[go: up one dir, main page]

JPH0526021B2 - - Google Patents

Info

Publication number
JPH0526021B2
JPH0526021B2 JP58241111A JP24111183A JPH0526021B2 JP H0526021 B2 JPH0526021 B2 JP H0526021B2 JP 58241111 A JP58241111 A JP 58241111A JP 24111183 A JP24111183 A JP 24111183A JP H0526021 B2 JPH0526021 B2 JP H0526021B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
predetermined amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58241111A
Other languages
Japanese (ja)
Other versions
JPS60135634A (en
Inventor
Hiroatsu Yamada
Katsuhiko Kigami
Toshio Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP24111183A priority Critical patent/JPS60135634A/en
Publication of JPS60135634A publication Critical patent/JPS60135634A/en
Publication of JPH0526021B2 publication Critical patent/JPH0526021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (本発明の技術分野) 本発明は内燃機関の不安定状態を検出し、不安
定状態に応じて内燃機関に供給される燃料量を制
御する空燃比制御装置に関するものである。
[Detailed Description of the Invention] (Technical Field of the Invention) The present invention relates to an air-fuel ratio control device that detects an unstable state of an internal combustion engine and controls the amount of fuel supplied to the internal combustion engine in accordance with the unstable state. It is.

(本発明の先行技術) 内燃機関の不安定状態を検出し、内燃機関を失
火限界で動作させる方法はすでにいくつかに提案
されている。例えば特開昭58−27837においては
エンジンセンサにより燃焼変動を検出し空燃比を
失火限界空燃比にフイードバツク制御している。
しかしながら内燃機関の気筒間差、内燃機関の
差、路面から伝わるトルク変動等の外乱のため、
希薄空燃比による内燃機関の不安定状態から失火
限界を厳密に識別することは極めて困難である。
また、空燃比が失火限界を超えると運転性および
排気エミツシヨンは急激に悪化する。これらの点
を考え合せると内燃機関を失火限界で動作させる
のは極めて危険である。
(Prior Art to the Present Invention) Several methods have already been proposed for detecting an unstable state of an internal combustion engine and operating the internal combustion engine at the misfire limit. For example, in JP-A-58-27837, combustion fluctuations are detected by an engine sensor and the air-fuel ratio is feedback-controlled to the misfire limit air-fuel ratio.
However, due to disturbances such as differences between cylinders of internal combustion engines, differences in internal combustion engines, and torque fluctuations transmitted from the road surface,
It is extremely difficult to accurately identify the misfire limit from the unstable state of an internal combustion engine due to a lean air-fuel ratio.
Furthermore, when the air-fuel ratio exceeds the misfire limit, drivability and exhaust emissions deteriorate rapidly. Considering these points, it is extremely dangerous to operate an internal combustion engine at the misfire limit.

(本発明の目的) 本発明は上記の問題点に鑑み、失火限界を短時
間で検出し内燃機関を常に失火限界から所定量だ
け過濃度の空燃比で動作させる内燃機関の空燃比
制御装置の提供を目的とするものである。
(Object of the present invention) In view of the above-mentioned problems, the present invention provides an air-fuel ratio control device for an internal combustion engine that detects the misfire limit in a short time and constantly operates the internal combustion engine at an air-fuel ratio that is over-concentrated by a predetermined amount above the misfire limit. It is intended for the purpose of providing.

(本発明の特徴) 本発明は内燃機関の不安定状態を検出するラフ
ネスセンサを有する電子制御式内燃機関において
失火限界を超えても運転性を損なわない程度の短
時間TRに運転性を損なわない程度の変化量
(ΔA/F3)で空燃比を希薄側にステツプ変化
(失火限界検出信号)させ、失火限界検出信号の
発生後のラフネスセンサ出力、すなわち内燃機関
の不安定状態を検出し、その不安定度が設定値以
下の場合は制御空燃比を所定量ΔA/F1だけ希薄
側に移行させ、設定値以上の場合は制御空燃比を
所定量ΔA/F2だけ過濃側に移行させることによ
り内燃機関の動作の基本となる制御空燃比を常に
失火限界から所定量ΔA/F3(+ΔA/F2 −ΔA/F1)だけ過
濃側に保つことを特徴とする。
(Characteristics of the present invention) The present invention provides an electronically controlled internal combustion engine that has a roughness sensor that detects an unstable state of the internal combustion engine. The air-fuel ratio is step-changed to the lean side (misfire limit detection signal) with a change amount (ΔA/F 3 ) that is within the range of 100%, and the roughness sensor output after the misfire limit detection signal is generated, that is, the unstable state of the internal combustion engine is detected. If the instability is less than the set value, the control air-fuel ratio is shifted to the lean side by a predetermined amount ΔA/F 1 , and when it is above the set value, the control air-fuel ratio is shifted to the rich side by a predetermined amount ΔA/F 2 . By shifting, the control air-fuel ratio, which is the basis of the operation of the internal combustion engine, is always kept on the rich side by a predetermined amount ΔA/F 3 (+ΔA/F 2 −ΔA/F 1 ) from the misfire limit.

