JPH05259567A - Waveguide type multiple quantum well light control element - Google Patents
Waveguide type multiple quantum well light control elementInfo
- Publication number
- JPH05259567A JPH05259567A JP4054517A JP5451792A JPH05259567A JP H05259567 A JPH05259567 A JP H05259567A JP 4054517 A JP4054517 A JP 4054517A JP 5451792 A JP5451792 A JP 5451792A JP H05259567 A JPH05259567 A JP H05259567A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum well
- added
- multiple quantum
- mqw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光変調や光スイッチ等
を行い、特に超高速で低電圧駆動が可能な高光結合効率
をもつ、高性能小形の導波形多重量子井戸光制御素子に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance compact waveguide type multiple quantum well optical control device which performs optical modulation, optical switching, etc., and has a high optical coupling efficiency capable of driving at a very high speed and a low voltage. Is.
【0002】[0002]
【従来の技術】光変調や光スイッチを行う光デバイス
は、高速性、低電圧駆動、低挿入損失、の3点が
重要である。これらは互いに独立でなく相互に依存し合
っており、デバイスの用途に応じて設計されている。近
年の結晶成長技術の進展により良好な特性をもつ半導体
多重量子井戸(Multiple Quantum Well:以下MQW
という)構造が作製され、その量子サイズ効果を利用す
ることによって、従来のバルクを用いた素子よりも高効
率で小形の光変調器や光スイッチ等が報告されている
(例えば、電子情報通信学会論文誌C‐1、J74‐C
‐1巻、pp.414‐420)が、上記3重要点を同時
には満たしておらず、3dB帯域は40GHz以上と広
いのに対し消光比20dBを得るのに必要な電圧は7V
と高く、挿入損失も13dBと大きな値になっている。
通常、この種のデバイスでは帯域幅が素子容量で制限さ
れており、電圧を小さくするにはMQW層を薄くすれば
よいが、その結果、素子容量が増加し帯域は狭くなって
しまう。これは図3に示すように、MQW層13の両側
をP,Nの高ドープされた層12,14で挾み、P電極
18およびN電極19によりMQW層13に垂直な方向
に電界を印加し量子閉じ込めシュタルク効果を利用して
いるためである。また、MQW層を薄くすれば光の閉じ
込めは弱くなり、PおよびNが高ドープされた層に光が
もれ、そこでフリーキャリア吸収を受けて伝搬損失が増
加してしまう。一方、上記MQW層に平行な方向に電界
を印加する試みが、D.S.Chemmla らによって米国
応用物理学会誌(Applied Physics Letters)42
巻、(1983年)第864頁から第866頁に報告さ
れているが、500V以上の電圧を要し、到底実用には
ならなかった。これはMQW層に平行な方向に電界を印
加するのに図4に示すような構造を採用したため、電界
がクラッド層にもかかり、また、MQW層には電界強度
が不均一にかかってしまったためである。2. Description of the Related Art Optical devices for performing optical modulation and optical switching are required to have high speed, low voltage driving, and low insertion loss. These are not independent of each other but depend on each other and are designed according to the application of the device. Due to the progress of crystal growth technology in recent years, semiconductor multiple quantum wells (hereinafter referred to as MQW) having good characteristics
By making use of the quantum size effect, it has been reported that optical modulators and switches that are more efficient and smaller than conventional devices using bulk (for example, the Institute of Electronics, Information and Communication Engineers) Journal C-1, J74-C
-1 volume, pp.414-420) does not satisfy the above three important points at the same time, and the 3 dB band is as wide as 40 GHz or more, but the voltage required to obtain an extinction ratio of 20 dB is 7 V.
And the insertion loss is as large as 13 dB.
