JPH05257115A - Projection type color display device - Google Patents
Projection type color display deviceInfo
- Publication number
- JPH05257115A JPH05257115A JP4088359A JP8835992A JPH05257115A JP H05257115 A JPH05257115 A JP H05257115A JP 4088359 A JP4088359 A JP 4088359A JP 8835992 A JP8835992 A JP 8835992A JP H05257115 A JPH05257115 A JP H05257115A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- component
- primary color
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Projection Apparatus (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、画像表示を行
う3枚の液晶素子を赤青緑(RGB)の原色光でそれぞ
れ照明して原色画像を形成し、赤青緑の原色画像を同一
光軸に合成してスクリ−ン上に拡大投射して、大画面、
高細密なカラ−画像を形成する投射型カラ−表示装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, for example, illuminates three liquid crystal elements for image display with red, blue, and green (RGB) primary color lights to form primary color images, and displays red, blue, and green primary color images. Combined on the same optical axis, enlarged and projected on the screen, large screen,
The present invention relates to a projection type color display device that forms a highly detailed color image.
【0002】[0002]
【従来の技術】大画面、高細密のカラ−画像を形成する
装置として、画像表示を行う3枚の液晶素子を赤緑青
(以下RGBと呼ぶ)の原色光でそれぞれ照明して原色
画像を形成し、これらの原色画像を同一光軸に合成して
スクリ−ン上に拡大投射する液晶プロジェクタ−が実用
化されている。2. Description of the Related Art As an apparatus for forming a large-screen, high-density color image, three liquid crystal elements for image display are illuminated with red, green, and blue (hereinafter referred to as RGB) primary color lights to form a primary color image. However, a liquid crystal projector that combines these primary color images on the same optical axis and enlarges and projects them on a screen has been put into practical use.
【0003】このような液晶プロジェクタ−は、例え
ば、白色光を発生して射出するRGBの三原色光に共通
な光源と、この白色光からRGBの三原色光を分離して
赤原色光学系、緑原色光学系、青原色光学系にそれぞれ
導く帯域選択光学系と、各原色(RGB)光学系に1枚
づつ配置されて三原色の投影画像を形成する3枚の液晶
画像素子と、三原色の投影画像を同一光軸に再度合成す
る合成光学系と、合成されたカラ−投影画像をスクリ−
ンに向って投射する投射光学系とを有し、帯域選択光学
系および合成光学系には、透過率(反射率)に所定の波
長選択性を付与した透過型(反射型)の帯域選択素子が
用いられ、入射光に含まれる特定の波長領域の成分だけ
を選択的に透過(反射)して、残りを反射(透過)させ
る。Such a liquid crystal projector is, for example, a light source common to RGB three primary color lights for generating and emitting white light, and a red primary color optical system and a green primary color by separating the RGB three primary color lights from the white light. An optical system and a band selection optical system for guiding to the blue primary color optical system, and three liquid crystal image elements for forming three primary color projected images, one for each primary color (RGB) optical system, and three primary color projected images. A synthetic optical system that synthesizes again on the same optical axis and a synthesized color projection image
And a projection optical system for projecting toward the lens, and the band selection optical system and the synthetic optical system are transmission type (reflection type) band selection elements in which a predetermined wavelength selectivity is given to the transmission rate (reflectance). Is used to selectively transmit (reflect) only a component in a specific wavelength region included in the incident light, and reflect (transmit) the rest.
【0004】ここで、帯域選択素子には、ガラス基板の
片面に2層以上の薄膜層を形成したダイクロイックミラ
−や、2つのガラスブロックの接合界面に2層以上の薄
膜層を挟み込んだダイクロイックプリズムや、正方形プ
リズムを4分割する2つの対角線面に別々の波長選択性
を付与した複合型ダイクロイックプリズムが採用される
が、ダイクロイックプリズムは波長選択性の急峻さでダ
イクロイックミラ−に劣り、複合型ダイクロイックプリ
ズムは対角線面の交差線に起因するフレアが画像の質を
落とすため、ダイクロイックミラ−を組合せて帯域選択
光学系および合成光学系を構成するのが好ましいとされ
ている。Here, the band selection element includes a dichroic mirror in which two or more thin film layers are formed on one surface of a glass substrate, and a dichroic prism in which two or more thin film layers are sandwiched at a bonding interface between two glass blocks. Alternatively, a composite type dichroic prism in which two diagonal surfaces that divide a square prism into four are provided with different wavelength selectivities is used. It is said that it is preferable to combine a dichroic mirror to form a band-selecting optical system and a combining optical system because flares caused by intersections of diagonal planes of a prism deteriorate image quality.
【0005】ダイクロイックミラ−を組合せた帯域選択
光学系は、例えば、白色光の光路に斜めに配置された短
波長(B)領域を反射して中長波長(GR)領域を透過
させる第1ダイクロイックミラ−と、第1ダイクロイッ
クミラ−の透過光の光路に斜めに配置された長波長
(R)領域を反射して中短波長(GB)領域を透過させ
る第2ダイクロイックミラ−とで構成される。このと
き、第1ダイクロイックミラ−では、斜め入射した白色
光から反射方向に青(B)原色光が分離され、第2ダイ
クロイックミラ−では、第1ダイクロイックミラ−を透
過して斜め入射した緑赤(GR)混合色光から反射方向
には赤(R)原色光、透過方向には緑(G)原色光がそ
れぞれ分離される(図1参照)。A band selection optical system in which a dichroic mirror is combined is, for example, a first dichroic that reflects a short wavelength (B) region obliquely arranged in the optical path of white light and transmits a medium and long wavelength (GR) region. A mirror and a second dichroic mirror that reflects a long wavelength (R) region and transmits a medium and short wavelength (GB) region obliquely arranged in the optical path of the transmitted light of the first dichroic mirror. .. At this time, in the first dichroic mirror, the blue (B) primary color light is separated in the reflection direction from the obliquely incident white light, and in the second dichroic mirror, the obliquely incident green red is transmitted through the first dichroic mirror. From the (GR) mixed color light, red (R) primary color light is separated in the reflection direction, and green (G) primary color light is separated in the transmission direction (see FIG. 1).
【0006】一方、ダイクロイックミラ−を組合せた合
成光学系は、例えば、青(B)原色画像の光路に斜めに
配置された長波長(R)領域を反射して中短波長(G
B)領域を透過させる第3ダイクロイックミラ−と、第
3ダイクロイックミラ−の後段に斜めに配置された中波
長(G)領域を反射して両側の長短波長(RB)領域を
透過させる第4ダイクロイックミラ−とで構成される。
このとき、第3ダイクロイックミラ−では、透過する青
(B)原色画像に、反射した赤(R)原色画像が合成さ
れ、第4ダイクロイックミラ−では、透過する青(B)
原色画像および赤(R)原色画像に、反射した緑(G)
原色画像が合成される(図1参照)。On the other hand, in a synthetic optical system in which a dichroic mirror is combined, for example, a long wavelength (R) region obliquely arranged in the optical path of a blue (B) primary color image is reflected to reflect a medium and short wavelength (G).
B) A third dichroic mirror that transmits the region, and a fourth dichroic that reflects the medium wavelength (G) region obliquely arranged in the subsequent stage of the third dichroic mirror and transmits the long and short wavelength (RB) regions on both sides. It consists of a mirror and.
At this time, in the third dichroic mirror, the reflected red (R) primary color image is combined with the transmitted blue (B) primary color image, and in the fourth dichroic mirror, the transmitted blue (B) primary color image is transmitted.
Reflected green (G) on primary color image and red (R) primary color image
The primary color images are combined (see FIG. 1).
【0007】[0007]
【発明が解決しようとする課題】ダイクロイックミラ−
を組合せて構成した帯域選択光学系では、透過光と反射
光の光路を分離するために、ダイクロイックミラ−が入
射光に対して斜めに配置されるが、ダイクロイックミラ
−は、斜め入射光のS偏光成分とP偏光成分に対して少
し異なる波長選択性を持ち、S偏光成分の透過光に対す
る波長選択性はP偏光成分の透過光に対する波長選択性
よりも狭帯域であり、その反面、P偏光成分の反射光に
対する波長選択性はS偏光成分の反射光に対する波長選
択性よりも狭帯域である。Problems to be Solved by the Invention Dichroic mirror
In the band selection optical system configured by combining the above, the dichroic mirror is obliquely arranged with respect to the incident light in order to separate the optical paths of the transmitted light and the reflected light. It has a slightly different wavelength selectivity for the polarized light component and the P polarized light component, and the wavelength selectivity for the transmitted light of the S polarized light component is narrower than the wavelength selectivity for the transmitted light of the P polarized light component. The wavelength selectivity of the component for reflected light is narrower than the wavelength selectivity of the S-polarized component for reflected light.