(本発明の一実施例) 第1図は本発明装置の一実施例を示すブロツク
図である。エンジン1は自動車に積載される公知
の火花点火式エンジンで、燃焼用空気をエアクリ
ーナ2、吸気管3、スロツトル弁4を経て吸入す
る。またコンピユータ3の出力により電磁式燃料
噴射弁5を開弁作動させて燃料を各気筒に供給し
ている。燃焼後の排気ガスは排気マニユホールド
6、排気管7等を経て大気に放出される。吸気管
3にはエンジン1に吸入される吸気量を検出し、
吸気量に応じたアナログ信号を出力するポテンシ
ヨメータ式吸気量センサ8が設置されている。ま
た吸気の温度を検出し、吸気温に応じたアナログ
信号を出力するサーミスタ式吸気温センサ9が設
置されている。また、エンジン1には冷却水温度
を検出し、冷却水温度に応じたアナログ信号を出
力するサーミスタ式水温センサ10が設置されて
おり、回転速度(数)センサ11は、エンジン1
のクランク軸の回転速度を検出し、回転速度に応
じた周波数のパルス信号を出力する。この回転速
度センサ11は各気筒が設定クランク角度時にパ
ルスを発生する。またスロツトル弁には、スロツ
トル開度が設定値以下であることを検出するスロ
ツトルセンサ12が設置されている。またエンジ
ン1にはエンジンの不安定状態を検出し、不安定
状態に応じたアナログ信号を出力するラフネスセ
ンサ14が設置されている。コンピユータ13
は、各センサ8−12および14の検出信号に基
いて燃料噴射量を演算する回路で電磁式燃料噴射
弁5の開弁時間を制御することにより燃料噴射量
を調整する。
(One Embodiment of the Present Invention) FIG. 1 is a block diagram showing one embodiment of the apparatus of the present invention. The engine 1 is a known spark ignition engine mounted on an automobile, and takes in combustion air through an air cleaner 2, an intake pipe 3, and a throttle valve 4. Further, the output of the computer 3 causes the electromagnetic fuel injection valve 5 to open and supply fuel to each cylinder. The exhaust gas after combustion is released into the atmosphere through the exhaust manifold 6, exhaust pipe 7, etc. The intake pipe 3 detects the amount of intake air taken into the engine 1,
A potentiometer type intake air amount sensor 8 that outputs an analog signal according to the amount of intake air is installed. Also installed is a thermistor-type intake air temperature sensor 9 that detects the intake air temperature and outputs an analog signal according to the intake air temperature. Further, a thermistor-type water temperature sensor 10 that detects the coolant temperature and outputs an analog signal according to the coolant temperature is installed in the engine 1, and a rotation speed (number) sensor 11 is installed in the engine 1.
detects the rotational speed of the crankshaft and outputs a pulse signal with a frequency corresponding to the rotational speed. This rotational speed sensor 11 generates a pulse when each cylinder has a set crank angle. The throttle valve is also provided with a throttle sensor 12 that detects that the throttle opening is below a set value. Further, the engine 1 is provided with a roughness sensor 14 that detects an unstable state of the engine and outputs an analog signal corresponding to the unstable state. computer 13
The circuit calculates the fuel injection amount based on the detection signals of the sensors 8-12 and 14, and adjusts the fuel injection amount by controlling the opening time of the electromagnetic fuel injection valve 5.