Usually, in this type of device, the bandwidth is limited by the element capacitance. To reduce the voltage, the MQW layer may be thinned, but as a result, the element capacitance increases and the bandwidth becomes narrow. As shown in FIG. 3, both sides of the MQW layer 13 are sandwiched by P and N highly doped layers 12 and 14, and an electric field is applied in a direction perpendicular to the MQW layer 13 by a P electrode 18 and an N electrode 19. This is because the quantum confined Stark effect is used. Further, if the MQW layer is made thin, light confinement becomes weak, and light leaks to the layer heavily doped with P and N, where it is absorbed by free carriers and propagation loss increases. On the other hand, an attempt to apply an electric field in a direction parallel to the MQW layer has been reported by D. S. Chemilla et al., Applied Physics Letters 42
Vol. (1983), p. 864 to p. 866, but required a voltage of 500 V or higher, which was not practical at all. This is because the structure shown in FIG. 4 was adopted to apply the electric field in the direction parallel to the MQW layer, so that the electric field was applied to the clad layer and the electric field strength was nonuniformly applied to the MQW layer. Is.
【0003】[0003]
【発明が解決しようとする課題】MQW構造に電界を加
えたときに、吸収係数がどのように変化するかを図2に
示す。図2において(a)は層に垂直、(b)は層に平
行の場合を示す。MQW構造では励起子と呼ばれる鋭い
吸収線が室温でも存在し、これが電界印加により図2
(a)ではその半値幅をやや広げながら長波長側にシフ
トするのに対して、図2(b)ではピーク位置は変わら
ずに低電界でその半値幅を大きく広げる。上記電界の強
さは(a)の場合に比べて1桁以上小さく、これまでは
上記従来の技術で記したように図2(a)に示す機構が
多く用いられてきた。これはMQW層に垂直に電界を印
加するために、ノンドープMQW層をP形およびN形不
純物のドープ層で挾む構造(いわゆるPIN構造)が採
用された。そのため、図5に示すようにMQW層の厚さ
で素子容量および電圧の大きさが制限され、一定の電界
の強さを得るにはMQW層の厚さを薄くせざるを得ず、
その結果、素子容量やフリーキャリア吸収の増大をもた
らし周波数応答特性が延びず、伝搬損失が増加するとい
う問題があった。また、上記周波数応答特性をある程度
保持するにはMQW層の厚さを一定の厚さ以上にするた
め、導波路を伝搬する光のスポット径は小さくなり、光
ファイバとの結合損失が大きくなるという問題があっ
た。FIG. 2 shows how the absorption coefficient changes when an electric field is applied to the MQW structure. In FIG. 2, (a) shows the case perpendicular to the layer, and (b) shows the case parallel to the layer. In the MQW structure, sharp absorption lines called excitons exist even at room temperature, and this is due to the application of an electric field.
In FIG. 2A, the half width is shifted to the long wavelength side while being slightly widened, whereas in FIG. 2B, the peak position is not changed and the half width is greatly widened in a low electric field. The strength of the electric field is smaller than that in the case of (a) by one digit or more, and so far, the mechanism shown in FIG. 2 (a) has been often used as described in the conventional art. In order to apply an electric field perpendicularly to the MQW layer, a structure (so-called PIN structure) in which the non-doped MQW layer is sandwiched by P-type and N-type impurity doped layers was adopted. Therefore, as shown in FIG. 5, the thickness of the MQW layer limits the magnitude of the element capacitance and the voltage, and in order to obtain a constant electric field strength, the thickness of the MQW layer must be reduced.
As a result, there is a problem that the element capacitance and free carrier absorption are increased, the frequency response characteristics are not extended, and the propagation loss is increased. Further, in order to maintain the frequency response characteristics to some extent, the thickness of the MQW layer is set to a certain thickness or more, so that the spot diameter of light propagating in the waveguide becomes small and the coupling loss with the optical fiber becomes large. There was a problem.
