JPH05259533A - Electronic element having resonance tunnel effect characteristics - Google Patents
Electronic element having resonance tunnel effect characteristicsInfo
- Publication number
- JPH05259533A JPH05259533A JP4054880A JP5488092A JPH05259533A JP H05259533 A JPH05259533 A JP H05259533A JP 4054880 A JP4054880 A JP 4054880A JP 5488092 A JP5488092 A JP 5488092A JP H05259533 A JPH05259533 A JP H05259533A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- organic
- substrate
- tunnel
- probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims description 10
- 239000010409 thin film Substances 0.000 claims abstract description 49
- 239000000523 sample Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 229910000510 noble metal Inorganic materials 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 abstract description 14
- 239000004020 conductor Substances 0.000 abstract description 8
- 239000012212 insulator Substances 0.000 abstract description 7
- 239000002120 nanofilm Substances 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- CSHWQDPOILHKBI-UHFFFAOYSA-N perylene Chemical compound C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000004776 molecular orbital Methods 0.000 description 3
- 229920000548 poly(silane) polymer Polymers 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003362 semiconductor superlattice Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体電子素子に関し、特
に有機分子薄膜を利用して共鳴トンネル効果特性を得る
ことのできる新規な固体電子素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state electronic device, and more particularly to a novel solid-state electronic device which can obtain a resonance tunnel effect characteristic by utilizing an organic molecular thin film.
【0002】[0002]
【先行技術】共鳴トンネル効果素子は既に半導体の超格
子構造を用いた素子として知られている。例えば、GaA
s、AlGaAs等の化合物半導体の数10−数100オング
ストロームの薄膜を積層して作られる量子井戸の中のサ
ブバンドの離散的電子準位を共鳴準位として用いること
が提案されている。トンネル共鳴エネルギー準位を得る
のに複数のエネルギーバンドギャップ幅の異なる化合物
半導体を準原子層レベルの精度で積層化して量子井戸を
作ることによってなされた。しかしながら、数10オン
グストロームの精度で半導体積層膜を製作することは極
めて困難であり、且つ高価なものである。また技術的困
難性に起因する精度の低下、及びそれに伴う目標とする
特性を得る困難性と再現性の悪さ等の問題があるため広
く実用に供するには難があった。更に製法上高い精度の
素子を作ることが難しく、典型的な特性はなかなか得ら
れなかった。Resonant tunnel effect devices are already known as devices using a semiconductor superlattice structure. For example, GaA
It has been proposed to use the discrete electronic levels of subbands in a quantum well formed as a stack of thin film of compound semiconductor such as s, AlGaAs or the like having a thickness of several tens to several hundreds of angstroms as the resonance level. In order to obtain the tunnel resonance energy level, a plurality of compound semiconductors having different energy band gap widths are stacked with a quasi-atomic layer level accuracy to form a quantum well. However, it is extremely difficult and expensive to manufacture a semiconductor laminated film with an accuracy of several tens of angstroms. Further, there is a problem in that the accuracy is lowered due to technical difficulty, and there is a problem that it is difficult to obtain a target characteristic and poor reproducibility, and thus it is difficult to put it into practical use widely. Further, it was difficult to manufacture a device with high precision due to the manufacturing method, and it was difficult to obtain typical characteristics.
【0003】ここで図1及び図2を参照してSTM及び
共鳴トンネル効果の原理について説明する。図1はST
M(Scanning Tunnel Microscope: 走査型トンネル顕微
鏡)の原理図である。探針と試料を約数オングストロー
ムから約10オングストロームの範囲で接近させると、
ある数v以下の電圧の下では探針と試料が接触していな
くても電流が流れる。これがトンネル電流と言われるも
のであるが、探針と試料間のギャップ長により当然電流
値が変化する。そこで探針と試料を通してトンネル電流
が流れるようになるまで固体表面に接近(ギャップ長は
通常数オングストローム)させ、x,y平面を圧電素子
により走査する。その際トンネル電流が一定になるよう
にフィードバック回路をとおしてz方向の圧電素子に印
加する電圧を制御し、探針と試料の固体表面の距離が一
定になるようにする。このz方向の圧電素子に印加した
電圧のマップがSTM像である。従ってこれにより試料
の表面形状が得られるものである。Here, the principle of the STM and the resonance tunnel effect will be described with reference to FIGS. Figure 1 is ST
It is a principle diagram of M (Scanning Tunnel Microscope). When the probe and the sample are brought close to each other in the range of about several angstroms to about 10 angstroms,
Under a voltage of a few v or less, a current flows even if the probe and the sample are not in contact with each other. This is called a tunnel current, but the current value naturally changes depending on the gap length between the probe and the sample. Therefore, the solid surface is approached (gap length is usually several angstroms) until the tunnel current flows through the probe and the sample, and the x and y planes are scanned by the piezoelectric element. At that time, the voltage applied to the piezoelectric element in the z direction through the feedback circuit is controlled so that the tunnel current becomes constant, so that the distance between the probe and the solid surface of the sample becomes constant. A map of the voltage applied to the piezoelectric element in the z direction is the STM image. Therefore, the surface shape of the sample can be obtained by this.