第2図は上記コンピユータ13の構成を示す。
100は燃料噴射量を演算するマイクロプロセツ
サ(MPU)である。101は回転数カウンタで
あり、回転速度センサ11からの信号を入力して
この検出パルス数をカウントして回転数データを
つくると共に、エンジン回転に同期して割り込み
制御102に対して割り込み指令信号を送る。割
り込み制御部102は前記割り込み指令信号を受
けるとコモンバスCBを通じてマイクロプロセツ
サ100に割り込み信号を出力するように動作す
る。103はデジタル入力ポートであり、図示し
ないスタータスイツチからのスタータ信号および
スロツトルセンサ12からのスロツトル開度信号
のデジタル信号を入力してマイクロプロセツサ1
00に伝達する。104はアナログマルチプレク
サとA−D変換器からなるアナログ入力ポート
で、吸気量センサ8、吸気温センサ9、冷却水温
センサ10およびラフネスセンサ14からの各検
出信号A−D変換して順次そのデータをMPU1
00に取り込ませる機能をもつ。バツテリ15か
らの電源はキースイツチ16を介して電源回路1
06に供給され、この電源回路106はコンピユ
ータ13内の他の回路や機器に電源を供給する。
RAM107はプログラム動作中−時使用される
一時記憶ユニツトであり、後述する燃料噴射用の
補正量KはこのRAM107に記憶される。10
8はプログラムや各種の定量等を記憶する読み出
し専用メモリ(ROM)である。109はレジス
タを含む燃料噴射制御用カウンタで、ダウンカウ
ンタにより構成されMPU100で演算された電
磁式燃料噴射弁5の開弁時間、すなわち燃料噴射
量を表わすデジタル信号を実際の噴射弁の開弁時
間を与えるパルス時間幅(デユーテイ比)のパル
ス信号に変換する。110は開弁用のパルス信号
を受けて電磁式燃料噴射弁5を駆動する電力増幅
部、111は経過時間を測定してMPU100に
伝達するタイマーである。
FIG. 2 shows the configuration of the computer 13.
100 is a microprocessor (MPU) that calculates the fuel injection amount. Reference numeral 101 denotes a rotational speed counter, which inputs the signal from the rotational speed sensor 11 and counts the number of detected pulses to create rotational speed data, and also outputs an interrupt command signal to the interrupt control 102 in synchronization with the engine rotation. send. When the interrupt control section 102 receives the interrupt command signal, it operates to output an interrupt signal to the microprocessor 100 through the common bus CB. 103 is a digital input port, which inputs digital signals of a starter signal from a starter switch (not shown) and a throttle opening signal from the throttle sensor 12 to the microprocessor 1.
00. 104 is an analog input port consisting of an analog multiplexer and an A-D converter, which converts each detection signal from the intake air amount sensor 8, intake air temperature sensor 9, cooling water temperature sensor 10, and roughness sensor 14 from A to D, and sequentially outputs the data. MPU1
It has a function to import into 00. The power from the battery 15 is supplied to the power supply circuit 1 via the key switch 16.
06, and this power supply circuit 106 supplies power to other circuits and devices within the computer 13.
The RAM 107 is a temporary storage unit used during program operation, and a correction amount K for fuel injection, which will be described later, is stored in this RAM 107. 10
Reference numeral 8 denotes a read-only memory (ROM) that stores programs, various quantitative determinations, and the like. 109 is a fuel injection control counter including a register, which is composed of a down counter and converts the digital signal representing the opening time of the electromagnetic fuel injection valve 5 calculated by the MPU 100, that is, the fuel injection amount into the actual opening time of the injection valve. Convert to a pulse signal with a pulse time width (duty ratio) that gives . Reference numeral 110 represents a power amplification unit that receives a pulse signal for opening the valve and drives the electromagnetic fuel injection valve 5, and reference numeral 111 represents a timer that measures elapsed time and transmits it to the MPU 100.

すなわち、回転数カウンタ101は回転速度セ
ンサ11の検出信号により、例えば、各気筒の圧
縮上死点毎にエンジン回転数を測定し、その測定
の終了時毎、あるいは、エンジン1回転毎に割り
込み制御部102に割り込み指令信号を供給す
る。割り込み制御部はその割り込み指令によつて
割り込み信号を発生し、MPU100に燃料噴射
量の演算を行う割り込み処理ルーチンを実行させ
る。
That is, the rotational speed counter 101 measures the engine rotational speed at each compression top dead center of each cylinder, for example, based on the detection signal of the rotational speed sensor 11, and performs interrupt control every time the measurement ends or every one engine rotation. An interrupt command signal is supplied to section 102. The interrupt control unit generates an interrupt signal in response to the interrupt command, and causes the MPU 100 to execute an interrupt processing routine for calculating the fuel injection amount.

第3図は空燃比制御をMPU100の制御プロ
グラムの概略フローチヤートを示し、このフロー
チヤートによつてコンピユータ13全体の動作を
説明する。
FIG. 3 shows a schematic flowchart of a control program of the MPU 100 for air-fuel ratio control, and the overall operation of the computer 13 will be explained using this flowchart.