【0004】本発明は、MQW層に平行な電界を印加で
きるようにして、従来のこの種の変調器やスイッチ等に
固有のMQW層厚で規定された素子容量やスポット径を
それぞれ独立に最適化して、低電圧で動作し、広帯域を
持ち低挿入損失であり、高性能で小形の導波形多重量子
井戸光制御素子を得ることを目的とする。According to the present invention, an electric field parallel to the MQW layer can be applied to independently optimize the element capacitance and spot diameter defined by the MQW layer thickness peculiar to the conventional modulators and switches of this type. The present invention aims to obtain a high-performance and compact waveguide-type multiple quantum well optical control device that operates at a low voltage, has a wide band, has a low insertion loss, and has high performance.
【0005】[0005]
【課題を解決するための手段】上記目的は、第1のバン
ドギャップをもち障壁層を形成する第1半導体層と、第
2のバンドギャップをもち井戸層を形成する第2半導体
層とを、交互に積層して形成した多重量子井戸層を有す
る導波形多重量子井戸光制御素子において、上記多重量
子井戸層の両側を上記第1半導体層と同等かそれより小
さい屈折率をもつ第3半導体層で挾んで導波構造を形成
し、上記導波構造を上記各層に垂直な面内で挾み、互い
に一方を他方とその導電形が異なるように不純物を添加
して、上記多重量子井戸層に平行に外部から電圧を印加
するようにすることによって達成される。The above object is to provide a first semiconductor layer having a first band gap and forming a barrier layer, and a second semiconductor layer having a second band gap and forming a well layer, In a waveguide type multi-quantum well optical control device having a multi-quantum well layer formed by alternately laminating, a third semiconductor layer having a refractive index on both sides of the multi-quantum well layer which is equal to or smaller than that of the first semiconductor layer. To form a waveguide structure, sandwich the waveguide structure in a plane perpendicular to each layer, and add impurities so that one of them is different in conductivity type from the other, thereby forming a multi-quantum well layer. This is achieved by applying an external voltage in parallel.
【0006】[0006]
【作用】本発明の構造では、MQW層を導波構造として
用い、電界がかかる方向をMQW層に平行になるように
しているため、低電界で大きな吸収係数変化と屈折率変
化が得られ、かつ、素子容量がMQW層厚によらずその
幅によって決まるため、応答速度の制限要因である素子
容量が小さく、高速応答が可能である。また、上記MQ
W層厚を薄くすることができるのでこれを導波する光の
モードスポット径は広げられ、シングルモードファイバ
との結合損失が低減でき(図6)、素子の挿入損失が少
ない。さらに、MQW層に平行に電圧が印加できるよう
にするために設けられたP,Nの不純物の添加層は、イ
オン注入または不純物拡散により形成して混晶化を生じ
させ、その屈折率やバンドギャップエネルギを、上記不
純物が添加されていない部分よりそれぞれ小さく、およ
び大きくして、横方向における光の閉じ込めを良好に
し、かつ、縦方向における光の閉じ込めを上記MQW層
の厚さを制御することによって変化させ、上記導波構造
を伝搬する光波の光導波構造横方向のスポット径と上下
方向のスポット径をほぼ等しくし、結合損失を低減する
ことができる。In the structure of the present invention, the MQW layer is used as a waveguide structure, and the direction in which the electric field is applied is parallel to the MQW layer. Therefore, a large change in the absorption coefficient and the change in the refractive index can be obtained in a low electric field. Moreover, since the element capacitance is determined by the width of the MQW layer regardless of the thickness thereof, the element capacitance which is a limiting factor of the response speed is small and a high speed response is possible. Also, the above MQ
Since the W layer can be thinned, the mode spot diameter of light guided through the W layer can be widened, the coupling loss with the single mode fiber can be reduced (FIG. 6), and the insertion loss of the element is small. Further, the P and N impurity-added layers provided to enable the voltage to be applied in parallel to the MQW layer are formed by ion implantation or impurity diffusion to cause mixed crystal, and the refractive index and the band thereof are increased. Gap energy is made smaller and larger than that in the non-impurity-doped portion to improve lateral light confinement and longitudinal light confinement to control the thickness of the MQW layer. The spot diameter of the light wave propagating through the waveguide structure in the lateral direction and the spot diameter in the vertical direction are made substantially equal to each other to reduce the coupling loss.