【0004】図2は何故トンネル電流が流れるかを示し
た原理図である。図2(A) 〜(C) において縦軸はエネル
ギー準位(電圧とも表せる)、横軸は素子の厚さを示し
ている。a、cはトンネル障壁、bは量子井戸、b’は
サブバンドの量子準位を表す。図2(A) は素子の両端
(左右の電極、上述のSTMにおける探針と試料に相当
する)の電位が等しい場合で、左側から右側に電流が流
れることはない。このような状態で両端に電位差を与え
るとそれに応じてサブバンドの量子準位が下がり左側の
電位と同レベルになると電流が流れ出すが、更に両端の
電位差を増大すると再び電流が減少する。しかしなお電
位差を増大すると電界の強さに応じて再び電流が増えて
くる。この電圧−電流特性を図2(D) に示す。このよう
に電圧の上昇に対して電流が減少する部分は負性抵抗素
子として利用することが可能になる。FIG. 2 is a principle diagram showing why a tunnel current flows. 2A to 2C, the vertical axis represents the energy level (which can also be expressed as voltage) and the horizontal axis represents the element thickness. a and c are tunnel barriers, b is a quantum well, and b ′ is a subband quantum level. FIG. 2A shows the case where the potentials at both ends of the device (the left and right electrodes, which correspond to the probe in the STM described above and the sample) are equal, and no current flows from the left side to the right side. When a potential difference is applied to both ends in such a state, a current flows out when the quantum level of the subband is lowered to reach the same level as the potential on the left side, but when the potential difference between both ends is further increased, the current decreases again. However, when the potential difference is still increased, the current again increases according to the strength of the electric field. This voltage-current characteristic is shown in FIG. Thus, the portion where the current decreases with increasing voltage can be used as a negative resistance element.
【0005】[0005]
【本発明の解決すべき課題】本発明は、従来の半導体を
主体とした無機物の多層電極薄膜により構成された共鳴
トンネル素子のもつ欠点を除去し、製造が簡単で、安価
であり、且つ使用する有機分子の種類を選択することに
より種々の特性を選ぶことが可能な電子素子を得ること
を目的とする。DISCLOSURE OF THE INVENTION The present invention eliminates the drawbacks of the conventional resonant tunneling device composed of an inorganic multi-layered electrode thin film mainly composed of a semiconductor, and is simple to manufacture, inexpensive and usable. The object is to obtain an electronic device capable of selecting various characteristics by selecting the type of organic molecule to be used.
【0006】[0006]
【課題を解決するための手段】本発明は、基本的には金
属又は導体基板上に有機分子、好ましくは有機半導体を
成膜したものである。これにより、従来のものとは本質
的に異なる有機分子特有の分子軌道エネルギーの固有値
を共鳴エネルギー準位として用いることが可能になる。SUMMARY OF THE INVENTION The present invention is basically a film of organic molecules, preferably organic semiconductor, formed on a metal or conductor substrate. This makes it possible to use the eigenvalue of the molecular orbital energy peculiar to the organic molecule, which is essentially different from the conventional one, as the resonance energy level.