先ず、キースイツチ16並びにスタータスイツ
チがオンされ、エンジンが始動すると、第1ステ
ツプ120から起動指令が発生され、メインルーチ
ンの演算処理が開始される。そしてステツプ121
にて初期化が実行され、次に、ステツプ122にお
いて吸気温センサ9によつて検出された吸気温デ
ータ、冷却水温センサ10によつて検出された冷
却水温度のデータおよびラフネスセンサ14によ
つて検出されたエンジンの不安定状態を示すデー
タがアナログ入力ポート104を介して、またス
ロツトルセンサ12によつて検出されたスロツト
ル開度データがデジタル入力ポート103を介し
てMPU100に取り込まれ、各データはRAM
107に格納される。そして、ステツプ123に進
み、ステツプ122で取り込んだエンジンの吸気温
度、冷却水温度およびスロツトル開度のデータか
ら、冷間時および過度時の燃料の増減量制御を行
なうための第1の補正量K1が演算され、RAM1
07に格納される。次にステツプ124に進み、ス
テツプ122で取り込んだエンジンの不安定状態を
示すラフネスセンサ14の出力データを基に第2
の補正量K2が演算され、RAM107に格納され
る。第4図にステツプ124の詳細なフローチヤー
トを示す。ステツプ124においては、先づステツ
プ200で現在がラフネスセンサ信号をモニタすべ
き期間であるか否かを判定する。このラフネスセ
ンサ信号モニタ期間は、後述する失火限界検出信
号を発生した後の所定の時間のことを云う。ここ
で現在がラフネスセンサ信号をモータすべき期間
であつた場合は、ステツプ201に進みステツプ122
に取り込んだラフネスセンサ14の出力データを
設定値と比較し、設定値より小さい場合はそのま
まステツプ124の処理を終了し、設定値より大き
い場合は、ステツプ202に進み、ラフネス判定フ
ラグを「1」にセツトし、RAM107に格納し
ステツプ124の処理を終了する。また、ステツプ
200で現在がラフネスセンサ信号をモニタすべき
期間でなかつた場合、ステツプ203に進み現在が
モニタ期間終了直後であるか否かを判定する。こ
こで現在がモニタ期間終了直後でない場合は、ス
テツプ204に進み、ラフネス判定フラグを「0」
にセツトしRAM107に格納しステツプ124の
処理を終了する。すなわち、ステツプ200〜204の
処理によつて、モニタ期間終了直後にはモニタ期
間中、すなわち、失火限界検出信号発生後の所定
の期間中エンジンが不安定状態を示した場合、ラ
フネス判定フラグは「1」に、また安定状態であ
つた場合は「0」にセツトされることになる。従
つてステツプ203で現在がモニタ期間終了直後と
判定された場合はステツプ205に進み、ラフネス
判フラグが「1」であるか「0」であるかを判定
する。ここでフラグが「0」と判定された場合、
すなわち失火限界検出信号発生後の所定期間、エ
ンジンが安定状態であつた場合、ステツプ206で
第2の補正量K2をΔK1だけ減少させる。またス
テツプ205でラフネス判定フラグが「1」と判定
された場合、すなわち失火限界検出信号発生後の
所定期間、エンジンが不安定状態であつた場合
は、ステツプ207に進み、K2をΔK2だけ増加さ
せ、ステツプ208でそのK2が「1.0」より大きいか
どうかを判定し、「1.0」以下の場合はK2をそのま
まの値とし、「1.0」より大きい場合はステツプ
209でK2を「1.0」にする。上述のように第2の補
正量K2は「1.0」以下の数値であり、「1.0」の時
空燃比に対する補正量は「0」であり、「1.0」未
満で値が小さい程空燃比を希薄側に補正する。以
上のように第3図のステツプ124で第2の補正量
K2を計算しRAM107に格納される。
First, when the key switch 16 and the starter switch are turned on and the engine is started, a start command is issued from a first step 120, and the main routine arithmetic processing is started. And step 121
Initialization is executed in step 122, and then, in step 122, the intake temperature data detected by the intake temperature sensor 9, the cooling water temperature data detected by the cooling water temperature sensor 10, and the roughness sensor 14 are Data indicating the detected unstable state of the engine is input to the MPU 100 via the analog input port 104, and throttle opening data detected by the throttle sensor 12 is input to the MPU 100 via the digital input port 103. is RAM
107. Then, the process proceeds to step 123, and from the data of the engine intake air temperature, cooling water temperature, and throttle opening obtained in step 122, a first correction amount K for controlling the increase/decrease of fuel during cold and transient conditions is determined. 1 is calculated and RAM1
07. Next, the process proceeds to step 124, where a second test is performed based on the output data of the roughness sensor 14 that indicates the unstable state of the engine, which was acquired in step 122.
A correction amount K 2 is calculated and stored in the RAM 107. A detailed flowchart of step 124 is shown in FIG. In step 124, it is first determined in step 200 whether or not the current period is for monitoring the roughness sensor signal. This roughness sensor signal monitoring period refers to a predetermined period of time after a misfire limit detection signal, which will be described later, is generated. If the current time is the period during which the roughness sensor signal should be motorized, the process advances to step 201 and to step 122.
The output data of the roughness sensor 14 taken in is compared with the set value, and if it is smaller than the set value, the process of step 124 is directly terminated, and if it is larger than the set value, the process proceeds to step 202 and the roughness judgment flag is set to "1". , and stores it in the RAM 107, and the process of step 124 ends. Also, step
If the current time is not the period during which the roughness sensor signal should be monitored in step 200, the process proceeds to step 203, where it is determined whether the current time is immediately after the end of the monitoring period. If the current time is not immediately after the end of the monitor period, proceed to step 204 and set the roughness judgment flag to "0".
is set and stored in the RAM 107, and the process of step 124 is completed. That is, in the process of steps 200 to 204, if the engine exhibits an unstable state immediately after the end of the monitoring period, during the monitoring period, that is, during a predetermined period after the occurrence of the misfire limit detection signal, the roughness determination flag is set to " It will be set to 1, and if it is in a stable state, it will be set to 0. Therefore, if it is determined in step 203 that the current time is immediately after the end of the monitoring period, the process proceeds to step 205, where it is determined whether the roughness flag is "1" or "0". If the flag is determined to be "0" here,
That is, if the engine is in a stable state for a predetermined period after the misfire limit detection signal is generated, the second correction amount K2 is decreased by ΔK1 in step 206. If the roughness determination flag is determined to be "1" in step 205, that is, if the engine is in an unstable state for a predetermined period after the misfire limit detection signal is generated, the process proceeds to step 207, where K2 is reduced by ΔK2 . Then, in step 208, it is determined whether the K 2 is greater than "1.0". If it is less than "1.0", K 2 is left unchanged, and if it is greater than "1.0", the step
Set K 2 to "1.0" in 209. As mentioned above, the second correction amount K 2 is a value of "1.0" or less, and the correction amount for the hourly air-fuel ratio of "1.0" is "0", and the smaller the value is less than "1.0", the leaner the air-fuel ratio is. Correct to the side. As described above, in step 124 of Fig. 3, the second correction amount is
K 2 is calculated and stored in RAM 107.