【0007】[0007]
【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による導波形多重量子井戸光制御素子
の一実施例を示す構成図、図2は多重量子井戸構造に電
界を印加したときの吸収係数の変化を示す図で、(a)
は垂直方向に印加した場合、(b)は平行方向に印加し
た場合を示す図である。Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a configuration diagram showing an embodiment of a waveguide type multiple quantum well optical control device according to the present invention, and FIG. 2 is a diagram showing a change in absorption coefficient when an electric field is applied to the multiple quantum well structure.
3B is a diagram showing a case of applying in the vertical direction, and FIG. 6B is a diagram showing a case of applying in the parallel direction.
【0008】図1において、絶縁性InP基板1の上
に、有機金属気相成長法(MOVPE)または分子線エ
ピタキシャル法(MBE)によりノンドープInAlAs
クラッド層2を0.3μm、厚さ7.5nmのInGaAs
層を井戸層とし厚さ5nmのInAlAs層を障壁層とす
る量子井戸構造5周期からなるMQW光導波層3、ノン
ドープInAlAsクラッド層4を1〜2μm,InGaAs
キャップ層5を0.5μm成長させた。つぎにSiN膜を
マスクにして各層に垂直な面内で幅1〜4μmを挾んで
互いに一方が他方とその導電形が異なるように不純物を
添加して、外部から上記MOW層3に平行に電圧を印加
できるように、P形不純物を添加した部分6とN形不純
物を添加した部分7とを形成する。このとき、上記不純
物を添加した部分をイオン注入または不純物拡散により
形成してそこに混晶化を生じさせ、その屈折率およびバ
ンドギャップエネルギを上記不純物を添加されていない
部分よりそれぞれ小さくおよび大きくしておく。上記不
純物がない領域上のキャップ層5を選択的に除去し、上
記P形不純物添加領域6とN形不純物添加領域7とに、
P電極8およびN電極9をそれぞれ形成する。In FIG. 1, non-doped InAlAs is formed on an insulating InP substrate 1 by metalorganic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE).
The cladding layer 2 is 0.3 μm thick and has a thickness of 7.5 nm.
Layer is a well layer and an InAlAs layer having a thickness of 5 nm is a barrier layer. The MQW optical waveguide layer 3 is composed of 5 periods, the undoped InAlAs clad layer 4 is 1 to 2 μm, and the InGaAs layer is InGaAs.
The cap layer 5 was grown to 0.5 μm. Next, using the SiN film as a mask, an impurity is added so as to sandwich a width of 1 to 4 μm in a plane perpendicular to each layer so that one of them has a conductivity type different from the other, and a voltage is applied from the outside in parallel to the MOW layer 3. So as to be applied, a portion 6 doped with a P-type impurity and a portion 7 doped with an N-type impurity are formed. At this time, the impurity-added portion is formed by ion implantation or impurity diffusion to cause mixed crystal, and its refractive index and band gap energy are made smaller and larger than those of the undoped portion, respectively. Keep it. The cap layer 5 on the region having no impurities is selectively removed to form the P-type impurity-added region 6 and the N-type impurity-added region 7,
The P electrode 8 and the N electrode 9 are formed respectively.
【0009】なお、導波構造における不純物が添加され
ていない幅を1〜4μmとし、その厚さを0.05〜0.
3μmとすれば、上記導波構造を伝搬する光波の光導波
構造横方向のスポット径と上下方向のスポット径とをほ
ぼ等しくすることができる。また、導波構造の光と相互
作用する素子の長さと導波構造を伝搬する光の吸収係数
との積は、2.3を越えることが望ましい。In the waveguide structure, the width not doped with impurities is set to 1 to 4 μm, and the thickness thereof is set to 0.05 to 0.5.