【0007】この様な構成を有する素子において、有機
分子膜を通して共鳴トンネル電流を観測すると、有機分
子膜の軌道の有する分子軌道エネルギーに一致したエネ
ルギーに相当する電位をSTMの探針に印加するとトン
ネル電流が増加し、あたかも有機分子はトンネル像で透
明化する現象を見出したものである。本発明はこれを更
に発展させ、有機分子薄膜の上下面にトンネルギャップ
としての絶縁膜を設け、更にその上に両面に導電層を設
け、これを電極とすることによっても共鳴トンネル効果
特性を得ることができるものである。また、有機半導体
薄膜の両面に貴金属を設けることにより、貴金属と有機
半導体薄膜の界面にショットキーバリアーとしての絶縁
層が形成されるので、有機分子薄膜を絶縁膜を介して両
面に導電層を設けた素子と同様の素子を得ることができ
る。In a device having such a structure, when a resonance tunnel current is observed through an organic molecular film, a tunnel corresponding to the energy corresponding to the molecular orbital energy of the orbit of the organic molecular film is applied to the STM probe. It was discovered that the current increased and the organic molecules became transparent in the tunnel image. The present invention further develops this, and an insulating film as a tunnel gap is provided on the upper and lower surfaces of an organic molecular thin film, and conductive layers are provided on both surfaces of the insulating film, and a resonant tunnel effect characteristic is also obtained by using this as an electrode. Is something that can be done. In addition, by providing a noble metal on both sides of the organic semiconductor thin film, an insulating layer as a Schottky barrier is formed at the interface between the noble metal and the organic semiconductor thin film, so that a conductive layer is provided on both sides of the organic molecular thin film via the insulating film. It is possible to obtain an element similar to the above element.
【0008】[0008]
【実施例】図3は本発明の基本構成を示したものであ
る。図において、本発明は導電性基板1上に有機分子薄
膜(好ましくは、有機半導体薄膜)2を設けたものに、
探針4と有機分子薄膜2との間にギャップを存在させ
て、基板1と探針4の間に電位差を与えたものである。
このような基本構成を用いて、以下のような実験を行っ
たところ共鳴トンネル効果があることを観察することが
できた。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows the basic structure of the present invention. In the figure, the present invention relates to a case where an organic molecular thin film (preferably an organic semiconductor thin film) 2 is provided on a conductive substrate 1,
A gap is present between the probe 4 and the organic molecular thin film 2, and a potential difference is applied between the substrate 1 and the probe 4.
When the following experiment was performed using such a basic configuration, it was possible to observe that there was a resonance tunnel effect.
【0009】実験例1 HOPG(Highly Oriented Pyrolitic Graphite:高配
向性パイロリティックグラファイト) の単結晶のへき開
面上に有機薄膜としてポリシランスチレン(通称:ポリ
シラン)をトルエンを溶媒として溶かし、その溶液をス
ピンコートして成膜した。この際スピナーの回転数は5
000rpm (1分間5000回転)で約30秒回転して
薄膜化した後、12時間自然乾燥させた。膜厚は約50
0オングストロームである。この有機膜を通して図3に
示すようにSTMの原理を利用して表面を通してのトン
ネル電流の挙動を観測したところ、即ちHOPGの基板
と探針とを電極として、両電極間に電圧を印加した。印
加電圧が1.5 vのときは有機分子表面の様子がSTM像
として見られた(図4参照、フルスケール80オングス
トローム)。ところが印加電圧を0.3 vに下げると、有
機膜を通して基板のHOPGの炭素原子の6角形の配位
のSTM像が明白に浮かび上がった(図5参照、フルス
ケール50オングストローム)。その後印加電圧を再び
1.5 vに上げると、再び有機膜の表面が現れ、炭素原子
の配列像は消失して見えなくなった。この現象は再現性
があることを示している。この現象は電気的には印加電
圧の減少に伴い電気抵抗が減少していることを意味する
ものであるから、この素子は負性抵抗素子、或いは非線
形素子として利用することが可能である。Experimental Example 1 Polysilane Styrene (commonly known as polysilane) was dissolved as an organic thin film on a cleaved surface of a single crystal of HOPG (Highly Oriented Pyrolitic Graphite) as a solvent, and the solution was spin-coated. Then, a film was formed. At this time, the spinner speed is 5
After rotating at 000 rpm (5000 rpm for 1 minute) for about 30 seconds to form a thin film, it was naturally dried for 12 hours. Film thickness is about 50
It is 0 angstrom. When the behavior of the tunnel current through the surface was observed through this organic film by using the principle of STM as shown in FIG. 3, that is, a voltage was applied between both electrodes using the HOPG substrate and the probe as electrodes. When the applied voltage was 1.5 v, the state of the surface of the organic molecule was seen as an STM image (see FIG. 4, full scale 80 Å). However, when the applied voltage was lowered to 0.3 v, an STM image of hexagonal coordination of carbon atoms of HOPG of the substrate was clearly revealed through the organic film (see FIG. 5, full scale 50 angstrom). After that, apply voltage again
When the voltage was increased to 1.5 v, the surface of the organic film appeared again, and the carbon atom array image disappeared and disappeared. This phenomenon has been shown to be reproducible. This phenomenon electrically means that the electric resistance decreases as the applied voltage decreases, and thus this element can be used as a negative resistance element or a non-linear element.
