[go: up one dir, main page]

JPH0525821B2 - - Google Patents

Info

Publication number
JPH0525821B2
JPH0525821B2 JP59081587A JP8158784A JPH0525821B2 JP H0525821 B2 JPH0525821 B2 JP H0525821B2 JP 59081587 A JP59081587 A JP 59081587A JP 8158784 A JP8158784 A JP 8158784A JP H0525821 B2 JPH0525821 B2 JP H0525821B2
Authority
JP
Japan
Prior art keywords
refractive index
glass
weight
oxide
high refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59081587A
Other languages
Japanese (ja)
Other versions
JPS60226428A (en
Inventor
Kazuya Oosawa
Hiroshi Takahashi
Masaki Kimura
Motohiro Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP59081587A priority Critical patent/JPS60226428A/en
Publication of JPS60226428A publication Critical patent/JPS60226428A/en
Publication of JPH0525821B2 publication Critical patent/JPH0525821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信に用いる石英ガラス系光伝送路
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in silica glass optical transmission lines used in optical communications.

(従来技術) 一般に、通信用の光伝送路(光フアイバ)は高
純度の石英ガラスを主成分としているが、そのコ
ア部には屈折率調整用(高屈折率用)の成分とし
て酸化ゲルマニウムがドープされており、場合に
より酸化リンや酸化ホウ素がドープされた石英ガ
ラスも用いられている。
(Prior art) Generally, optical transmission lines (optical fibers) for communications are mainly composed of high-purity silica glass, but the core contains germanium oxide as a component for refractive index adjustment (high refractive index). Doped quartz glass, sometimes doped with phosphorous oxide or boron oxide, is also used.

しかしこれらガラスの場合、そのガラス中に酸
素欠陥が存在し、該ガラス欠陥部に水酸基が生成
されて光フアイバの伝送損失増を招起することが
すでに指摘されている。
However, in the case of these glasses, it has already been pointed out that oxygen defects exist in the glass, and hydroxyl groups are generated in the glass defects, causing an increase in transmission loss of the optical fiber.

そのため光フアイバ製造時の各種処理条件を改
善する試みがなされているが、これには高度の技
術が要求され、製造難度をともなうのが実状であ
る。
For this reason, attempts have been made to improve various processing conditions during the production of optical fibers, but the reality is that this requires advanced technology and is accompanied by a degree of difficulty in production.

(発明の目的) 本発明は上記の問題点に鑑み、光伝送路の高屈
折率部を構成するガラス組成を改良することによ
り、長期的に伝送特性の安定した信頼性の高い光
伝送路を提供しようとするものである。
(Object of the Invention) In view of the above-mentioned problems, the present invention provides a highly reliable optical transmission line with stable transmission characteristics over a long period of time by improving the glass composition that constitutes the high refractive index portion of the optical transmission line. This is what we are trying to provide.

(発明の構成) 本発明に係る光伝送路は、光透過用の高屈折率
部が酸化亜鉛0.001〜5重量%、酸化ゲルマニウ
ム0〜15重量%、酸化リン0〜5重量%、酸化ケ
イ素80〜99.999重量%からなるガラスで構成され
ていることを特徴としている。
(Structure of the Invention) In the optical transmission line according to the present invention, the high refractive index portion for light transmission includes 0.001 to 5% by weight of zinc oxide, 0 to 15% by weight of germanium oxide, 0 to 5% by weight of phosphorus oxide, and 80% by weight of silicon oxide. It is characterized by being composed of ~99.999% by weight glass.

(実施例) 以下本発明の実施例につき、図面等を参照して
説明する。
(Example) Examples of the present invention will be described below with reference to the drawings and the like.

図において1は光伝送路(光フアイバ)、2は
その高屈折率部(コア)、3はその低屈折率部
(クラツド)である。
In the figure, 1 is an optical transmission line (optical fiber), 2 is its high refractive index portion (core), and 3 is its low refractive index portion (cladding).