【0008】従って、短波長(B)領域を反射するダイ
クロイックミラ−で反射分離された青原色光のS偏光成
分は、P偏光成分に含まれない隣接波長領域の緑原色光
成分を含み、短波長(B)領域を反射するダイクロイッ
クミラ−で透過分離された緑赤混合色光のP偏光成分
は、S偏光成分に含まれない隣接波長領域の青原色光成
分を含む(図2参照)。また、長波長(R)領域を反射
するダイクロイックミラ−で反射分離された赤原色光の
S偏光成分は、P偏光成分に含まれない隣接波長領域の
緑原色光成分を含み、長波長(R)領域を反射するダイ
クロイックミラ−で透過分離された緑原色光のP偏光成
分は、S偏光成分に含まれない隣接波長領域の赤原色光
成分を含む(図3参照)。これにより、例えば、短波長
(B)領域を反射するダイクロイックミラ−と長波長
(R)領域を反射するダイクロイックミラ−を平行に配
置して分離された緑原色光(図1参照)は、そのP偏光
成分が青原色光成分を含み、かつ、そのS偏光成分が赤
原色光成分を含むという色純度の低い光となり、このま
ま3つの原色光を液晶画像素子に導いて原色画像を形成
させると、3つの原色画像の相互の色相差が不足して、
投射画像の色画質が低下するという問題がある。Therefore, the S-polarized component of the blue primary color light reflected and separated by the dichroic mirror that reflects the short wavelength (B) region includes the green primary color light component of the adjacent wavelength region which is not included in the P-polarized component, The P-polarized component of the green-red mixed color light that is transmitted and separated by the dichroic mirror that reflects the wavelength (B) region includes the blue primary color light component of the adjacent wavelength region that is not included in the S-polarized component (see FIG. 2). Further, the S-polarized component of the red primary color light reflected and separated by the dichroic mirror that reflects the long wavelength (R) region includes the green primary color light component of the adjacent wavelength region that is not included in the P polarized component, and the long wavelength (R ) The P-polarized light component of the green primary-color light that is transmitted and separated by the dichroic mirror that reflects the region includes the red-primary-color light component in the adjacent wavelength region that is not included in the S-polarized light component (see FIG. 3). Thereby, for example, the green primary color light (see FIG. 1) separated by arranging the dichroic mirror reflecting the short wavelength (B) region and the dichroic mirror reflecting the long wavelength (R) region in parallel is The P-polarized light component contains the blue primary-color light component, and the S-polarized light component contains the red primary-color light component, resulting in light with low color purity. If the three primary-color lights are guided to the liquid crystal image element as they are to form a primary-color image. Due to lack of mutual hue difference between the three primary color images,
There is a problem that the color quality of the projected image deteriorates.
【0009】すなわち、ダイクロイックミラ−等、帯域
選択素子における波長選択性を有する薄膜層は、斜め入
射光を構成する2つの偏光成分、つまり、界面と平行に
振動するS偏光成分と界面に垂直な面内で振動するP偏
光成分とに対して、少し異なった波長選択特性を示し、
斜め入射光の透過光については、S偏光成分よりもP偏
光成分のほうが長波長側でも短波長側でもより広い帯域
に渡って透過し、斜め入射光の反射光については、P偏
光成分よりもS偏光成分のほうが長波長側でも短波長側
でもより広い帯域に渡って反射する。従って、帯域選択
素子に白色光を斜め入射して3原色光に光路分割する
と、隣接する波長領域の2つの原色光の一方のS偏光成
分に他方のP偏光成分と共通する波長成分が含まれ、2
つの原色光の波長領域をクロスオ−バ−させて相互の色
相差を減少させる。That is, a thin film layer having wavelength selectivity in a band selection element such as a dichroic mirror has two polarization components constituting obliquely incident light, that is, an S polarization component vibrating in parallel with the interface and a component perpendicular to the interface. It shows a slightly different wavelength selection characteristic for the P-polarized component that oscillates in the plane,
Regarding the obliquely incident light transmitted light, the P-polarized light component is transmitted over a wider band on the long wavelength side and the short wavelength side than the S-polarized light component, and the obliquely incident light reflected light is more than the P-polarized light component. The S-polarized component is reflected over a wider band on both the long wavelength side and the short wavelength side. Therefore, when white light is obliquely incident on the band selection element and the optical path is divided into three primary color lights, one S polarization component of two primary color lights in adjacent wavelength regions contains a wavelength component common to the other P polarization component. Two
The wavelength regions of the two primary color lights are cross-overed to reduce the mutual hue difference.
【0010】また、実際の帯域選択素子の波長選択性
は、特定の波長で0%から100%に急に反転する理想
的なものではなく、20nm程度の幅の波長領域に渡って
徐々に透過率(反射率)が変化する(図2、図3参照)
もので、この20nm程度の幅の波長領域では1部分が反
射されて残りが透過する。従って、入射光のこの20nm
程度の幅の波長領域に相当する成分については、垂直入
射光の場合であっても反射光と透過光に共通に含まれて
しまい、隣接する波長領域の2つの原色光の色相差を減
少させる。Further, the wavelength selectivity of the actual band selection element is not an ideal one which is suddenly inverted from 0% to 100% at a specific wavelength, but is gradually transmitted over a wavelength range of about 20 nm. The rate (reflectance) changes (see FIGS. 2 and 3)
In this wavelength region having a width of about 20 nm, one part is reflected and the rest is transmitted. Therefore, this 20nm of incident light
A component corresponding to a wavelength region having a certain width is commonly included in reflected light and transmitted light even in the case of vertically incident light, and reduces the hue difference between two primary color lights in adjacent wavelength regions. ..
【0011】そして、共通な波長領域を含む相互に色相
差が不足した三原色光をそれぞれの液晶素子に導いて3
つの原色画像を形成すると、他の原色成分を含む色純度
の低い三原色を光混色した投影画像となり、これを同一
光軸に合成してスクリ−ン上に投射すると白っぽい彩度
を欠いた画像として観察される。Then, the light of the three primary colors including the common wavelength region and having insufficient hue differences is guided to the respective liquid crystal elements.
When one primary color image is formed, it becomes a projected image in which the three primary colors with low color purity including other primary color components are mixed, and when this is combined on the same optical axis and projected on the screen, it becomes an image lacking whitish saturation. To be observed.
【0012】本発明は、入射光を帯域選択素子に斜め入
射して隣接する2つの波長領域を分離するものの、分離
された2つの波長成分のそれぞれについて、S偏光成分
とP偏光成分の波長領域が一致し、また、帯域選択素子
の透過率(反射率)が徐々に変化する波長領域に相当す
る不必要な波長成分が分離された2つの波長成分の両方
から大部分除去され、従って、隣接する波長領域の2つ
の原色光の波長領域が相互に独立する帯域選択光学系を
提案し、これにより、三原色光の色純度が高まって高彩
度の投射画像を形成できる投射型カラ−表示装置を提供
することを目的としている。According to the present invention, incident light is obliquely incident on the band selection element to separate two adjacent wavelength regions, but for each of the two separated wavelength components, the wavelength regions of the S polarization component and the P polarization component are separated. And the unnecessary wavelength components corresponding to the wavelength region in which the transmittance (reflectance) of the band selection element gradually changes are largely removed from both of the separated two wavelength components, and therefore, A band selection optical system is proposed in which the wavelength regions of the two primary color lights in the same wavelength region are independent of each other, thereby providing a projection type color display device capable of increasing the color purity of the three primary color lights and forming a highly saturated projection image. The purpose is to do.
【0013】[0013]
【課題を解決するための手段】請求項1の投射型カラ−
表示装置は、白色光を発生して射出する光源と、射出さ
れた白色光から複数の原色成分を抽出する帯域選択光学
系と、それぞれの原色成分を用いて投影像の原色パタ−
ンを形成する複数の像表示素子とを有し、それぞれの原
色パタ−ンを同一光軸に合成して投射する投射型カラ−
表示装置において、前記帯域選択光学系は、入射光に対
して斜めに配置した所定の波長選択特性を有する第1反
射面と、第1反射面のP偏光反射成分をS偏光成分とし
て斜め入射させるように配置した第1反射面にほぼ等し
い波長選択特性の第2反射面と、を含むものである。A projection type color apparatus according to claim 1,
The display device includes a light source that emits white light and emits it, a band selection optical system that extracts a plurality of primary color components from the emitted white light, and a primary color pattern of a projected image using each primary color component.
And a plurality of image display elements forming an image, and projecting color for synthesizing respective primary color patterns on the same optical axis for projection.
In the display device, the band selection optical system causes a first reflection surface having a predetermined wavelength selection characteristic obliquely arranged with respect to incident light and a P-polarized reflection component of the first reflection surface to be obliquely incident as an S-polarization component. And a second reflecting surface having wavelength selection characteristics substantially equal to those of the first reflecting surface arranged as described above.
【0014】請求項2の投射型カラ−表示装置は、請求
項1の投射型カラ−表示装置において、第1反射面の透
過光を垂直入射させるように配置した透過型の帯域選択
フィルタ−と、該フィルタ−の前後に配置した、互いの
結晶光軸の方向を直角に交差させた一対のλ/4板と、
を設けたものである。A projection type color display device according to a second aspect is the projection type color display device according to the first aspect, further comprising a transmission type band selection filter arranged so that light transmitted through the first reflecting surface is vertically incident. A pair of λ / 4 plates arranged in front of and behind the filter and intersecting the directions of crystal optical axes at right angles to each other,
Is provided.