そして上記のように、メインルーチンのステツ
プ122からステツプ124が繰り返し実行される間、
割り込み制御部102からMPU100に割り込
み信号が入力されると、第3図に示す如く、直ち
にステツプ130から開始される割り込みルーチン
が実行される。ここでは、先づ、ステツプ131に
て回転数カウンタ101からのエンジン回転数N
を表わす信号を取り込み、RAM107に格納
し、更に、ステツプ132に進んで、吸気量センサ
8からアナログ入力ポートを介して送られる吸気
量Qを表わす信号を取り込んでRAM107に格
納する。次にステツプ133で現在が燃料の噴射時
期か否かを判定し、噴射時期でない場合はステツ
プ138に分岐しメインルーチンに復帰する。また
噴射時期である場合はステツプ134でエンジン回
転数Nと吸気量Qから決まる基本的な燃料噴射量
(つまり電磁式燃料噴射弁5の噴射時間幅t)を
計算する。計算式は次のとおりである。
As mentioned above, while steps 122 to 124 of the main routine are repeatedly executed,
When an interrupt signal is input from the interrupt control section 102 to the MPU 100, an interrupt routine starting from step 130 is immediately executed, as shown in FIG. Here, first, in step 131, the engine rotational speed N is input from the rotational speed counter 101.
Then, the process proceeds to step 132, where a signal representing the intake air amount Q sent from the intake air amount sensor 8 via the analog input port is taken in and stored in the RAM 107. Next, in step 133, it is determined whether or not it is the fuel injection time, and if it is not the injection time, the process branches to step 138 and returns to the main routine. If it is the injection time, then in step 134, the basic fuel injection amount (that is, the injection time width t of the electromagnetic fuel injection valve 5) determined from the engine speed N and the intake air amount Q is calculated. The calculation formula is as follows.

t=F×Q/N(F:定数) 次にステツプ135で失火限界を検出するための
第3の燃料噴射量補正用の補正量K3が演算され、
RAM107に格納される。ステツプ135の詳細
なフローチヤートを第5図に示す。ステツプ135
においては、先づステツプ300で現在が失火限界
検出信号を発生させる時期か否かを判定する。失
火限界検出信号は後述する第3の補正量K3によ
つて燃料噴射量を瞬時希薄側に変化させる操作の
ことを云い、この操作はエンジンの運転性を損な
わない程度の所定の周期で発生させられる。ステ
ツプ300で現在が失火限界検出信号を発生する時
期でないと判定さるれた場合はステツプ301で第
3の補正量K3を「1.0」としRAM107に格納
される。なお、補正量K3と空燃比との関係は補
正量K2と同等である。またステツプ300で現在が
失火限界検出信号を発生する時期であると判定さ
れた場合はステツプ302で補正量K3を「1.0」未満
の所定値、すなわち本実施例では「0.9」とし、
更に、ステツプ303でラフネスセンサ信号モニタ
期間をセツトする。
t=F×Q/N (F: constant) Next, in step 135, a third fuel injection amount correction amount K3 for detecting the misfire limit is calculated.
It is stored in RAM107. A detailed flowchart of step 135 is shown in FIG. step 135
First, in step 300, it is determined whether or not it is now time to generate a misfire limit detection signal. The misfire limit detection signal refers to an operation that instantaneously changes the fuel injection amount to the lean side using a third correction amount K3 , which will be described later, and this operation occurs at a predetermined cycle that does not impair engine drivability. I am made to do so. If it is determined in step 300 that it is not the time to generate the misfire limit detection signal, the third correction amount K3 is set to "1.0" and stored in the RAM 107 in step 301. Note that the relationship between the correction amount K3 and the air-fuel ratio is the same as that of the correction amount K2 . If it is determined in step 300 that the current time is the time to generate the misfire limit detection signal, then in step 302 the correction amount K3 is set to a predetermined value less than "1.0", that is, in this embodiment, "0.9",
Furthermore, in step 303, a roughness sensor signal monitoring period is set.