With a thickness of 3 μm, the spot diameter in the lateral direction of the optical waveguide structure and the spot diameter in the vertical direction of the light wave propagating in the waveguide structure can be made substantially equal. Further, it is desirable that the product of the length of the element which interacts with the light of the waveguide structure and the absorption coefficient of the light propagating through the waveguide structure exceeds 2.3.
【0010】上記実施例はInGaAs/InAlAs系MQ
W構造に対する実施例について記載したが、本発明は他
のMQW構造、例えばInGaAs/InP,InGaAs/
InGaAsP,InGaAlAs/InAlAs,GaAs/Al
GaAs等のMQW構造にも適用できることはいうまでも
ない。The above embodiment is based on the InGaAs / InAlAs system MQ.
Although embodiments have been described for W structures, the present invention is not limited to MQW structures such as InGaAs / InP, InGaAs /.
InGaAsP, InGaAlAs / InAlAs, GaAs / Al
It goes without saying that it can also be applied to MQW structures such as GaAs.
【0011】[0011]
【発明の効果】上記のように本発明による導波形多重量
子井戸光制御素子は、第1のバンドギャップをもち障壁
層を形成する第1半導体層と、第2のバンドギャップを
もち井戸層を形成する第2半導体層とを、交互に積層し
て形成した多重量子井戸層を有する導波形多重量子井戸
光制御素子において、上記多重量子井戸層の両側を上記
第1半導体層と同等かそれより小さい屈折率をもつ第3
半導体層で挾んで導波構造を形成し、上記導波構造を上
記各層に垂直な面内で挾み、互いに一方を他方とその導
電形が異なるように不純物を添加して、上記多重量子井
戸層に平行に外部から電圧を印加するようにしたことに
より、導波路の幅を1〜4μm程度に設定しておけばM
QW層にかかる電界の強さを適当にでき、かつ、駆動電
圧は最大数Vで動作する。このとき、素子容量は導波路
の幅で規定できるので、従来のMQW層に垂直に電界を
かけていた素子に比べ、数倍から1桁以上の高速応答が
観測できる。また、MQW層の厚さを素子容量に無関係
にできるのでMQW層厚を0.05〜0.3μmと薄くし
て、光ファイバとの結合効率を従来のMQW層に垂直に
電界をかけていた素子に比べ数倍良好にすることができ
る。As described above, the waveguide type multiple quantum well optical control device according to the present invention comprises the first semiconductor layer having the first band gap and forming the barrier layer and the well layer having the second band gap. In a waveguide-type multi-quantum well optical control device having a multi-quantum well layer formed by alternately laminating second semiconductor layers to be formed, both sides of the multi-quantum well layer are equal to or more than the first semiconductor layer. Third with a small refractive index
The multiple quantum well is formed by sandwiching a semiconductor layer to form a waveguide structure, sandwiching the waveguide structure in a plane perpendicular to each layer, and adding impurities so that one of them has a conductivity type different from that of the other. By applying a voltage from the outside in parallel to the layers, the width of the waveguide is set to about 1 to 4 μm.
The strength of the electric field applied to the QW layer can be made appropriate, and the drive voltage operates at a maximum of several volts. At this time, since the element capacitance can be defined by the width of the waveguide, a high-speed response of several times to one digit or more can be observed as compared with a conventional element in which an electric field is vertically applied to the MQW layer. Moreover, since the thickness of the MQW layer can be made independent of the element capacitance, the MQW layer thickness is made as thin as 0.05 to 0.3 μm, and the coupling efficiency with the optical fiber is applied with an electric field perpendicular to the conventional MQW layer. It can be made several times better than the device.
【0012】上記は吸収係数変化を利用した強度変調器
を対象にしたが、吸収係数変化は屈折率変化とクラマー
ス・クレーニッヒの関係にあり、屈折率変化を利用した
位相変調器や、屈折率変化に伴う干渉を利用した強度変
調器にも適用することが可能である。The above is intended for the intensity modulator using the change in absorption coefficient, but the change in the absorption coefficient has a relationship between the change in the refractive index and Kramers-Krenig, and the phase modulator using the change in the refractive index and the change in the refractive index are used. It is also possible to apply to an intensity modulator that utilizes the interference caused by.