【0015】請求項3の投射型カラ−表示装置は、白色
光を発生して射出する光源と、射出された白色光から複
数の原色成分を抽出する帯域選択光学系と、それぞれの
原色成分を用いて投影像の原色パタ−ンを形成する複数
の像表示素子とを有し、それぞれの原色パタ−ンを同一
光軸に合成して投射する投射型カラ−表示装置におい
て、前記帯域選択光学系は、入射光に対して斜めに配置
した所定の波長選択特性を有する第1反射面と、第1反
射面の反射光を垂直入射させるように配置した透過型の
帯域選択フィルタ−と、該フィルタ−の前後に配置し
た、互いの結晶光軸方向を直角に組合せた一対のλ/4
板と、を含むものである。According to another aspect of the projection type color display device of the present invention, a light source for generating and emitting white light, a band selection optical system for extracting a plurality of primary color components from the emitted white light, and respective primary color components are provided. A projection type color display device having a plurality of image display elements for forming primary color patterns of a projected image by using each of the primary color patterns and projecting them on the same optical axis. The system includes a first reflection surface having a predetermined wavelength selection characteristic obliquely arranged with respect to incident light, a transmission type band selection filter arranged so that light reflected by the first reflection surface is vertically incident, and A pair of λ / 4 arranged at the front and rear of the filter and having their crystal optical axis directions combined at right angles.
And a board.
【0016】請求項4の投射型カラ−表示装置は、請求
項3の投射型カラ−表示装置において、第1反射面の透
過光を垂直入射させるように配置した透過型の帯域選択
フィルタ−と、該フィルタ−の前後に配置した、互いの
結晶光軸の方向を直角に交差させた一対のλ/4板と、
を設けたものである。A projection-type color display device according to a fourth aspect is the projection-type color display device according to the third aspect, further comprising a transmission-type band selection filter arranged so that the light transmitted through the first reflecting surface is vertically incident. A pair of λ / 4 plates arranged in front of and behind the filter and intersecting the directions of crystal optical axes at right angles to each other,
Is provided.
【0017】[0017]
【作用】請求項1の投射型カラ−表示装置では、ダイク
ロイックミラ−等の帯域選択素子が斜め入射光のS偏光
成分とP偏光成分とに対して異なる波長選択性を示す性
質を逆に利用して、分離された反射光の2つの偏光成分
の波長領域を揃える。すなわち、ほぼ等しい波長選択特
性を有する2枚の反射面(第1および第2)を用いて入
射光を2回反射させ、入射光の2つの偏光成分のそれぞ
れにS偏光成分としての反射とP偏光成分としての反射
とを1回づつ行わせ、第1反射面における反射光のS偏
光成分には含まれるがP偏光成分には含まれない波長領
域を、P偏光成分として入射させた第2反射面において
そのまま透過させて、第2反射面の反射光から排除す
る。In the projection type color display device of claim 1, the characteristic that the band selection element such as a dichroic mirror exhibits different wavelength selectivity for the S-polarized component and the P-polarized component of the obliquely incident light is used in reverse. Then, the wavelength regions of the two polarization components of the separated reflected light are aligned. That is, the incident light is reflected twice using two reflecting surfaces (first and second) having substantially the same wavelength selection characteristics, and the two polarization components of the incident light are reflected as S polarization component and P Reflection as a polarization component is performed once, and a wavelength region included in the S polarization component of the reflected light on the first reflection surface but not included in the P polarization component is incident as the P polarization component. The light is allowed to pass through the reflecting surface as it is, and is eliminated from the reflected light of the second reflecting surface.
【0018】波長領域の揃った2つの偏光成分からなる
第2反射面の反射光は、像表示素子に導かれて像表示素
子の透明不透明、反射非反射、偏光非偏光等に応じた投
影像の原色パタ−ンに変換される。それぞれの原色パタ
−ンは、その後、同一光軸に合成されて投射される。The reflected light from the second reflecting surface, which is composed of two polarization components having the same wavelength region, is guided to the image display element and projected image corresponding to transparent opacity, reflection non-reflection, polarization non-polarization, etc. of the image display element. Is converted to the primary color pattern. After that, the respective primary color patterns are combined and projected on the same optical axis.
【0019】請求項2の投射型カラ−表示装置では、第
1反射面の透過光について2つの偏光成分の波長領域を
揃える。第1反射面の反射光のS偏光成分がP偏光成分
に含まれない長波長領域を含むことの裏返しで、第1反
射面の透過光のP偏光成分はS偏光成分に含まれない波
長領域を含む。第1反射面の透過光が垂直入射する透過
型の帯域選択フィルタ−には、少なくとも第1反射面の
透過光のP偏光成分に固有に含まれる上述の波長領域を
反射できる波長選択性、すなわち、第1反射面を透過し
たS偏光成分とほぼ同等な波長領域を透過し、他の波長
領域は反射する波長選択性が設定され、第2反射面の反
射光の波長領域に重複または隣接する波長領域、すなわ
ち第2反射面で透過光として除去された波長領域を第1
反射面の透過光から除去する。透過型の帯域選択フィル
タ−を透過できない波長成分は垂直反射されて第1反射
面の裏面に向って折り返す。In the projection type color display device according to the second aspect, the wavelength regions of the two polarization components of the transmitted light of the first reflecting surface are aligned. Inside out, the S-polarized component of the reflected light of the first reflecting surface includes a long wavelength region that is not included in the P-polarized component, and the P-polarized component of the transmitted light of the first reflecting surface is a wavelength region that is not included in the S-polarized component. including. The transmission-type band selection filter in which the transmitted light of the first reflecting surface is vertically incident has a wavelength selectivity capable of reflecting at least the above-mentioned wavelength region uniquely included in the P-polarized component of the transmitted light of the first reflecting surface, that is, , The wavelength selectivity is set so that the S-polarized light component transmitted through the first reflecting surface is substantially equivalent to the S-polarized component and the other wavelength regions are reflected, and the wavelength selectivity of the reflected light on the second reflecting surface overlaps or is adjacent to the wavelength region. The wavelength range, that is, the wavelength range removed as the transmitted light on the second reflecting surface is the first
It is removed from the transmitted light on the reflecting surface. Wavelength components that cannot pass through the transmission band selection filter are vertically reflected and folded back toward the back surface of the first reflecting surface.
【0020】帯域選択フィルタ−で垂直反射された不必
要な波長成分は、そのまま放置すると入射光路を逆進し
て光源にまで達し、白熱状態のハロゲンランプ等を不必
要に加熱する結果となる。そこで、帯域選択フィルタ−
の前方に入射光の偏光面をλ/4回転して透過させるλ
/4板を配置して、帯域選択フィルタ−で垂直反射され
たP偏光成分の不必要な波長成分がP偏光成分のまま第
1反射面を再透過して入射光路を逆進しないようにして
いる。すなわち、第1反射面の透過光のP偏光成分に含
まれる不必要な波長成分は、帯域選択フィルタ−に入射
する前と反射された後に往復でλ/4板を透過して偏光
面を合計λ/2回転して、S偏光成分として第1反射面
に再入射する。第1反射面は、最初にP偏光成分として
透過させた不必要な波長成分を、再入射の際にはS偏光
成分として反射して光源に向う入射光路から排除する。The unnecessary wavelength component vertically reflected by the band selection filter, if left as it is, travels backward in the incident optical path to reach the light source, resulting in unnecessary heating of a halogen lamp or the like in an incandescent state. Therefore, the band selection filter
Λ / 4 of the plane of polarization of incident light in front of
/ 4 plate is arranged so that the unnecessary wavelength component of the P-polarized light component vertically reflected by the band selection filter is not re-transmitted through the first reflecting surface as the P-polarized light component and goes backward in the incident optical path. There is. That is, unnecessary wavelength components contained in the P-polarized light component of the transmitted light of the first reflecting surface are transmitted back and forth through the λ / 4 plate before and after being reflected by the band selection filter, and the total polarization plane is summed up. The light is rotated by λ / 2 and is re-incident on the first reflecting surface as an S-polarized component. The first reflecting surface reflects the unnecessary wavelength component that was initially transmitted as the P-polarized component as the S-polarized component at the time of re-incident and removes it from the incident optical path toward the light source.
【0021】一方、帯域選択フィルタ−の後方には、前
方のものとは結晶光軸の方向を直角に交差させたλ/4
板を配置して、帯域選択フィルタ−の透過光の偏光面の
回転を第1反射面の透過光の状態に戻し、λ/4板を用
いた偏光面の回転特性の波長依存性に起因する不都合を
取除いている。On the other hand, behind the band-selecting filter, λ / 4 is formed by intersecting the crystal optical axis at a right angle with the front one.
A plate is arranged to return the rotation of the polarization plane of the transmitted light of the band selection filter to the state of the transmitted light of the first reflection surface, which is caused by the wavelength dependence of the rotation characteristic of the polarization plane using the λ / 4 plate. Removing the inconvenience.