モニタ期間は上述したように失火限界検出信号
発生後の所定の期間であり、補正量K3によつて
空燃比が希薄側に変化させられた影響がエンジン
の燃焼状態に現われる期間を含むものである。な
お、失火限界検出信号を発生する期間およびその
時の補正量K3の値は車両の運転性を損なわない
程度の範囲で予じめ設定されている。以上のよう
にして第3図のステツプ135で第3の補正量K3
求められたのちステツプ136でメインルーチンで
求められた燃料噴射用の補正量K1,K2および割
り込み処理ルーチンで求めた補正量K3をRAM1
07から読み出し空燃比を決定する噴射量(噴射
時間幅)の補正計算が行なわれる。噴射時間幅T
の計算式は次のとおりである。
As described above, the monitoring period is a predetermined period after the misfire limit detection signal is generated, and includes a period in which the influence of the air-fuel ratio being changed to the lean side by the correction amount K3 appears on the combustion state of the engine. Note that the period for generating the misfire limit detection signal and the value of the correction amount K3 at that time are set in advance within a range that does not impair the drivability of the vehicle. After the third correction amount K 3 is determined in step 135 in FIG. 3 as described above, in step 136, the fuel injection correction amounts K 1 and K 2 determined in the main routine and determined in the interrupt handling routine are calculated. The correction amount K3 is stored in RAM1
Correction calculation of the injection amount (injection time width) which determines the air-fuel ratio is read from 07. Injection time width T
The calculation formula is as follows.

T=t×K1×K2×K3 次にステツプ137に進み、補正計算した燃料噴
射量データをカウンタ109にセツトする。次に
ステツプ138に進みメインルーチンに復帰する。
メインルーチンに復帰する際は割り込み処理で中
断したときの処理ステツプに戻る。
T=t×K 1 ×K 2 ×K 3 Next, the process proceeds to step 137, where the corrected and calculated fuel injection amount data is set in the counter 109. The program then proceeds to step 138 to return to the main routine.
When returning to the main routine, the process returns to the processing step at which it was interrupted due to interrupt processing.

以上の動作による空燃比およびエンジンの不安
定度(すなわちラフネスセンサ信号)の挙動を示
したのが第6図である。第6図において、TR
失火限界検出信号発生期間であり、このときの補
正量K3による空燃比の変化がΔA/F3である。ま
たTR後のTMがラフネスセンサ信号モニタ期間で
あり、この期間のラフネスセンサ信号状態に応じ
た第2の補正量K2の増減量ΔK1およびΔK2によ
る空燃比の変化量がΔA/F1およびΔA/F2であ
つて、補正量K3による空燃比の変化ΔA/F3が本
発明の第1の所定量に相当し、増減量ΔK1による
空燃比の変化ΔA/F1が本発明の第2の所定量に
相当し、増減量ΔK2による空燃比の変化ΔA/F2
が本発明の第3の所定量に相当し、第6図からも
明白なごとく、ΔA/F3>ΔA/F1、ΔA/F3
ΔA/F2の関係にある。
FIG. 6 shows the behavior of the air-fuel ratio and engine instability (ie, roughness sensor signal) due to the above operation. In FIG. 6, TR is the misfire limit detection signal generation period, and the change in the air-fuel ratio due to the correction amount K3 at this time is ΔA/ F3 . Further, T M after T R is the roughness sensor signal monitoring period, and the amount of change in the air-fuel ratio due to the increase/decrease ΔK 1 and ΔK 2 of the second correction amount K 2 according to the roughness sensor signal state during this period is ΔA/ Of F 1 and ΔA/F 2 , the change in air-fuel ratio ΔA/F 3 due to the correction amount K 3 corresponds to the first predetermined amount of the present invention, and the change in air-fuel ratio due to increase/decrease ΔK 1 ΔA/F 1 corresponds to the second predetermined amount of the present invention, and the air-fuel ratio change ΔA/F 2 due to the increase/decrease ΔK 2
corresponds to the third predetermined amount of the present invention, and as is clear from FIG. 6, ΔA/F 3 >ΔA/F 1 , ΔA/F 3 >
The relationship is ΔA/F 2 .

そして、ラフネスセンサ14が本発明の第1の
手段に相当し、第5図のステツプ300、302が本発
明の第2の手段に相当し、第4図のステツプ200、
201が本発明の第3の手段に相当し、第4図のス
テツプ205、206が本発明の第4の手段に相当し、
第4図のステツプ205、207が本発明の第5の手段
に相当する。
The roughness sensor 14 corresponds to the first means of the present invention, steps 300 and 302 in FIG. 5 correspond to the second means of the present invention, and steps 200 and 302 in FIG.
201 corresponds to the third means of the present invention, steps 205 and 206 in FIG. 4 correspond to the fourth means of the present invention,
Steps 205 and 207 in FIG. 4 correspond to the fifth means of the present invention.