上記高屈折率部2を構成しているガラスは既述
の各組成を所定の範囲で含有し、低屈折率部3は
純石英ガラスか、もしくはフツ素ドープト石英か
らなる。
The glass constituting the high refractive index section 2 contains each of the aforementioned compositions within a predetermined range, and the low refractive index section 3 is made of pure silica glass or fluorine-doped quartz.

高屈折率部2が酸化亜鉛を含有している上記光
伝送路1の場合、後述の具体例で明らかなように
伝送損失増が抑制できるのであり、これは酸化亜
鉛が添加されていることにより酸素欠陥を生じに
くいガラス構造をとるためと推定できる。
In the case of the above-mentioned optical transmission line 1 in which the high refractive index portion 2 contains zinc oxide, the increase in transmission loss can be suppressed as will be clear from the specific examples described later, and this is due to the addition of zinc oxide. This is presumed to be due to the glass structure that is less likely to produce oxygen defects.

本来、ガラス中の欠陥は量的に多くなく、高屈
折率部2の酸化亜鉛の量が微量であつても上記効
果は得られるが、0.001重量%以下の酸化亜鉛量
ではその効果が顕著でなく、したがつて高屈折率
部2における酸化亜鉛量は0.001重量%以上がよ
い。
Originally, the number of defects in glass is not large, and the above effect can be obtained even if the amount of zinc oxide in the high refractive index portion 2 is small, but the effect is noticeable when the amount of zinc oxide is 0.001% by weight or less. Therefore, the amount of zinc oxide in the high refractive index portion 2 is preferably 0.001% by weight or more.

酸化亜鉛量が5重量%以上になると高屈折率部
2のガラス安定性が損なわれるので、これは5重
量%以下がよい。
If the amount of zinc oxide is 5% by weight or more, the glass stability of the high refractive index portion 2 will be impaired, so it is preferably 5% by weight or less.

高屈折率部2がZnO−SiO2の二成分ガラス系
で構成されることもあり、この場合、低屈折率部
3は前述したフツ素ドープト石英により構成され
る。
The high refractive index section 2 may be composed of a binary glass system of ZnO- SiO2 , and in this case, the low refractive index section 3 is composed of the aforementioned fluorine-doped quartz.

屈折率を高める目的で上記二成分ガラス系の高
屈折率部2に酸化ゲルマニウムが添加されていて
もよく、この三成分ガラスにおいても酸化亜鉛の
効果は失われない。
Germanium oxide may be added to the high refractive index portion 2 of the two-component glass system for the purpose of increasing the refractive index, and the effect of zinc oxide is not lost even in this three-component glass.

この際の酸化ゲルマニウム量につき、特にその
上限を規定する理由はないが、実用的には同量を
15重量%以下とするのが望ましい。
There is no reason to specify an upper limit for the amount of germanium oxide in this case, but practically the same amount is required.
The content is preferably 15% by weight or less.

さらに高屈折率部2がZnO−SiO2系、あるい
はZnO−GeO2−SiO2系からなるとき、これらに
酸化リン(P2O5)が添加されてもよい。
Furthermore, when the high refractive index portion 2 is made of a ZnO-SiO 2 system or a ZnO-GeO 2 -SiO 2 system, phosphorus oxide (P 2 O 5 ) may be added to these.

酸化リンはこれの添加量が前記酸化亜鉛量と同
等またはそれ以下であるとき、酸化亜鉛添加の効
果が失われない。
When the amount of phosphorus oxide added is equal to or less than the amount of zinc oxide, the effect of adding zinc oxide is not lost.

高屈折率部2における酸化リンの含有量が多す
ぎるとき、ガラスの耐侯性が低下するので望まし
くなく、当該酸化リンの含有量は5重量%以下が
よい。
If the content of phosphorus oxide in the high refractive index portion 2 is too large, the weather resistance of the glass will deteriorate, which is undesirable, and the content of phosphorus oxide is preferably 5% by weight or less.