【0022】請求項3の投射型カラ−表示装置では、入
射光に対して斜めに配置された第1反射面の反射光のS
偏光成分に含まれる不必要な波長成分を透過型の帯域選
択フィルタ−を用いて除去する。第1反射面の反射光が
垂直入射する帯域選択フィルタ−は、この反射光の2つ
の偏光成分に対して等しい波長選択性を示し、帯域選択
フィルタ−には、少なくとも第1反射面の反射光の不必
要な波長成分を反射できるような波長選択性、すなわ
ち、少なくとも第1反射面の反射光のP偏光成分の波長
領域の外側を遮断できる波長選択性が設定され、第1反
射面の反射光のS偏光成分から、第1反射面の透過光の
P偏光成分の波長領域に重複または隣接する成分を垂直
に反射して分離し第1反射面に向って折り返す。In the projection type color display device of the third aspect, S of the reflected light of the first reflecting surface arranged obliquely with respect to the incident light.
Unwanted wavelength components contained in the polarized component are removed by using a transmission type band selection filter. The band selection filter on which the reflected light from the first reflecting surface is vertically incident exhibits equal wavelength selectivity to the two polarization components of the reflected light, and the band selecting filter has at least the reflected light on the first reflecting surface. Of the first reflection surface is set so that at least the outside of the wavelength region of the P-polarized component of the reflected light of the first reflection surface can be blocked. From the S-polarized component of the light, a component overlapping or adjacent to the wavelength region of the P-polarized component of the transmitted light of the first reflecting surface is vertically reflected, separated, and folded back toward the first reflecting surface.
【0023】ここで、第1反射面の反射による波長選択
性以上に狭帯域な波長選択性を帯域選択フィルタ−に設
定してもよい。このとき、第1反射面の透過光の波長領
域に隣接するやや広い波長領域が第1反射面の反射光か
ら不必要な波長成分もろとも除去され、分離された原色
光の色純度が高まるとともに、後段の像表示素子への熱
流入量が減る。Here, a wavelength selectivity narrower than the wavelength selectivity due to the reflection on the first reflection surface may be set in the band selection filter. At this time, a slightly wider wavelength region adjacent to the wavelength region of the transmitted light of the first reflecting surface is also removed from the reflected light of the first reflecting surface, including unnecessary wavelength components, and the color purity of the separated primary color light is increased. , The amount of heat flowing into the image display element in the subsequent stage is reduced.
【0024】帯域選択フィルタ−の第1反射面側に配置
されたλ/4板は、第1反射面で反射して帯域選択フィ
ルタ−に入射するS偏光成分に含まれる不必要な波長成
分の偏光面を往復で合計λ/2回転させ、第1反射面に
P偏光成分として再入射させる。第1反射面は、最初に
S偏光成分として反射させた不必要な波長成分を、再入
射の際にはP偏光成分としてそのまま透過させ、光源に
向う入射光路から排除する。一方、帯域選択フィルタ−
の射出側に配置されたλ/4板は、帯域選択フィルタ−
の透過光の偏光面の回転を第1反射面の反射光の状態に
戻し、λ/4板を用いた偏光面の回転特性の波長依存性
に起因する不都合を取除いている。The λ / 4 plate arranged on the first reflection surface side of the band selection filter has the unnecessary wavelength component contained in the S-polarized component reflected by the first reflection surface and incident on the band selection filter. The polarization plane is rotated back and forth for a total of λ / 2, and is re-incident on the first reflection surface as a P polarization component. The first reflection surface transmits the unnecessary wavelength component that was initially reflected as the S-polarized component as it is as the P-polarized component when re-incident, and eliminates it from the incident optical path toward the light source. On the other hand, band selection filter
The λ / 4 plate placed on the emission side of the
The rotation of the polarization plane of the transmitted light is returned to the state of the reflection light of the first reflection surface to eliminate the inconvenience caused by the wavelength dependence of the rotation characteristic of the polarization plane using the λ / 4 plate.
【0025】請求項4の投射型カラ−表示装置では、第
1反射面の透過光について2つの偏光成分の波長領域を
揃える。透過型の帯域選択フィルタ−には、第1反射面
の透過光のP偏光成分に固有に含まれる不必要な波長成
分を反射できる波長選択性が設定される。透過型の帯域
選択フィルタ−を透過できない波長成分は垂直反射され
て第1反射面の裏面に向って折り返す。In the projection type color display device according to the fourth aspect, the wavelength regions of the two polarization components of the transmitted light of the first reflecting surface are aligned. The transmissive band selection filter is set with wavelength selectivity capable of reflecting unnecessary wavelength components uniquely included in the P-polarized component of the transmitted light of the first reflecting surface. Wavelength components that cannot pass through the transmission band selection filter are vertically reflected and folded back toward the back surface of the first reflecting surface.
【0026】帯域選択フィルタ−の第1反射面側に配置
されたλ/4板は、入射光の偏光面をλ/4回転して透
過させ、P偏光成分に含まれる不必要な波長成分の偏光
面を往復で合計λ/2回転させ、第1反射面にS偏光成
分として再入射させる。第1反射面は、最初にP偏光成
分として透過させた不必要な波長成分を、再入射の際に
はS偏光成分として反射し、光源に向う入射光路から排
除する。一方、帯域選択フィルタ−の射出側に配置され
たλ/4板は、帯域選択フィルタ−の透過光の偏光面の
回転を第1反射面の反射光の状態に戻し、λ/4板を用
いた偏光面の回転特性の波長依存性に起因する不都合を
取除いている。The λ / 4 plate arranged on the side of the first reflection surface of the band selection filter rotates the polarization plane of the incident light by λ / 4 and transmits it, thereby eliminating unnecessary wavelength components contained in the P polarization component. The polarization plane is rotated back and forth for a total of λ / 2, and is re-incident on the first reflection surface as an S polarization component. The first reflection surface reflects the unnecessary wavelength component that was initially transmitted as the P-polarized component as the S-polarized component at the time of re-incident, and eliminates it from the incident optical path toward the light source. On the other hand, the λ / 4 plate arranged on the exit side of the band selection filter returns the rotation of the polarization plane of the transmitted light of the band selection filter to the state of the reflected light of the first reflection surface, and uses the λ / 4 plate. The inconvenience caused by the wavelength dependence of the rotation characteristic of the polarization plane is eliminated.
【0027】[0027]
【実施例】本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.
【0028】図1は第1実施例の投射型カラ−表示装置
の模式図、図2、図3、図4は図1におけるダイクロイ
ックミラ−の特性の線図である。ここでは、両方の偏光
成分に対して共通に透過非透過を反転するシャッタ−式
の像表示素子が採用され、帯域選択光学系と合成光学系
の両方をダイクロイックミラ−で構成して、共通な光源
から射出される白色光をRGBの三原色光に分離する投
射型カラ−表示装置が示される。図2、図3、図4の
(a) は反射による波長選択特性を、同(b) は透過による
波長選択特性をそれぞれ示す。FIG. 1 is a schematic view of the projection type color display device of the first embodiment, and FIGS. 2, 3 and 4 are characteristic diagrams of the dichroic mirror in FIG. Here, a shutter-type image display element that inverts transmission / non-transmission is commonly used for both polarization components, and both the band selection optical system and the combining optical system are configured by a dichroic mirror to provide a common image. A projection type color display device is shown which separates white light emitted from a light source into RGB primary colors. 2, FIG. 3, and FIG.
(a) shows the wavelength selection characteristics by reflection, and (b) shows the wavelength selection characteristics by transmission.
【0029】図1において、光源Lは、ハロゲンラン
プ、反射鏡、赤外線フィルタ−、レンズ等で構成され、
帯域選択光学系は、4枚のダイクロイックミラ−D1、
D2、D5、D6、5枚のミラ−M1、M3、M4、M
5、M6、2枚の帯域選択フィルタ−F1、F2、4枚
のλ/4板H1、H2、H3、H4で構成され、帯域選
択光学系で分離された青原色光学系B、赤原色光学系
R、緑原色光学系Gに、像表示素子E1、E2、E3が
それぞれ配置される。ここで、ダイクロイックミラ−D
5、D6は紙面から45度傾けて配置され、ミラ−M
5、M6はそれぞれダイクロイックミラ−D5、D6と
平行に対向させて配置される。In FIG. 1, the light source L is composed of a halogen lamp, a reflecting mirror, an infrared filter, a lens, etc.
The band selection optical system consists of four dichroic mirrors D1,
D2, D5, D6, 5 Mira-M1, M3, M4, M
5, M6, two band selection filters-F1, F2, four λ / 4 plates H1, H2, H3, H4, and a blue primary color optical system B and red primary color optics separated by a band selection optical system. Image display elements E1, E2, and E3 are arranged in the system R and the green primary color optical system G, respectively. Where dichroic mirror-D
5 and D6 are arranged at an angle of 45 degrees from the plane of the paper, and the Mira-M
5 and M6 are arranged to face the dichroic mirrors D5 and D6 in parallel, respectively.
【0030】ダイクロイックミラ−D1、D5は、図2
(a)、(b) に示すように、45度の入射光のP偏光成分に
対して470〜490nmの波長領域で透過率(反射率)
が直線的に変化する波長選択特性P、Sを有するが、4
5度の入射光のS偏光成分に対しては490〜510nm
の波長領域で透過率(反射率)が直線的に変化する波長
選択特性P、Sを有する。ダイクロイックミラ−D2、
D6は、図3(a)、(b)に示すように、45度の入射光の
S偏光成分に対して570〜590nmの波長領域で透過
率(反射率)が直線的に変化する波長選択特性を有する
が、45度の入射光のP偏光成分に対しては590〜6
10nmの波長領域で透過率(反射率)が直線的に変化す
る波長選択特性を有する。The dichroic mirrors D1 and D5 are shown in FIG.