【図1】本発明による導波形多重量子井戸光制御素子の
一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of a waveguide type multiple quantum well light control device according to the present invention.
【図2】多重量子井戸構造に電界を印加したときの吸収
係数変化を示す図で、(a)は垂直方向に電界印加した
場合を示し、(b)は平行方向に電界印加した場合を示
す図である。2A and 2B are diagrams showing changes in absorption coefficient when an electric field is applied to a multiple quantum well structure, where FIG. 2A shows a case where an electric field is applied in a vertical direction, and FIG. 2B shows a case where an electric field is applied in a parallel direction. It is a figure.
【図3】多重量子井戸構造に垂直方向に電界印加する従
来の導波形多重量子井戸光制御素子の概略構成図であ
る。FIG. 3 is a schematic configuration diagram of a conventional guided multi-quantum well optical control device in which an electric field is applied to the multi-quantum well structure in a vertical direction.
【図4】多重量子井戸構造に平行方向に電界印加する従
来の導波形多重量子井戸光制御素子の概略構成図であ
る。FIG. 4 is a schematic configuration diagram of a conventional waveguide type multiple quantum well light control device in which an electric field is applied in a parallel direction to the multiple quantum well structure.
【図5】多重量子井戸構造に垂直方向に電界印加する従
来の導波形多重量子井戸光制御素子の素子性能を示す図
である。FIG. 5 is a diagram showing device performance of a conventional waveguide type multiple quantum well optical control device in which an electric field is applied in a direction perpendicular to the multiple quantum well structure.
【図6】多重量子井戸構造に垂直方向に電界印加する従
来の導波形多重量子井戸光制御素子の素子性能を示す図
である。FIG. 6 is a diagram showing device performance of a conventional waveguide type multi-quantum well optical control device in which an electric field is applied vertically to the multi-quantum well structure.
2,4…第3半導体層(InAlAsクラッド層) 3…多重量子井戸層 6…P形不純物領域 7…N形不純物領域 2, 4 ... Third semiconductor layer (InAlAs clad layer) 3 ... Multiple quantum well layer 6 ... P-type impurity region 7 ... N-type impurity region
Claims (1)
する第1半導体層と、第2のバンドギャップをもち井戸
層を形成する第2半導体層とを、交互に積層して形成し
た多重量子井戸層を有する導波形多重量子井戸光制御素
子において、上記多重量子井戸層の両側を上記第1半導
体層と同等かそれより小さい屈折率をもつ第3半導体層
で挾んで導波構造を形成し、上記導波構造を上記各層に
垂直な面内で挾み、互いに一方を他方とその導電形が異
なるように不純物を添加して、上記多重量子井戸層に平
行に、外部から電圧を印加するようにしたことを特徴と
する導波形多重量子井戸光制御素子。1. A multi-layer structure in which a first semiconductor layer having a first band gap and forming a barrier layer and a second semiconductor layer having a second band gap and forming a well layer are alternately laminated. In a waveguide type multiple quantum well optical control device having a quantum well layer, a waveguide structure is formed by sandwiching both sides of the multiple quantum well layer with a third semiconductor layer having a refractive index equal to or smaller than that of the first semiconductor layer. Then, the waveguide structure is sandwiched in a plane perpendicular to each layer, impurities are added so that one of them has a different conductivity type from the other, and a voltage is applied from the outside in parallel to the multiple quantum well layer. A waveguide type multi-quantum well optical control device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4054517A JPH05259567A (en) | 1992-03-13 | 1992-03-13 | Waveguide type multiple quantum well light control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4054517A JPH05259567A (en) | 1992-03-13 | 1992-03-13 | Waveguide type multiple quantum well light control element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05259567A true JPH05259567A (en) | 1993-10-08 |
Family