つぎに本発明のより具体的な例を説明する。 Next, a more specific example of the present invention will be explained.

具体例 1 四塩化ケイ素の液体をアルゴンガスによりバブ
リングして気化した原料ガスと、アルゴンガスに
より希釈したジメチル亜鉛ガスとを酸水素炎中に
導入してこれらを酸化・加水分解し、この際の反
応により生成された酸化物微粒子をターゲツト
(石英棒)の軸方向に堆積させてコア用の多孔質
ガラス母材を形成した。
Specific example 1 Raw material gas obtained by bubbling silicon tetrachloride liquid with argon gas and dimethyl zinc gas diluted with argon gas are introduced into an oxyhydrogen flame to oxidize and hydrolyze them. Oxide fine particles produced by the reaction were deposited in the axial direction of a target (quartz rod) to form a porous glass base material for the core.

その後、多孔質ガラス母材を電気炉中において
1200℃の温度にて焼結し、透明なガラス母材とし
た。
After that, the porous glass base material is placed in an electric furnace.
Sintered at a temperature of 1200℃ to create a transparent glass base material.

上記では母材中の酸化亜鉛の含有量が0〜5重
量%範囲内で変化させることができた。
In the above, the content of zinc oxide in the base material could be varied within the range of 0 to 5% by weight.

つぎに透明ガラス母材の外周には、火炎加水分
解法により石英系としたクラツド用の多孔質ガラ
ス層を形成し、これを六フツ化イオウ濃度1モル
%のヘリウムガス雰囲気中にて焼結することによ
り当該ガラス層をフツ素含有の低屈折率ガラスと
した。
Next, a quartz-based porous glass layer for the cladding is formed on the outer periphery of the transparent glass base material by flame hydrolysis, and this is sintered in a helium gas atmosphere with a sulfur hexafluoride concentration of 1 mol%. By doing so, the glass layer was made into a fluorine-containing low refractive index glass.

こうして得られた光フアイバ母材を既知の紡糸
手段(加熱延伸)により紡糸して光フアイバを製
造した。
The optical fiber preform thus obtained was spun using known spinning means (heat drawing) to produce an optical fiber.

この光フアイバを水素雰囲気中にて100℃、24
時間加熱し、これの水酸基の発生の有無を測定す
べき加速試験を行なつたところ、0.8〜1.5μmの波
長範囲においては伝送損失の変化がみられなかつ
た。
This optical fiber was heated at 100℃ and 24℃ in a hydrogen atmosphere.
When an accelerated test was conducted to measure the generation of hydroxyl groups by heating for a certain period of time, no change in transmission loss was observed in the wavelength range of 0.8 to 1.5 μm.

具体例 2 コア形成用バーナとクラツド形成用バーナとを
用いた既知のVAD法において、コア形成用バー
ナには四塩化ケイ素、四塩化ゲルマニウム、ジメ
チル亜鉛を供給するとともにクラツド形成用バー
ナには四塩化ケイ素、ジメチル亜鉛を供給して多
孔質ガラス母材を作製し、これを透明ガラス化し
た後、該透明ガラス母材を具体例1と同様に紡糸
して光フアイバを得た。
Specific Example 2 In the known VAD method using a core forming burner and a cladding burner, silicon tetrachloride, germanium tetrachloride, and dimethylzinc are supplied to the core forming burner, and tetrachloride is supplied to the cladding burner. A porous glass preform was prepared by supplying silicon and dimethylzinc, and after converting it into transparent glass, the transparent glass preform was spun in the same manner as in Example 1 to obtain an optical fiber.