As shown in (a) and (b), the transmittance (reflectance) in the wavelength region of 470 to 490 nm for the P-polarized component of the incident light of 45 degrees.
Has wavelength selection characteristics P and S that change linearly,
490-510 nm for S-polarized component of 5 degree incident light
The wavelength selection characteristics P and S in which the transmittance (reflectance) changes linearly in the wavelength region of. Dichroic Mira-D2,
As shown in FIGS. 3 (a) and 3 (b), D6 is a wavelength selection in which the transmittance (reflectance) changes linearly in the wavelength range of 570 to 590 nm with respect to the S-polarized component of the incident light of 45 degrees. Although it has characteristics, it is 590 to 6 for the P-polarized component of incident light of 45 degrees.
It has wavelength selection characteristics in which the transmittance (reflectance) changes linearly in the wavelength region of 10 nm.
【0031】帯域選択フィルタ−F1は、垂直入射光に
対して図2(a)、(b) の波長選択特性Sのような波長選択
特性を設定したもので、490〜510nmの波長領域で
透過率(反射率)が直線的に変化する。帯域選択フィル
タ−F2は、垂直入射光に対して図3(a)、(b) の波長選
択特性Sのような波長選択特性を設定したもので、57
0〜590nmの波長領域で透過率(反射率)が直線的に
変化する。The band selection filter F1 has a wavelength selection characteristic such as the wavelength selection characteristic S shown in FIGS. 2 (a) and 2 (b) for vertically incident light, and is transmitted in the wavelength range of 490 to 510 nm. The rate (reflectance) changes linearly. The band selection filter-F2 has a wavelength selection characteristic such as the wavelength selection characteristic S shown in FIGS. 3 (a) and 3 (b) for vertically incident light.
The transmittance (reflectance) changes linearly in the wavelength range of 0 to 590 nm.
【0032】合成光学系は、2枚のダイクロイックミラ
−D3、D4とミラ−M2とで構成され、合成光学系の
後段には投射レンズKが配置される。ダイクロイックミ
ラ−D3はダイクロイックミラ−D2と同じものであ
る。一方、ダイクロイックミラ−D4は、45度の入射
光に対して図4(a)、(b) の波長選択特性S、Pを設定し
たもので、500〜580nmの中波長(G)領域を反射
し、その両側の500nm以下の短波長(B)領域と58
0nm以上の長波長(R)領域を透過するが、透過光に関
しては、S偏光成分に対する波長選択特性SがP偏光成
分に対する波長選択特性Pよりも狭帯域で、一方、反射
光に関しては、P偏光成分に対する波長選択特性PがS
偏光成分に対する波長選択特性Sよりも狭帯域である。The synthesizing optical system is composed of two dichroic mirrors D3 and D4 and a mirror M2, and a projection lens K is arranged at the subsequent stage of the synthesizing optical system. The dichroic mirror-D3 is the same as the dichroic mirror-D2. On the other hand, the dichroic mirror D4 sets the wavelength selection characteristics S and P of FIGS. 4 (a) and 4 (b) for incident light of 45 degrees, and reflects the medium wavelength (G) region of 500 to 580 nm. And a short wavelength (B) region of 500 nm or less on both sides and 58
Although it transmits a long wavelength (R) region of 0 nm or more, for transmitted light, the wavelength selection characteristic S for the S polarization component is a narrower band than the wavelength selection characteristic P for the P polarization component, while for the reflected light, P The wavelength selection characteristic P for the polarization component is S
The band is narrower than the wavelength selection characteristic S for the polarization component.
【0033】このように構成された液晶プロジェクタ−
の帯域選択光学系では、光源Lから射出された白色光か
ら、ダイクロイックミラ−D1が短波長領域の青色光を
反射して青光学系Bに分離し、中長波長領域の緑赤混色
光を透過させる。緑赤混色光は、帯域選択フィルタ−F
1で不必要な波長成分を除かれた後にダイクロイックミ
ラ−D2に入射し、ダイクロイックミラ−D2が長波長
領域の赤色光を反射して赤光学系Rに分離し、中波長領
域の緑色光を透過させる。緑色光は、帯域選択フィルタ
−F2で不必要な波長成分を除かれた後にミラ−M1で
入射して反射し緑光学系に進む。A liquid crystal projector having the above structure
In the band selection optical system, the dichroic mirror-D1 reflects the blue light in the short wavelength region from the white light emitted from the light source L and separates it into the blue optical system B, and the green-red mixed light in the medium and long wavelength region is emitted. Make it transparent. Green-red mixed light is band selection filter -F
After the unnecessary wavelength component is removed by 1, it is incident on the dichroic mirror D2, the dichroic mirror D2 reflects the red light in the long wavelength region and separates it into the red optical system R, and the green light in the medium wavelength region is emitted. Make it transparent. The green light is filtered by the band selection filter F2 to remove unnecessary wavelength components, and then enters the mirror M1 to be reflected and travels to the green optical system.
【0034】一方、ダイクロイックミラ−D1の反射光
である青色光のS偏光成分は、470nm〜510nmの波
長領域に相当する不必要な波長成分を含むが、この不必
要な波長成分はP偏光成分としてダイクロイックミラ−
D5に入射し、図2(b) の波長選択特性Pに従ってダイ
クロイックミラ−D5をそのまま透過し、ミラ−M5を
経て像表示素子E1に向う青原色光から除去される。ま
た、ダイクロイックミラ−D2の反射光である赤色光の
S偏光成分は、570nm〜610nmの波長領域に相当す
る不必要な波長成分を含むが、この不必要な波長成分は
P偏光成分としてダイクロイックミラ−D6に入射し、
図3(b) の波長選択特性Pに従ってダイクロイックミラ
−D6をそのまま透過し、ミラ−M6を経て像表示素子
E2に向う赤原色光から除去される。On the other hand, the S-polarized component of the blue light, which is the reflected light of the dichroic mirror-D1, contains an unnecessary wavelength component corresponding to the wavelength region of 470 nm to 510 nm, and this unnecessary wavelength component is a P-polarized component. As a dichroic mirror
It is incident on D5, passes through the dichroic mirror D5 as it is according to the wavelength selection characteristic P of FIG. 2 (b), and is removed from the blue primary color light toward the image display element E1 via the mirror M5. Further, the S-polarized component of the red light which is the reflected light of the dichroic mirror-D2 includes an unnecessary wavelength component corresponding to the wavelength region of 570 nm to 610 nm, and this unnecessary wavelength component is a P-polarized component as a dichroic mirror. Incident on D6,
According to the wavelength selection characteristic P of FIG. 3 (b), it is transmitted through the dichroic mirror D6 as it is, and is removed from the red primary color light which is directed to the image display element E2 via the mirror M6.
【0035】ダイクロイックミラ−D1の透過光である
緑赤混色光のP偏光成分は、470nm〜510nmの波長
領域に相当する不必要な波長成分W1を含むが、波長成
分W1は、帯域選択フィルタ−F1に設定された図2
(a) の波長選択特性Sに従って垂直に反射されて、ダイ
クロイックミラ−D2に向う光路から除去される。帯域
選択フィルタ−F1に入射して垂直に反射される不必要
な波長成分W1は、λ/4板H1を往復で透過してその
偏光面をλ/2回転し、ダイクロイックミラ−D1にS
偏光成分として再入射し、図2(a) の波長選択特性Sに
従って直角に反射されて、光源Lに向う光路から除去さ
れる。一方、帯域選択フィルタ−F1を透過してダイク
ロイックミラ−D2に向う緑赤混色光はλ/4板H2を
透過してその偏光面を元に戻す。The P-polarized light component of the green-red mixed light which is the transmitted light of the dichroic mirror D1 includes an unnecessary wavelength component W1 corresponding to the wavelength region of 470 nm to 510 nm, and the wavelength component W1 is the band selection filter- Figure 2 set to F1
It is vertically reflected according to the wavelength selection characteristic S of (a) and is removed from the optical path toward the dichroic mirror D2. The unnecessary wavelength component W1 which is incident on the band selection filter F1 and is reflected vertically is transmitted back and forth through the λ / 4 plate H1 to rotate its polarization plane by λ / 2, and then is transmitted to the dichroic mirror D1 by S.
It is re-incident as a polarized component, is reflected at a right angle according to the wavelength selection characteristic S of FIG. 2 (a), and is removed from the optical path toward the light source L. On the other hand, the green-red mixed color light that passes through the band selection filter F1 and travels toward the dichroic mirror D2 passes through the λ / 4 plate H2 and returns its polarization plane.