以上、本発明によりエンジンの動作の基本とな
る制御空燃比を常に失火限界から所定量ΔA/F3
+ΔA/F2 −ΔA/F1だけ過濃側に保つことが可能となる。
As described above, according to the present invention, the control air-fuel ratio, which is the basis of engine operation, is always adjusted by a predetermined amount ΔA/F 3 from the misfire limit.
It becomes possible to maintain the concentration on the over-concentrated side by +ΔA/F 2 −ΔA/F 1 .

第4図に説明された前記実施例ではラフネスセ
ンサ信号モニタ期間においてのみラフネスセンサ
出力を有効としているが、他の実施例においては
モニタ期間以外の期間においてもラフネスセンサ
出力をモニタし、ラフネスセンサ出力に応じて空
燃比を過濃側のみに制御する。前記実施例の第4
図に対応する他の実施例の詳細なフローチヤート
を第7図に示す。すなわち、ステツプ203でラフ
ネスセンサ信号モニタ期間終了直後でないと判定
され、ステツプ204でラフネス判定フラグを「0」
にセツトした後、ステツプ210に進み、ステツプ
122で取り込んだラフネスセンサ出力データを設
定値と比較し、設定値より小さい場合は補正量
K2はそのままの値とし、補正量K2の演算処理を
終了し、設定値以上の場合は、ステツプ207に分
岐し、補正量K2をΔK2だけ増加させる。
In the embodiment described in FIG. 4, the roughness sensor output is valid only during the roughness sensor signal monitoring period, but in other embodiments, the roughness sensor output is monitored even during periods other than the monitoring period, and the roughness sensor output is The air-fuel ratio is controlled only to the rich side depending on the situation. Fourth example of the above embodiment
A detailed flowchart of another embodiment corresponding to the figure is shown in FIG. That is, in step 203, it is determined that the roughness sensor signal monitoring period has not just ended, and in step 204, the roughness determination flag is set to "0".
After setting, proceed to step 210 and step
Compare the roughness sensor output data captured in 122 with the set value, and if it is smaller than the set value, the correction amount
The calculation process for the correction amount K 2 is completed with the value K 2 unchanged, and if it is greater than the set value, the process branches to step 207 and the correction amount K 2 is increased by ΔK 2 .