【0010】この原因を考察すると、有機分子の分子軌
道エネルギーとトンネル電圧(即ち印加電圧)が共鳴す
ることで分子膜が透明状態になったものと考えられる。
従って、この原理を用いると基板上に有機分子薄膜を積
層化することで共鳴トンネル素子を得ることができるこ
とが判る。 実験例2 HOPG単結晶のへき開面上に有機半導体としてペリレ
ン(Perylen)の薄膜を蒸着法により形成し、図3に示す
構成を得てトンネル電圧とトンネル電流の関係(I−V
特性)を測定した。測定結果は図6に示す通りである。
この場合ペリレンはP型の半導体でありトンネル電圧は
探針に印加した電圧と定義する。測定は有機半導体薄膜
であるペリレン膜の表面に数オングストローム以内に探
針を接近して行った。このグラフにおいて探針電圧が約
−0.75vから約−0.9 vの印加電圧の範囲で明らかに負
性抵抗特性を示していることがわかる。Considering this cause, it is considered that the molecular orbital energy of the organic molecule and the tunnel voltage (that is, the applied voltage) resonate with each other, so that the molecular film becomes transparent.
Therefore, using this principle, a resonant tunneling device can be obtained by stacking an organic molecular thin film on a substrate. Experimental Example 2 A thin film of Perylen as an organic semiconductor was formed on the cleaved surface of a HOPG single crystal by an evaporation method, and the structure shown in FIG. 3 was obtained to obtain the relationship between the tunnel voltage and the tunnel current (IV
Characteristics) was measured. The measurement results are as shown in FIG.
In this case, perylene is a P-type semiconductor and the tunnel voltage is defined as the voltage applied to the probe. The measurement was performed by bringing the probe close to the surface of the perylene film, which is an organic semiconductor thin film, within a few angstroms. In this graph, it can be seen that the probe voltage clearly shows a negative resistance characteristic in the range of applied voltage of about -0.75v to about -0.9v.
【0011】以上、本発明の基本構成においては、トン
ネルギャップ抵抗と有機分子の薄膜抵抗を比較すると、
一般的にその抵抗値はトンネルギャップの方が薄膜より
かなり大きいので、トンネルギャップの抵抗を更に小さ
くすれば、より顕著な特性が得られるとは明らかであ
る。また有機分子薄膜の厚さを種々選択するれば、特性
の異なるものを得ることができるものである。As described above, in the basic structure of the present invention, when the tunnel gap resistance and the thin film resistance of organic molecules are compared,
In general, the resistance value of the tunnel gap is considerably larger than that of the thin film, so that it is clear that more remarkable characteristics can be obtained by further reducing the resistance of the tunnel gap. Moreover, by selecting various thicknesses of the organic molecular thin film, it is possible to obtain those having different characteristics.