【0036】ダイクロイックミラ−D2の透過光である
緑色光のP偏光成分は、570nm〜610nmの波長領域
に相当する不必要な波長成分W2を含むが、波長成分W
2は帯域選択フィルタ−F2に設定された図3(a) の波
長選択特性Sに従って垂直に反射され、ミラ−M1に向
う緑色光から除去される。帯域選択フィルタ−F2に入
射して垂直に反射される不必要な波長成分W2は、λ/
4板H3を往復で透過してその偏光面をλ/2回転し、
ダイクロイックミラ−D2にS偏光成分として再入射
し、図3(a) の波長選択特性Sに従って直角に反射され
て、光源Lに向う光路から除去される。一方、帯域選択
フィルタ−F2を透過してミラ−M1に向う緑色光はλ
/4板H4を透過してその偏光面を元に戻す。The P-polarized component of the green light which is the transmitted light of the dichroic mirror D2 includes an unnecessary wavelength component W2 corresponding to the wavelength region of 570 nm to 610 nm, but the wavelength component W
2 is reflected vertically according to the wavelength selection characteristic S of FIG. 3 (a) set in the band selection filter F2, and is removed from the green light toward the mirror M1. The unnecessary wavelength component W2 incident on the band selection filter -F2 and reflected vertically is λ /
4 The plate H3 is transmitted back and forth and its polarization plane is rotated by λ / 2,
It re-enters the dichroic mirror D2 as an S-polarized component, is reflected at a right angle according to the wavelength selection characteristic S of FIG. 3 (a), and is removed from the optical path toward the light source L. On the other hand, the green light passing through the band selection filter F2 and traveling toward the mirror M1 has a wavelength of λ
After passing through the / 4 plate H4, its polarization plane is restored.
【0037】像表示素子E1、E2、E3は、それぞれ
青、赤、緑の色制御信号に応じて画素の透過非透過を反
転して青、赤、緑の原色画像を形成する。像表示素子E
1による青の原色画像はミラ−M2で反射されて投射レ
ンズに進み、途中、ダイクロイックミラ−D3を通じて
像表示素子E2による赤の原色画像が、その後ダイクロ
イックミラ−D4を通じて像表示素子E3による緑の原
色画像が同一光軸に合成される。The image display elements E1, E2, E3 invert the transmission / non-transmission of the pixels in response to the blue, red, and green color control signals to form blue, red, and green primary color images. Image display element E
The blue primary color image by 1 is reflected by the mirror M2 and advances to the projection lens. On the way, the red primary color image by the image display element E2 is transmitted through the dichroic mirror D3, and then the green primary color image by the image display element E3 is transmitted through the dichroic mirror D4. The primary color images are combined on the same optical axis.
【0038】ところで、2枚の偏光板の間に液晶層を挟
込み、電圧信号で液晶の配向を変化させて透過非透過を
反転する形式の液晶表示素子を像表示素子E1、E2、
E3に採用する場合、液晶表示素子の入射側に位置する
偏光板を透過できない偏光成分は原色画像に関与でき
ず、液晶表示素子を無駄に加熱するだけであるから、光
源Lの段階でこの無用な偏光成分を遮断して除去しても
よい。さらに、この無用な偏光成分の偏光面をλ/2だ
け回転して、液晶表示素子の入射側に位置する偏光板を
透過可能な偏光成分に変換すれば、光源Lで発生する光
量のうち投射画像に利用される割合は倍増する。By the way, a liquid crystal display element of the type in which the liquid crystal layer is sandwiched between two polarizing plates and the transmission / non-transmission is inverted by changing the orientation of the liquid crystal by a voltage signal is used as the image display elements E1 and E2.
When adopted in E3, the polarization component that cannot pass through the polarizing plate located on the incident side of the liquid crystal display element cannot participate in the primary color image and only wastefully heats the liquid crystal display element. Such a polarized component may be blocked and removed. Further, if the polarization plane of this useless polarization component is rotated by λ / 2 to convert the polarization plate located on the incident side of the liquid crystal display element into a transmission-transmissible polarization component, the light amount generated by the light source L is projected. The percentage used for images doubles.
【0039】しかし、λ/4板やλ/2板のような透過
光学素子を用いて偏光成分の偏光面を回転すると、透過
光学素子における偏光面の回転特性の波長依存性によ
り、分離される各原色光の偏光面がずれてしまい、それ
ぞれの液晶表示素子を別々に位置決めする必要が生じ、
各原色光の中でも液晶表示素子の入射側に位置する偏光
板を透過できなくなる成分が発生して上記割合を低下さ
せる。そこで、入射光の波長とは無関係に偏光面を回転
できる方法として、反射面を組合せて光路を機械的にね
じる方法が採用できる。However, when the plane of polarization of the polarization component is rotated using a transmissive optical element such as a λ / 4 plate or a λ / 2 plate, it is separated due to the wavelength dependence of the rotation characteristic of the polarization plane in the transmissive optical element. The polarization plane of each primary color light is shifted, and it is necessary to position each liquid crystal display element separately,
Among the respective primary color lights, a component that cannot be transmitted through the polarizing plate located on the incident side of the liquid crystal display element is generated to reduce the above ratio. Therefore, as a method of rotating the polarization plane irrespective of the wavelength of incident light, a method of mechanically twisting the optical path by combining reflection surfaces can be adopted.
【0040】図5、図6は光源の模式図である。ここで
は、図1の光源の射出側に偏光ビ−ムスプリッタ−を配
置して一方の偏光成分だけを左方に取出し、反射面を組
合せた光学系でこの偏光成分の偏光面をλ/2回転し、
他方の偏光成分と並列に右方へ射出している。5 and 6 are schematic views of the light source. Here, a polarization beam splitter is arranged on the exit side of the light source in FIG. 1, only one polarization component is extracted to the left, and the polarization plane of this polarization component is λ / 2 in an optical system in which a reflection surface is combined. Rotate,
It is emitted rightward in parallel with the other polarization component.
【0041】図5において、その上面側に光源Lが配置
される立方体状の偏光ビ−ムスプリッタ−hの左面には
三角錐状の反射器jが、偏光ビ−ムスプリッタ−hの下
面にはミラ−iがそれぞれ接続される。反射器jは、偏
光ビ−ムスプリッタ−hと同寸法の立方体の各面に得ら
れる6等分割4角錐を底面で斜めに垂直2等分し、底面
以外の各面に反射面j1、j2、j3を形成し、反射面
j2で再び接合して元の4角錐に戻したもので、偏光ビ
−ムスプリッタ−hの分離面h1で分離されたS偏光成
分aを底面から入射させ、その光路を反射面j1、j
2、j3の組合せで機械的にねじってS偏光成分aをP
偏光成分cに変換する。その後、P偏光成分cは偏光ビ
−ムスプリッタ−hの分離面h1をそのまま透過して右
方向に射出する。ミラ−iは、偏光ビ−ムスプリッタ−
hの分離面h1を透過したP偏光成分bを反射面i1で
反射してP偏光成分bのまま右方に射出させる。In FIG. 5, a triangular pyramidal reflector j is provided on the left side of the cubic polarization beam splitter-h on which the light source L is arranged on the upper side, and a triangular pyramidal reflector j is provided on the lower side of the polarization beam splitter-h. Are connected to the respective mirrors i. The reflector j is formed by dividing a 6-divided quadrangular pyramid obtained on each surface of a cube having the same size as the polarizing beam splitter-h into two diagonally perpendicularly divided parts on the bottom surface, and reflecting surfaces j1 and j2 on each surface other than the bottom surface. , J3 are formed and joined again at the reflection surface j2 to return to the original quadrangular pyramid, and the S-polarized component a separated at the separation surface h1 of the polarization beam splitter-h is made incident from the bottom surface. Set the optical path to the reflective surface j1, j
By mechanically twisting the combination of 2 and j3, the S-polarized component a
It is converted into the polarized component c. After that, the P-polarized component c is directly transmitted through the separation surface h1 of the polarization beam splitter-h and is emitted to the right. Mira-i is a polarization beam splitter
The P-polarized light component b transmitted through the separation surface h1 of h is reflected by the reflection surface i1 and is emitted to the right as it is as the P-polarized light component b.
【0042】図6において、その上面側に光源Lが配置
される立方体状の偏光ビ−ムスプリッタ−hの左面には
三角錐状の反射器kが、偏光ビ−ムスプリッタ−hの下
面にはミラ−iがそれぞれ接続される。反射器kは、偏
光ビ−ムスプリッタ−hの正方形の面の対角線を一辺と
する正方形を底面とする6等分割4角錐を、さらに底面
で4分割したものを2個、偏光ビ−ムスプリッタ−hの
正方形の面の対角線を谷にして対向させたもので、偏光
ビ−ムスプリッタ−hとの接合面以外の各面に反射面k
1、k2、k3が形成される。反射器kは、偏光ビ−ム
スプリッタ−hの分離面h1で分離されたS偏光成分a
を底面から入射させ、その光路を反射面k1、k2、k
3の組合せで機械的にねじってS偏光成分aをP偏光成
分cに変換する。その後、P偏光成分cは偏光ビ−ムス
プリッタ−hの分離面h1を透過して右方向に射出す
る。ミラ−iは、偏光ビ−ムスプリッタ−hの分離面h
1を透過したP偏光成分bを反射面i1で反射してP偏
光成分bのまま右方に射出させる。In FIG. 6, a triangular pyramidal reflector k is provided on the left side of the cubic polarization beam splitter-h on which the light source L is arranged on the upper side thereof, and a triangular pyramidal reflector k is provided on the lower side of the polarization beam splitter-h. Are connected to the respective mirrors i. The reflector k is a six-divided quadrangular pyramid having a square base having a diagonal line on one side of the square surface of the polarization beam splitter-h as the base, and two pieces further divided into four by the bottom surface. -H square surfaces are made to face each other with their diagonals being valleys, and each surface other than the bonding surface with the polarizing beam splitter-h has a reflecting surface k.