ID=12972846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4054517A Pending JPH05259567A (en) | 1992-03-13 | 1992-03-13 | Waveguide type multiple quantum well light control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05259567A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798552B2 (en) | 2002-02-18 | 2004-09-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor light modulator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6371826A (en) * | 1986-09-16 | 1988-04-01 | Hitachi Ltd | Optical semiconductor device |
JPH0219824A (en) * | 1988-07-08 | 1990-01-23 | Hitachi Metals Ltd | Optical modulator |
JPH02132415A (en) * | 1988-11-14 | 1990-05-21 | Fujitsu Ltd | light modulator |
JPH0348219A (en) * | 1989-07-17 | 1991-03-01 | Hitachi Ltd | Optical modulator |
JPH04184416A (en) * | 1990-11-20 | 1992-07-01 | Fujitsu Ltd | Light modulator and its manufacture |
JPH04505224A (en) * | 1990-06-29 | 1992-09-10 | ナショナル リサーチ カウンシル オブ カナダ | Monolithic semiconductor harmonic laser light source |
JPH05158085A (en) * | 1991-12-05 | 1993-06-25 | Fujitsu Ltd | Light modulator and method of manufacturing the same |
-
1992
- 1992-03-13 JP JP4054517A patent/JPH05259567A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6371826A (en) * | 1986-09-16 | 1988-04-01 | Hitachi Ltd | Optical semiconductor device |
JPH0219824A (en) * | 1988-07-08 | 1990-01-23 | Hitachi Metals Ltd | Optical modulator |
JPH02132415A (en) * | 1988-11-14 | 1990-05-21 | Fujitsu Ltd | light modulator |
JPH0348219A (en) * | 1989-07-17 | 1991-03-01 | Hitachi Ltd | Optical modulator |
JPH04505224A (en) * | 1990-06-29 | 1992-09-10 | ナショナル リサーチ カウンシル オブ カナダ | Monolithic semiconductor harmonic laser light source |
JPH04184416A (en) * | 1990-11-20 | 1992-07-01 | Fujitsu Ltd | Light modulator and its manufacture |
JPH05158085A (en) * | 1991-12-05 | 1993-06-25 | Fujitsu Ltd | Light modulator and method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798552B2 (en) | 2002-02-18 | 2004-09-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor light modulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2809124B2 (en) | Optical semiconductor integrated device and method of manufacturing the same | |
JP2606079B2 (en) | Optical semiconductor device | |
JPH08146365A (en) | Semiconductor mach-zehnder modulation device and its production | |
JP2003114407A (en) | Electric field absorption type optical modulator | |
JPH02226232A (en) | Directional coupler type optical switch | |
JPH08248363A (en) | Waveguide type multiple quantum well optical control element | |
JP3378376B2 (en) | Light control type semiconductor optical switch | |
JPH05259567A (en) | Waveguide type multiple quantum well light control element | |
JPS623221A (en) | Optical modulator | |
JP2760276B2 (en) | Selectively grown waveguide type optical control device | |
CN111900629A (en) | Reflective semiconductor optical amplifier | |
JP3001365B2 (en) | Optical semiconductor element and optical communication device | |
JPH02127623A (en) | Optical element | |
JPH04241487A (en) | Semiconductor laser | |
JP2907890B2 (en) | Light modulator | |
JP2903694B2 (en) | Semiconductor optical switch | |
JPS6297386A (en) | Distributed feedback type bistable semiconductor laser | |
JPH0728104A (en) | Light modulation element | |
JPH06289339A (en) | Optical switch | |
JPH06222406A (en) | Semiconductor optical device | |
JP2676942B2 (en) | Light modulator | |
WO2022113153A1 (en) | Semiconductor optical element | |
JPH05323392A (en) | Surface type multiple quantum well light control element | |
JP2707610B2 (en) | Nonlinear semiconductor optical directional coupler | |
JPH01118817A (en) | Optical modulator |