【0012】以下に上記の原理を用いた素子の変形例を
示す。図7に示すように、導電性基板1、絶縁体薄膜
5、有機分子薄膜(好ましくは有機半導体薄膜)2、絶
縁体薄膜6及び導電体4を積層し、基板1と導電体4を
電極として電極間に電圧を印加するものである。このよ
うな構成の素子においては有機分子薄膜2と導電体4及
び基板1の間にあるそれぞれの絶縁体薄膜5、6がトン
ネルギャップを形成し、上述の実験例から容易に共鳴ト
ンネル素子として動作するものであることが理解できる
であろう。図7の構成においてはトンネルギャップが二
つある場合を示したが、本発明の基本構成と対比すれ
ば、基板(導電体)1と有機分子薄膜2の間にある絶縁
体薄膜5がない構成のものであっても共鳴トンネル効果
が得られることは容易に理解できるであろう。この場合
は上部の導電体4と有機分子薄膜2の間にのみトンネル
ギャップが存在する。A modified example of the device using the above principle will be shown below. As shown in FIG. 7, a conductive substrate 1, an insulator thin film 5, an organic molecule thin film (preferably an organic semiconductor thin film) 2, an insulator thin film 6 and a conductor 4 are laminated, and the substrate 1 and the conductor 4 are used as electrodes. A voltage is applied between the electrodes. In the device having such a structure, the organic molecule thin film 2, the insulator thin films 5 and 6 between the conductor 4 and the substrate 1 form a tunnel gap, and thus the device easily operates as a resonance tunnel device from the above experimental example. It will be understood that it does. The structure of FIG. 7 shows the case where there are two tunnel gaps, but in comparison with the basic structure of the present invention, the structure in which the insulator thin film 5 between the substrate (conductor) 1 and the organic molecule thin film 2 is not present. It can be easily understood that the resonance tunnel effect can be obtained even with the above. In this case, a tunnel gap exists only between the upper conductor 4 and the organic molecular thin film 2.
【0013】更に他の変形例として、図8に示すよう
に、基板1上に貴金属7、有機分子薄膜(好ましくは有
機半導体薄膜)2及び更に貴金属8を積層して構成し、
貴金属7と8を電極とするものである。この様な構成に
おいては、有機分子薄膜2と貴金属7、8間のショット
キー障壁により、トンネルギャップが形成される。この
場合はトンネルギャップ抵抗が絶縁体薄膜を用いた図7
の構成のものより小さいものが容易に得られると言う特
徴がある。なおこの構成における基板1は単に貴金属及
び有機分子薄膜を固定するものである。図8における構
成においても、基板1と有機分子薄膜2の間にある貴金
属7を省くことが可能であることは図7の場合と同様で
ある。この場合基板1を下部電極とすることは当然のこ
とである。そしてこの構成においては上部の貴金属8と
有機分子薄膜2の間にのみトンネルギャップが存在する
ことは容易に理解ききるであろう。As another modification, as shown in FIG. 8, a noble metal 7, an organic molecule thin film (preferably an organic semiconductor thin film) 2 and a noble metal 8 are further laminated on a substrate 1,
The noble metals 7 and 8 are used as electrodes. In such a structure, the Schottky barrier between the organic molecule thin film 2 and the noble metals 7 and 8 forms a tunnel gap. In this case, the tunnel gap resistance is shown in FIG.
There is a feature that it is possible to easily obtain a smaller size than that of the above. It should be noted that the substrate 1 in this configuration simply fixes the noble metal and the organic molecular thin film. Also in the configuration in FIG. 8, it is possible to omit the noble metal 7 between the substrate 1 and the organic molecular thin film 2, as in the case of FIG. 7. In this case, it is natural to use the substrate 1 as the lower electrode. It can be easily understood that the tunnel gap exists only between the upper noble metal 8 and the organic molecular thin film 2 in this structure.
【0014】以上、本発明による種々の素子よって、負
性抵抗素子或いは非線形素子が得られることはすでに述
べたところであるが、次に、本発明の素子を用いた記憶
装置の例を示す。図7及び図8に示した構造の素子にお
いて、上部及び下部電極を多数の細線を並行に、且つ上
部と下部の細線を交叉した構造にし、予め選ばれた交点
の有機分子薄膜に、例えば高い電圧を印加するなどして
変形(例えば破壊)させておけおけば大容量のROM
(図示せず)として用いることは容易に理解することが
できるであろう。この記憶装置の記憶内容を呼び出す場
合は、上下細線に共鳴トンネル効果を生じるパルス電圧
を印加すれば、有機分子薄膜が変形している交点は導通
しないため出力が得られないが、有機分子薄膜に変形を
施していない交点は導通するため出力が得らる。また出
力はその記憶装置の利用形態に応じてどのようにも取り
出せる。例えば、このような構成の記憶装置に対し、所
謂マルチプレックシング駆動を行えば、上下細線の交点
を走査して出力することができるものである。As described above, a negative resistance element or a non-linear element can be obtained by various elements according to the present invention. Next, an example of a memory device using the element of the present invention will be shown. In the device having the structure shown in FIGS. 7 and 8, the upper and lower electrodes have a structure in which a large number of thin wires are arranged in parallel and the upper and lower thin wires are crossed, and the organic molecular thin film at the preselected intersection is, for example, high. Large-capacity ROM if it is deformed (for example, destroyed) by applying a voltage
Its use as (not shown) would be easily understood. When recalling the memory contents of this memory device, if a pulse voltage that causes a resonance tunnel effect is applied to the upper and lower thin lines, an output cannot be obtained because the intersection point where the organic molecular thin film is deformed is not conductive, but An output is obtained because the intersection that has not been deformed is conducting. Also, the output can be taken out in any manner depending on the usage of the storage device. For example, if so-called multiplexing driving is performed on the storage device having such a configuration, the intersection of the upper and lower fine lines can be scanned and output.