1, k2, k3 are formed. The reflector k is the S-polarized component a separated by the separation surface h1 of the polarization beam splitter-h.
Is incident from the bottom surface, and its optical path is reflected on the reflecting surfaces k1, k2, k.
The combination of 3 mechanically twists to convert the S-polarized component a into the P-polarized component c. After that, the P-polarized component c passes through the separation surface h1 of the polarization beam splitter-h and is emitted rightward. The mirror i is a separation surface h of the polarization beam splitter-h.
The P-polarized light component b that has passed through 1 is reflected by the reflecting surface i1 and is emitted to the right as it is as the P-polarized light component b.
【0043】このように構成された図5、図6の光源で
は、光源Lからの射出光nを偏光ビ−ムスプリッタ−h
に入射させ、P偏光成分bについてはミラ−iを介して
P偏光成分bのまま右方に射出させるが、S偏光成分a
については、反射器j、kを用いてP偏光成分cに変換
した後に右方に射出させる。In the light source shown in FIGS. 5 and 6 having the above-described structure, the light n emitted from the light source L is polarized by the polarization beam splitter-h.
And the P-polarized component b is emitted to the right as it is as the P-polarized component b via the mirror i.
With respect to, the light is converted to the P-polarized component c using the reflectors j and k and then emitted to the right.
【0044】図7は第2実施例の液晶プロジェクタ−の
模式図、図8は図7における光路の説明図、図9は図7
における青原色光の光路の斜視図、図10は図7におけ
る赤原色光の光路の斜視図、図11は図7における緑原
色光の光路の斜視図である。ここでは、RGBの各原色
光をそれぞれ2つの偏光成分に分離して別々の液晶表示
素子に入射させており、各偏光成分に対応する液晶表示
素子に視角の異なる2種類の画像を表示し、左目と右目
で偏光方向を90度異ならせた偏光眼鏡を装着して投射
画像を観察すれば、左目と右目に視角の異なる2種類の
カラ−投射画像が入射し、投射画像をカラ−立体画像と
して認識できる。また、各偏光成分に対応する液晶表示
素子に同じ画像を表示すれば、一方の偏光成分しか透過
できない液晶表示素子を使用した場合でも投射画像の明
るさが倍増する。FIG. 7 is a schematic view of the liquid crystal projector of the second embodiment, FIG. 8 is an explanatory view of the optical path in FIG. 7, and FIG. 9 is FIG.
10 is a perspective view of an optical path of blue primary color light in FIG. 10, FIG. 10 is a perspective view of an optical path of red primary color light in FIG. 7, and FIG. 11 is a perspective view of an optical path of green primary color light in FIG. Here, each of the RGB primary color lights is separated into two polarization components and made incident on different liquid crystal display elements, and two types of images with different viewing angles are displayed on the liquid crystal display elements corresponding to the respective polarization components. When the projection image is observed by wearing the polarized glasses in which the polarization directions of the left eye and the right eye are different by 90 degrees, two types of color projection images with different viewing angles are incident on the left eye and the right eye, and the projection image is a color stereoscopic image. Can be recognized as. Further, when the same image is displayed on the liquid crystal display element corresponding to each polarization component, the brightness of the projected image is doubled even when the liquid crystal display element which can transmit only one polarization component is used.
【0045】図7、図8において、液晶プロジェクタ−
の帯域選択光学系と液晶表示素子と合成光学系は、単位
の立方体を2列、3行、2段に組合せた直方体状の外観
を呈し、光源Lから射出される白色光は下段左手前の単
位に入射し、投射レンズKに向う合成された三原色画像
は上段右奥の単位から出力される。この直方体状の光学
系は、液晶表示素子10L、11L、12Lと液晶表示
素子10R、11R、12Rを1つづつ接合した偏光ビ
−ムスプリッタ−1、2、3、ダイクロイックミラ−
4、5、6、7、8、ミラ−9を有する。7 and 8, a liquid crystal projector
The band selection optical system, the liquid crystal display element, and the composite optical system have a rectangular parallelepiped appearance in which unit cubes are combined in two columns, three rows, and two stages, and the white light emitted from the light source L is on the lower left front side. The combined three-primary-color image which is incident on the unit and goes toward the projection lens K is output from the unit at the far right of the upper stage. This rectangular parallelepiped optical system includes polarizing beam splitters-1, 2, 3 and dichroic mirrors in which liquid crystal display elements 10L, 11L, 12L and liquid crystal display elements 10R, 11R, 12R are joined one by one.
4, 5, 6, 7, 8 and Mira-9.
【0046】液晶表示素子10L、11L、12L、1
0R、11R、12Rは反射型偏光変調を行うもので、
画像表示の各画素について入射光のλ/2偏光と非偏光
を任意に設定でき、λ/2偏光に設定された画素を経た
反射光では、S偏光成分がP偏光成分へ、P偏光成分が
S偏光成分へとそれぞれ変換される。液晶表示素子10
L、11L、12Lと、液晶表示素子10R、11R、
12Rは、分離面1H、2H、3Hを挟む偏光ビ−ムス
プリッタ−1、2、3の2つの面に配置されており、P
偏光成分を透過してS偏光成分を透過する偏光ビ−ムス
プリッタ−1、2、3は、液晶表示素子10L、11
L、12L、10R、11R、12Rにおけるλ/2偏
光に設定された画素を経た反射光だけを、最初の入射光
とは直角な方向に取り出す。Liquid crystal display elements 10L, 11L, 12L, 1
0R, 11R, and 12R perform reflection-type polarization modulation,
For each pixel of the image display, λ / 2 polarized light and non-polarized light of the incident light can be arbitrarily set, and in the reflected light passing through the pixel set to λ / 2 polarized light, the S-polarized component becomes the P-polarized component and the P-polarized component becomes the P-polarized component. Each is converted into an S-polarized component. Liquid crystal display element 10
L, 11L, 12L and liquid crystal display elements 10R, 11R,
12R is arranged on two surfaces of the polarization beam splitters-1, 2 and 3 which sandwich the separation surfaces 1H, 2H and 3H, and P
The polarization beam splitters-1, 2 and 3 that transmit the polarization component and the S-polarization component are liquid crystal display elements 10L and 11L, respectively.
Only reflected light that has passed through the pixels set to λ / 2 polarization in L, 12L, 10R, 11R, and 12R is extracted in a direction perpendicular to the first incident light.
【0047】液晶表示素子10L、11L、12Lに
は、分離面1H、2H、3Hで反射されたS偏光成分が
入射し、λ/2偏光に設定された画素を経た反射光だけ
がP偏光成分として分離面1H、2H、3Hをそのまま
透過して最初の入射光とは直角な方向に進む。一方、液
晶表示素子10R、11R、12Rには、分離面1H、
2H、3Hを透過したP偏光成分が入射し、λ/2偏光
に設定された画素を経た反射光だけがS偏光成分として
分離面1H、2H、3Hで反射され最初の入射光とは直
角な方向に進む。The S-polarized light components reflected by the separation surfaces 1H, 2H, 3H are incident on the liquid crystal display elements 10L, 11L, 12L, and only the reflected light passing through the pixels set to the λ / 2 polarization is the P-polarized light component. As a result, the light passes through the separation surfaces 1H, 2H, and 3H as they are and travels in a direction perpendicular to the first incident light. On the other hand, the liquid crystal display elements 10R, 11R, and 12R have separation surfaces 1H,
The P-polarized light component transmitted through 2H and 3H is incident, and only the reflected light passing through the pixel set to λ / 2 polarized light is reflected as the S-polarized light component on the separation surfaces 1H, 2H, and 3H and is orthogonal to the first incident light. Go in the direction.
【0048】また、ダイクロイックミラ−4、5は図2
の波長選択特性、ダイクロイックミラ−6、7は図3の
波長選択特性、ダイクロイックミラ−8は図4の波長選
択特性をそれぞれ有する。The dichroic mirrors-4 and 5 are shown in FIG.
3, the dichroic mirrors 6 and 7 have the wavelength selection characteristics of FIG. 3, and the dichroic mirror-8 has the wavelength selection characteristics of FIG.
【0049】このように構成された液晶プロジェクタ−
において、光源Lから射出した白色光からは、ダイクロ
イックミラ−4では青色光が奥側に、ダイクロイックミ
ラ−6では赤色光が上方にそれぞれ分離され、残りの緑
色光がそのまま偏光ビ−ムスプリッタ−3に入射する。
一方、青色光はダイクロイックミラ−5で反射されて上
段に進んで偏光ビ−ムスプリッタ−1に入射し、赤色光
はそのまま上段に進んで偏光ビ−ムスプリッタ−2に入
射する。A liquid crystal projector having such a configuration
In the white light emitted from the light source L, in the dichroic mirror-4, the blue light is separated to the back side, in the dichroic mirror-6, the red light is separated to the upper side, and the remaining green light is directly converted to the polarization beam splitter. It is incident on 3.