(本発明の効果) 本発明はエンジンの不安定状態を検出するラフ
ネスセンサからの検出信号等を受け制御空燃比を
所定値でだけ増減した制御値を示す制御信号を燃
料噴射弁に印加する構成としたので、エンジンの
動作の基本となる制御空燃比を常に第1の所定量
からそれより少ない第2の所定量を減算又は前記
第1の所定量からそれより少ない第3の所定量を
加算した量だけ失火限界から過濃側に保つことが
でき、これによつて、希薄空燃比による内燃機関
の失火限界における動作を回避することができ、
空燃比が失火限界を越えたときに生ずる運転性能
および排気エミツシヨンの急激な悪化を防止する
ことができる効果がある。
(Effects of the Invention) The present invention has a configuration in which a control signal indicating a control value that increases or decreases the control air-fuel ratio by a predetermined value is applied to the fuel injection valve in response to a detection signal etc. from a roughness sensor that detects an unstable state of the engine. Therefore, the control air-fuel ratio, which is the basis of engine operation, is always determined by subtracting a second predetermined amount smaller than the first predetermined amount or adding a third predetermined amount smaller than the first predetermined amount from the first predetermined amount. This makes it possible to keep the internal combustion engine on the rich side from the misfire limit by a certain amount, thereby avoiding operation of the internal combustion engine at the misfire limit due to a lean air-fuel ratio.
This has the effect of preventing a sudden deterioration in driving performance and exhaust emissions that occurs when the air-fuel ratio exceeds the misfire limit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロツク図、
第2図は第1図におけるマイクロプロコンピユー
タの構成を示す図、第3図は空燃比制御に関する
マイクロコンピユータの制御プログラムのフロー
チヤート、第4図は第3図における補正量K2
演算処理を示すフローチヤート、第5図は第3図
における補正量K3の演算処理を示すフローチヤ
ート、第6図は空燃比がエンジンの不安定状態と
の関係で制御される状態を示す図、および第7図
は第3図における補正量K2の演算処理を示すフ
ローチヤートである。 11……速度センサ、12……スロツトル開度
センサ、13……コンピユータ、14……ラフネ
スセンサ。
FIG. 1 is a block diagram showing one embodiment of the present invention;
Fig. 2 is a diagram showing the configuration of the microcomputer in Fig. 1, Fig. 3 is a flowchart of the control program of the microcomputer regarding air-fuel ratio control, and Fig. 4 is a diagram showing the calculation process of the correction amount K 2 in Fig. 3. FIG. 5 is a flowchart showing the calculation process of the correction amount K3 in FIG. FIG. 7 is a flowchart showing the calculation process for the correction amount K2 in FIG. 11...Speed sensor, 12...Throttle opening sensor, 13...Computer, 14...Roughness sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの空燃比制御装置において、エンジ
ンの燃焼状態の不安定度合いを検出する第1の手
段と、失火限界を越えても運転性を損なわない程
度の予め設定された短時間の期間のみ運転性を損
なわない程度の予め設定された第1の所定量だけ
空燃比を希薄側に変化させる第2の手段と、前記
短期間の空燃比変化によつて生じるエンジンの不
安定度合いを検出する第3の手段と、前記検出さ
れた不安定度合いが設定値以下の場合は制御空燃
比を前記第1の所定量より少ない第2の所定量だ
け希薄側に移行させる第4の手段と、前記検出さ
れた不安定度合いが設定値以上の場合は制御空燃
比を前記第1の所定量より少ない第3の所定量だ
け過濃側に移行させる第5の手段とを備え、エン
ジンの動作の基本となる制御空燃比を常に前記第
1の所定量から前記第2の所定量を減算又は前記
第1の所定量から前記第3の所定量を加算した量
だけ失火限界から過濃側に保つことを特徴とす
る、エンジンの空燃比制御装置。
1 In an engine air-fuel ratio control device, there is a first means for detecting the degree of instability of the combustion state of the engine, and a first means for detecting the degree of instability of the combustion state of the engine, and a first means for detecting the degree of instability of the combustion state of the engine. a second means for changing the air-fuel ratio toward the lean side by a first predetermined amount that does not impair the air-fuel ratio; and a third means for detecting the degree of instability of the engine caused by the short-term air-fuel ratio change. means for shifting the controlled air-fuel ratio to the lean side by a second predetermined amount smaller than the first predetermined amount when the detected degree of instability is below a set value; and a fifth means for shifting the controlled air-fuel ratio to the enriched side by a third predetermined amount smaller than the first predetermined amount when the degree of instability exceeds a set value, which is the basis of engine operation. The control air-fuel ratio is always kept on the rich side from the misfire limit by an amount obtained by subtracting the second predetermined amount from the first predetermined amount or adding the third predetermined amount from the first predetermined amount. An engine air-fuel ratio control device.
JP24111183A 1983-12-22 1983-12-22 Air-fuel ratio controlling apparatus for internal- combustion engine Granted JPS60135634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24111183A JPS60135634A (en) 1983-12-22 1983-12-22 Air-fuel ratio controlling apparatus for internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24111183A JPS60135634A (en) 1983-12-22 1983-12-22 Air-fuel ratio controlling apparatus for internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS60135634A JPS60135634A (en) 1985-07-19
JPH0526021B2 true JPH0526021B2 (en) 1993-04-14

Family

ID=17069444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24111183A Granted JPS60135634A (en) 1983-12-22 1983-12-22 Air-fuel ratio controlling apparatus for internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS60135634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794808B2 (en) * 1987-06-03 1995-10-11 株式会社日立製作所 Lean burn engine control device and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560639A (en) * 1978-10-28 1980-05-07 Bosch Gmbh Robert Device for controlling operation characteristic quantity of internal combustion engine to optimum
JPS5827837A (en) * 1981-08-11 1983-02-18 Nippon Soken Inc Air-fuel ratio control device for internal combustion engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560639A (en) * 1978-10-28 1980-05-07 Bosch Gmbh Robert Device for controlling operation characteristic quantity of internal combustion engine to optimum
JPS5827837A (en) * 1981-08-11 1983-02-18 Nippon Soken Inc Air-fuel ratio control device for internal combustion engines

Also Published As

Publication number Publication date
JPS60135634A (en) 1985-07-19

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JP2935000B2 (en) Fuel property detection device for internal combustion engine
US5213081A (en) Misfire sensing apparatus for an internal combustion engine
US4492202A (en) Fuel injection control
JPH0697002B2 (en) Air-fuel ratio sensor pass / fail judgment device
US4440119A (en) Electronic fuel injecting method and device for internal combustion engine
JPS6212382B2 (en)
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
US4457282A (en) Electronic control for fuel injection
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPH0531643B2 (en)
EP0156356A2 (en) Method for controlling the supply of fuel for an internal combustion engine
JPH0526021B2 (en)
JP2547380B2 (en) Air-fuel ratio feedback control method for internal combustion engine
JPH0263097B2 (en)
JPS6248939A (en) Trouble detector for internal combustion engine
JPH07310570A (en) Lean burn control system for internal combustion engine
JP3353311B2 (en) Idle ignition timing control device
JPH066214Y2 (en) Combustion fluctuation control device for internal combustion engine
JPH01216040A (en) Electronic control fuel injection device for internal combustion engine
JPH0248728B2 (en)
JP3141222B2 (en) Electronically controlled fuel supply system for internal combustion engine
JPH041180B2 (en)
JP2586624B2 (en) Output fluctuation detecting device for internal combustion engine