【0015】[0015]
【発明の効果】以上説明したように、本発明は構造及び
製造が簡単で、安価な負抵抗素子あるいは非線形素子を
得ることができるものである。また大容量の記憶素子と
して利用することもできる。その上、使用する有機分子
の種類を選択することにより種々の特性を選ぶことが可
能なものである。As described above, according to the present invention, it is possible to obtain an inexpensive negative resistance element or non-linear element, which is simple in structure and manufacturing. It can also be used as a large-capacity storage element. Moreover, various characteristics can be selected by selecting the type of organic molecule to be used.
【図1】STMの基本構成を示す。FIG. 1 shows the basic configuration of an STM.
【図2】共鳴トンネル効果を説明する原理図FIG. 2 is a principle diagram for explaining the resonance tunnel effect.
【図3】本発明の基本構成図FIG. 3 is a basic configuration diagram of the present invention.
【図4】有機膜(ポリシラン)の表面のSTM像FIG. 4 is an STM image of the surface of an organic film (polysilane).
【図5】基板の炭素原子の配列のSTM像FIG. 5: STM image of carbon atom arrangement on substrate
【図6】I−V特性の測定結果を示す。FIG. 6 shows measurement results of IV characteristics.
【図7】本発明による絶縁体薄膜をトンネルギャップと
した構成図FIG. 7 is a structural diagram in which an insulator thin film according to the present invention is used as a tunnel gap.
【図8】本発明によるショットキー障壁をトンネルギャ
ップとした構成図FIG. 8 is a configuration diagram in which a Schottky barrier according to the present invention is used as a tunnel gap.
1 基板 2 有機分子薄膜 3 ギャップ 4 探針 5、6 絶縁体薄膜 7、8 貴金属 1 substrate 2 organic molecule thin film 3 gap 4 probe 5, 6 insulator thin film 7, 8 noble metal
Claims (6)
薄膜から成り、共鳴トンネル効果を生じるさせることを
特徴とする電子素子。1. An electronic device comprising a substrate and an organic molecular thin film formed on the substrate, and causing a resonance tunnel effect.
薄膜及び前記薄膜の表面に近づけて配置された微細尖端
を有し、且つ三次元的に操作可能な探針とを有し、前記
基板と前記探針間に電圧を印加してトンネル電流を生じ
させることを特徴とする電子素子。2. A probe having a substrate, an organic molecular thin film formed on the substrate, and fine tips arranged close to the surface of the thin film, and a three-dimensionally operable probe. An electronic device characterized in that a voltage is applied between a substrate and the probe to generate a tunnel current.
つけた電子素子であって、前記導電性電極は有機分子薄
膜の少なくとも一方の面において、トンネルギャップ層
を介して取りつけられていることを特徴とする電子素
子。3. An electronic device having conductive electrodes attached to both sides of an organic molecular thin film, wherein the conductive electrodes are attached via a tunnel gap layer on at least one side of the organic molecular thin film. Characteristic electronic device.
ら成ることを特徴とする請求項3に記載の電子素子4. The electronic device according to claim 3, wherein the tunnel gap layer is made of an insulating thin film.
