate strength,
It is possible to obtain an aluminum alloy plate exhibiting particularly excellent performance in either formability or softening amount over time. Therefore, the cost can be further reduced by selecting the manufacturing conditions by paying attention to the performance that is highly required. As described above, the aluminum alloy plate for a steion tab according to the present invention is excellent in stability of performance such as strength and moldability, and in manufacturing in terms of cost and the like.
【図1】本発明の実施例における繰り返し曲げ試験を示
す断面図である。FIG. 1 is a cross-sectional view showing a repeated bending test in an example of the present invention.
【図2】本発明の実施例における曲げ試験を示す斜視図
である。FIG. 2 is a perspective view showing a bending test in an example of the present invention.
1 曲げライン 2 曲げ観察面 RD 圧延方向 1 Bending line 2 Bending observation surface RD Rolling direction
Claims (1)
%、および組織微細化・安定化のためTi:0.005
〜0.20%を単独であるいはB:0.0005〜0.
04%とともに含有し、さらにFe:0.01〜0.6
%、Mn:0.1〜1.2%、Si:0.05〜0.5
%、Cu:0.05〜0.5%、Cr:0.05〜0.
3%、Zn:0.1〜0.5%のうちの1種又は2種以
上を含み、このうち、FeおよびMnは少なくともいず
れか一方を必ず含みかつFe+Mn≦1.6%以下と
し、残部がAl及び不可避不純物からなり、耐力が25
0N/mm2以上で経時軟化しにくいステイオンタブ用
アルミニウム合金板。1. Mg: 1-3 by weight (hereinafter the same)
%, And Ti: 0.005 for refinement and stabilization of the structure
.About.0.20% alone or B: 0.0005 to 0.
It is contained together with 04%, and further Fe: 0.01 to 0.6
%, Mn: 0.1 to 1.2%, Si: 0.05 to 0.5
%, Cu: 0.05 to 0.5%, Cr: 0.05 to 0.
3%, Zn: One or more of 0.1 to 0.5% is included, and Fe and Mn must include at least one of them and Fe + Mn ≦ 1.6% or less, and the balance Consists of Al and inevitable impurities, and has a proof stress of 25
Aluminum alloy plate for Steion tab that is hard to soften with time at 0 N / mm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4090034A JP2613522B2 (en) | 1992-03-13 | 1992-03-13 | Aluminum alloy plate for stay tub |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4090034A JP2613522B2 (en) | 1992-03-13 | 1992-03-13 | Aluminum alloy plate for stay tub |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05263175A true JPH05263175A (en) | 1993-10-12 |
JP2613522B2 JP2613522B2 (en) | 1997-05-28 |
Family
ID=13987381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4090034A Expired - Lifetime JP2613522B2 (en) | 1992-03-13 | 1992-03-13 | Aluminum alloy plate for stay tub |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2613522B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309481B1 (en) * | 1997-10-08 | 2001-10-30 | Aluminium Rheinfelden, Gmbh | Aluminum casting alloy |
WO2024219395A1 (en) | 2023-04-17 | 2024-10-24 | 株式会社Uacj | Aluminum alloy sheet for tab |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS514010A (en) * | 1974-07-02 | 1976-01-13 | Kobe Steel Ltd | KANYOKOSEIKEISEIARUMINIUMUGOKIN OYOBI SONOSEIZOHOHO |
JPS5466313A (en) * | 1977-11-07 | 1979-05-28 | Kobe Steel Ltd | Heat hardening type aluminum alloy for forming and manufacture of sheet using the same |
JPS5544592A (en) * | 1978-08-04 | 1980-03-28 | Coors Container Co | Aluminum alloy composition body for producing aluminum container composition body from scrap and method thereof |
JPH01312053A (en) * | 1988-06-13 | 1989-12-15 | Kobe Steel Ltd | Al-alloy sheet for material for stay on tub coating and manufacture thereof |
JPH02270930A (en) * | 1989-04-13 | 1990-11-06 | Kobe Steel Ltd | Aluminum alloy hard sheet having excellent formability and its manufacture |
JPH0347939A (en) * | 1989-07-13 | 1991-02-28 | Kobe Steel Ltd | Hard aluminum alloy sheet having excellent bulging properties and its manufacture |