この光フアイバの場合、コアが酸化ゲルマニウ
ムの分布によりグレーテツド型の屈折率分布を呈
しており、そのコアガラス中には平均濃度として
0.5重量%の酸化亜鉛が含まれたいた。
In the case of this optical fiber, the core exhibits a graded refractive index distribution due to the distribution of germanium oxide, and the average concentration in the core glass is
It contained 0.5% by weight of zinc oxide.

クラツドは低屈折率の高純度石英ガラスからな
るものであつた。
The cladding was made of high purity silica glass with a low refractive index.

上記光フアイバを具体例1と同様、水素中にて
100℃、24時間加熱したところ、この場合も伝送
損失の増加が認められなかつた。
The above optical fiber was placed in hydrogen as in Example 1.
When heated at 100°C for 24 hours, no increase in transmission loss was observed in this case either.

(発明の効果) 以上説明した通り、本発明に係る光伝送路は単
に石英系であるだけでなく、その光透過用の高屈
折率部が0.001〜5重量%の酸化亜鉛を含有して
いるので、長期的に伝送特性の安定した信頼性の
高いものとなる。
(Effects of the Invention) As explained above, the optical transmission line according to the present invention is not only made of quartz, but also contains 0.001 to 5% by weight of zinc oxide in the high refractive index part for transmitting light. Therefore, the transmission characteristics are stable and highly reliable over the long term.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る光伝送路の断面図である。 1……光伝送路、2……高屈折率部、3……低
屈折率部。
The drawing is a sectional view of an optical transmission line according to the present invention. 1... Optical transmission line, 2... High refractive index section, 3... Low refractive index section.

Claims (1)

【特許請求の範囲】[Claims] 1 光透過用の高屈折率部が酸化亜鉛0.001〜5
重量%、酸化ゲルマニウム0〜15重量%、酸化リ
ン0〜5重量%、酸化ケイ素80〜99.999重量%か
らなるガラスで構成されている光伝送路。
1 High refractive index part for light transmission is zinc oxide 0.001~5
An optical transmission line made of glass containing 0 to 15% by weight of germanium oxide, 0 to 5% by weight of phosphorus oxide, and 80 to 99.999% by weight of silicon oxide.
JP59081587A 1984-04-23 1984-04-23 Light transmission path Granted JPS60226428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081587A JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081587A JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Publications (2)

Publication Number Publication Date
JPS60226428A JPS60226428A (en) 1985-11-11
JPH0525821B2 true JPH0525821B2 (en) 1993-04-14

Family

ID=13750447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081587A Granted JPS60226428A (en) 1984-04-23 1984-04-23 Light transmission path

Country Status (1)

Country Link
JP (1) JPS60226428A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782999B2 (en) * 1991-04-15 1995-09-06 株式会社半導体プロセス研究所 Vapor growth film forming method, semiconductor manufacturing apparatus, and semiconductor device

Also Published As

Publication number Publication date
JPS60226428A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
US4690504A (en) Quartz glass-made optical fibers and a method for the preparation thereof
KR970028622A (en) Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof
KR890001125B1 (en) Quartz glass fiber optic fiber containing fluorine and P2O5
ES8601491A1 (en) Optical fiber and method for its production.
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
GB2029400A (en) An Optical Fibre
JPH0525821B2 (en)
Bachmann et al. Loss reduction in fluorine-doped SM-and high NA-PCVD fibers
JPS6131324A (en) Production of base material for optical fiber
JPH0281004A (en) Optical fiber and its production
JPS6051635A (en) Quartz optical fiber
JPH0463365B2 (en)
CA1233709A (en) Methods for producing optical fiber preform and optical fiber
JPH0129220Y2 (en)
JPS6140843A (en) Optical fiber
JPS61251539A (en) Optical fiber
JPS6313946B2 (en)
JPH0524093B2 (en)
JPH0551542B2 (en)
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPH05352B2 (en)
JPH02201403A (en) Optical fiber, method for manufacturing its base material, and method for manufacturing optical fiber
JPS6251215B2 (en)
JPH02164742A (en) Production of optical fiber and its preform