トンネルギャップ層は前記貴金属と有機分子薄膜とを直
接取りつけることにより貴金属と有機分子薄膜との界面
に形成されたショットキー障壁により構成されることを
特徴とする請求項3に記載の電子素子。5. The conductive electrode is made of a noble metal, and the tunnel gap layer is made of a Schottky barrier formed at the interface between the noble metal and the organic molecule thin film by directly attaching the noble metal and the organic molecule thin film. The electronic device according to claim 3, wherein:
前記複数の細線は並行に、且つ上面細線と下面細線は交
叉するように配列されていることを特徴とする請求項3
に記載の電子素子。6. The conductive electrode comprises a plurality of thin wires,
4. The plurality of thin wires are arranged in parallel, and the upper surface thin wires and the lower surface thin wires intersect each other.
The electronic device according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4054880A JPH05259533A (en) | 1992-03-13 | 1992-03-13 | Electronic element having resonance tunnel effect characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4054880A JPH05259533A (en) | 1992-03-13 | 1992-03-13 | Electronic element having resonance tunnel effect characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05259533A true JPH05259533A (en) | 1993-10-08 |
Family
ID=12982905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4054880A Pending JPH05259533A (en) | 1992-03-13 | 1992-03-13 | Electronic element having resonance tunnel effect characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05259533A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0844672A1 (en) * | 1996-05-22 | 1998-05-27 | Organet Chemical Co., Ltd. | Molecule dispersion type negative resistance element and method for manufacturing the same |
WO2023021867A1 (en) * | 2021-08-20 | 2023-02-23 | 株式会社日立ハイテク | Scanning probe microscope, and specimen used in same |
-
1992
- 1992-03-13 JP JP4054880A patent/JPH05259533A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0844672A1 (en) * | 1996-05-22 | 1998-05-27 | Organet Chemical Co., Ltd. | Molecule dispersion type negative resistance element and method for manufacturing the same |
EP0844672A4 (en) * | 1996-05-22 | 1999-08-11 | Organet Chemical Co Ltd | Molecule dispersion type negative resistance element and method for manufacturing the same |
WO2023021867A1 (en) * | 2021-08-20 | 2023-02-23 | 株式会社日立ハイテク | Scanning probe microscope, and specimen used in same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7183568B2 (en) | Piezoelectric array with strain dependant conducting elements and method therefor | |
US6677629B1 (en) | Electric or electronic component and application as non volatile memory and device with surface acoustic waves | |
JP4512176B2 (en) | Carbon nanotube electronic device and electron source | |
Gruverman et al. | Scanning force microscopy of domain structure in ferroelectric thin films: imaging and control | |
Sleator et al. | Observation of individual organic molecules at a crystal surface with use of a scanning tunneling microscope | |
Ouyang et al. | Organic memory device fabricated through solution processing | |
KR100272702B1 (en) | Tunnelling device and method of producing a tunnelling device | |
US7902586B2 (en) | Nonvolatile memory device with nano gap electrode | |
US5365073A (en) | Nanofabricated structures | |
DE68923721T2 (en) | Information recording device and information recording and reproducing method. | |
Tian et al. | Manipulation of conductive domain walls in confined ferroelectric nanoislands | |
US20020172072A1 (en) | Molecular memory systems and methods | |
JPH04321954A (en) | Cantilever type probe, and scanning tunnelling microscope using this probe, and information processor | |
Paul | Realization of nonvolatile memory devices using small organic molecules and polymer | |
US7544966B2 (en) | Three-terminal electrical bistable devices | |
Akiyama et al. | Capacitance of a molecular overlayer on the silicon surface measured by scanning tunneling microscopy | |
JPH05259533A (en) | Electronic element having resonance tunnel effect characteristics | |
Lesieur et al. | Defect characterization and detection in Langmuir-Blodgett films | |
Boden et al. | Electron transport across metal/discotic liquid crystal interfaces | |
EP1096569A1 (en) | Quantum wire array, uses thereof, and methods of making the same | |
KR20070012803A (en) | Scanning probe microscope probe and method for manufacturing same, Scanning probe microscope and method for using thereof, Acicular body and method for manufacturing same, Electronic device and method for manufacturing thereof, and Charge density wave quantum phase microscope and charge density wave quantum interferometer | |
Van Haesendonck et al. | Nanowire bonding with the scanning tunneling microscope | |
US20240389476A1 (en) | High temperature superconducting devices and methods thereof | |
JP3472783B2 (en) | Magnetoresistive element and magnetically responsive device using the same | |
Li et al. | Orthogonal electric control of the out-of-plane field-effect in two-dimensional ferroelectric alpha-In2Se3 |