-
1992
- 1992-03-13 JP JP4090034A patent/JP2613522B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS514010A (en) * | 1974-07-02 | 1976-01-13 | Kobe Steel Ltd | KANYOKOSEIKEISEIARUMINIUMUGOKIN OYOBI SONOSEIZOHOHO |
JPS5466313A (en) * | 1977-11-07 | 1979-05-28 | Kobe Steel Ltd | Heat hardening type aluminum alloy for forming and manufacture of sheet using the same |
JPS5544592A (en) * | 1978-08-04 | 1980-03-28 | Coors Container Co | Aluminum alloy composition body for producing aluminum container composition body from scrap and method thereof |
JPH01312053A (en) * | 1988-06-13 | 1989-12-15 | Kobe Steel Ltd | Al-alloy sheet for material for stay on tub coating and manufacture thereof |
JPH02270930A (en) * | 1989-04-13 | 1990-11-06 | Kobe Steel Ltd | Aluminum alloy hard sheet having excellent formability and its manufacture |
JPH0347939A (en) * | 1989-07-13 | 1991-02-28 | Kobe Steel Ltd | Hard aluminum alloy sheet having excellent bulging properties and its manufacture |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309481B1 (en) * | 1997-10-08 | 2001-10-30 | Aluminium Rheinfelden, Gmbh | Aluminum casting alloy |
WO2024219395A1 (en) | 2023-04-17 | 2024-10-24 | 株式会社Uacj | Aluminum alloy sheet for tab |
KR20250022262A (en) | 2023-04-17 | 2025-02-14 | 가부시키가이샤 유에이씨제이 | Aluminum alloy plate for tab |
Also Published As
Publication number | Publication date |
---|---|
JP2613522B2 (en) | 1997-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07508075A (en) | Low-density, high-strength aluminum-lithium alloy with high toughness at high temperatures | |
JPH07197219A (en) | Production of aluminum alloy sheet for forming | |
JPH01301831A (en) | Al alloy plate for stay-on tab and its manufacture | |
JPH09125175A (en) | Copper alloy | |
JP2007277694A (en) | Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4257135B2 (en) | Aluminum alloy hard plate for can body | |
JPH05263175A (en) | Aluminum alloy sheet for stay-on tab | |
JP2783311B2 (en) | Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same | |
JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
JP2862198B2 (en) | Aluminum alloy plate for DI can body | |
JPH01127642A (en) | Heat treatment type high strength aluminum alloy plate for drawing and its manufacture | |
JP2745254B2 (en) | Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same | |
JPH073403A (en) | High strength fe-ni-co alloy sheet and production thereof | |
JP3411840B2 (en) | Aluminum alloy plate for can end | |
JP3260227B2 (en) | Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same | |
JP3248803B2 (en) | Al alloy plate for full open end with excellent openability and method for producing the same | |
JPH08269608A (en) | High strength aluminum alloy excellent in formability and corrosion resistance | |
JP3531616B2 (en) | Aluminum alloy plate with excellent corrosion resistance and coating surface treatment | |
JPH09256097A (en) | Baking-finished aluminium alloy sheet for can end and its production | |
JP2000001730A (en) | Aluminum alloy sheet for can body, and its production | |
JP2891620B2 (en) | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same | |
JPH07228957A (en) | Production of aluminum alloy sheet having excellent formability and quench-hardenability | |
JPH06116689A (en) | Production of al-mg-si alloy sheet excellent in formability and baking hardenability | |
JPH0737655B2 (en) | Aluminum alloy hard plate with high strength, low tear load and excellent formability and its manufacturing method |