On the other hand, the blue light is reflected by the dichroic mirror-5 and travels to the upper stage to enter the polarization beam splitter-1, while the red light directly travels to the upper stage and enters the polarization beam splitter-2.
【0050】偏光ビ−ムスプリッタ−1に入射した青原
色光は液晶表示素子10L、10Rの表示画像に応じた
2つの原色画像に、偏光ビ−ムスプリッタ−2に入射し
た赤原色光は液晶表示素子11L、11Rの表示画像に
応じた2つの原色画像に、偏光ビ−ムスプリッタ−3に
入射した緑原色光は液晶表示素子12L、12Rの表示
画像に応じた2つの原色画像に変換される。そして、偏
光ビ−ムスプリッタ−1から右方に出力される2つの青
原色画像に対して、ダイクロイックミラ−7では、偏光
ビ−ムスプリッタ−1から奥側に出力される2つの赤原
色画像が合成され、ダイクロイックミラ−8では、偏光
ビ−ムスプリッタ−3から奥側に出力された後にミラ−
9で反射されて上方に進む2つの緑原色画像が合成さ
れ、合計6つの原色画像が投射レンズに入射する。The blue primary color light incident on the polarization beam splitter-1 is divided into two primary color images corresponding to the display images on the liquid crystal display elements 10L and 10R, and the red primary color light incident on the polarization beam splitter-2 is the liquid crystal. The two primary color images corresponding to the display images of the display elements 11L and 11R, and the green primary color light incident on the polarization beam splitter-3 are converted into two primary color images corresponding to the display images of the liquid crystal display elements 12L and 12R. It Then, in the dichroic mirror-7, the two blue primary color images output to the right from the polarization beam splitter-1 are two red primary color images output to the back from the polarization beam splitter-1. Are combined, and in the dichroic mirror-8, after being output from the polarization beam splitter-3 to the back side, the mirror
Two green primary color images reflected at 9 and traveling upward are combined, and a total of six primary color images are incident on the projection lens.
【0051】次に、図9、図10、図11を用いて、第
2実施例の液晶プロジェクタ−における各原色光の狭帯
域化、および不必要な波長成分の処理について説明す
る。Next, with reference to FIGS. 9, 10, and 11, the narrowing of the band of each primary color light and the processing of unnecessary wavelength components in the liquid crystal projector of the second embodiment will be described.
【0052】図9において、ダイクロイックミラ−4、
5は等しい波長選択特性を有し、第1実施例の場合と同
様に、ダイクロイックミラ−4で反射したS偏光成分に
含まれる不必要な波長成分をP偏光成分としてダイクロ
イックミラ−5に入射させて今度は透過させ、ダイクロ
イックミラ−5で反射して偏光ビ−ムスプリッタ−1に
向う青原色光から除去する。In FIG. 9, dichroic mirror-4,
No. 5 has the same wavelength selection characteristic, and as in the case of the first embodiment, unnecessary wavelength components contained in the S-polarized component reflected by the dichroic mirror-4 are made incident on the dichroic mirror-5 as P-polarized component. This time, the light is transmitted, reflected by the dichroic mirror-5, and removed from the blue primary color light which is directed to the polarization beam splitter-1.
【0053】図10において、ダイクロイックミラ−4
の背面側に配置される帯域選択器14bは、ダイクロイ
ックミラ−4が45度の斜め入射光のS偏光成分に対し
て持つ透過の波長選択特性を垂直入射光に対して発揮す
る透過型の帯域選択フィルタ−と、帯域選択フィルタ−
の前後に配置されて相互に結晶方向を90度ずらせた1
対のλ/4板とを含む。一方、ダイクロイックミラ−6
の上方に配置される帯域選択器14rは、ダイクロイッ
クミラ−6が45度の斜め入射光のP偏光成分に対して
持つ反射の波長選択特性を垂直入射光に対して発揮する
透過型の帯域選択フィルタ−と、帯域選択フィルタ−の
前後に配置されて相互に結晶方向を90度ずらせた1対
のλ/4板とを含む。In FIG. 10, the dichroic mirror-4
The band selector 14b arranged on the back side of the transmission type is a transmissive band that exhibits the wavelength selection characteristic of transmission that the dichroic mirror-4 has with respect to the S-polarized component of the obliquely incident light of 45 degrees with respect to the vertically incident light. Selection filter-and band selection filter-
They are placed in front of and behind, and have their crystal directions shifted 90 degrees from each other.
A pair of λ / 4 plates. On the other hand, dichroic mirror-6
Is a transmission-type band selection device that exhibits the wavelength selection characteristic of reflection that the dichroic mirror 6 has for the P-polarized component of the 45 ° obliquely incident light to the vertically incident light. It includes a filter and a pair of λ / 4 plates arranged before and after the band selection filter and having crystal directions thereof shifted by 90 degrees.
【0054】このように構成された赤原色光を分離する
光学系では、まず、ダイクロイックミラ−4を透過した
赤緑混色光が帯域選択器14bを透過する際に、P偏光
成分に含まれる不必要な波長成分が反射されてダイクロ
イックミラ−6へ向う赤緑混色光から除去される。この
不必要な波長成分は、帯域選択器14bの入射側のλ/
4板を往復で透過して偏光面をλ/2回転して、S偏光
成分としてダイクロイックミラ−4に再入射して反射さ
れ、光源に向う光路から除去される。帯域選択器14b
を透過した赤緑混色光は、次に、ダイクロイックミラ−
6に入射して長波長領域側の成分(赤色光)だけが上方
に反射されて、帯域選択器14rに入射する。ダイクロ
イックミラ−6の反射光のS偏光成分に含まれる不必要
な波長成分、すなわち、図3(a) の2つの波長選択特性
P、Sのずれ部分に相当し、透過光のP偏光成分にも共
通して含まれる不必要な波長成分は、帯域選択器14r
で反射されるとともに偏光面をλ/2回転し、P偏光成
分としてダイクロイックミラ−6に再入射してそのまま
透過して、光源に向う光路から除去される。In the optical system for separating the red primary color light thus constructed, first, when the red-green mixed color light transmitted through the dichroic mirror-4 is transmitted through the band selector 14b, it is included in the P polarization component. The necessary wavelength components are reflected and removed from the red-green mixed light traveling toward the dichroic mirror-6. This unnecessary wavelength component is λ / on the incident side of the band selector 14b.
The light is transmitted back and forth through the four plates, the polarization plane is rotated by λ / 2, re-incident on the dichroic mirror-4 as an S-polarized component, reflected, and removed from the optical path toward the light source. Band selector 14b
The red-green mixed light that has passed through is then transmitted to the dichroic mirror.
6, and only the component (red light) on the long wavelength region side is reflected upward and enters the band selector 14r. An unnecessary wavelength component included in the S-polarized component of the reflected light of the dichroic mirror-6, that is, the shift portion between the two wavelength selection characteristics P and S in FIG. 3A, corresponds to the P-polarized component of the transmitted light. The unnecessary wavelength component included in common is the band selector 14r.
At the same time, the polarization plane is rotated by λ / 2, re-incident on the dichroic mirror 6 as a P-polarized component, transmitted as it is, and removed from the optical path toward the light source.
【0055】図11において、ダイクロイックミラ−6
の背面側に配置される帯域選択器14gは、ダイクロイ
ックミラ−6が45度の斜め入射光のS偏光成分に対し
て持つ透過の波長選択特性を垂直入射光に対して発揮す
る透過型の帯域選択フィルタ−と、帯域選択フィルタ−
の前後に配置されて相互に結晶方向を90度ずらせた1
対のλ/4板とを含む。In FIG. 11, the dichroic mirror-6
The band selector 14g disposed on the back side of the is a transmissive band that exhibits the wavelength selection characteristic of transmission that the dichroic mirror-6 has with respect to the S-polarized component of the obliquely incident light of 45 degrees with respect to the vertically incident light. Selection filter-and band selection filter-
They are placed in front of and behind, and have their crystal directions shifted 90 degrees from each other.
A pair of λ / 4 plates.
【0056】このように構成された緑色光の光学系で
は、ダイクロイックミラ−6を透過した緑色光が帯域選
択器14gを透過する際に、P偏光成分に含まれる不必
要な波長成分が反射されて偏光ビ−ムスプリッタ−3へ
向う緑色光から除去される。この不必要な波長成分は、
帯域選択器14gの入射側のλ/4板を往復で透過して
偏光面をλ/2回転して、S偏光成分としてダイクロイ
ックミラ−6に再入射して反射され、光源に向う光路か
ら除去される。In the green light optical system thus constructed, unnecessary wavelength components contained in the P polarization component are reflected when the green light transmitted through the dichroic mirror-6 is transmitted through the band selector 14g. And is removed from the green light going to the polarization beam splitter-3. This unnecessary wavelength component is
It is transmitted back and forth through the λ / 4 plate on the incident side of the band selector 14g, rotates the polarization plane by λ / 2, and is re-incident on the dichroic mirror 6 as an S-polarized component, reflected and removed from the optical path toward the light source. To be done.
【0057】[0057]
【発明の効果】請求項1の投射型カラ−表示装置によれ
ば、第1反射面で反射された原色光または混色光につい
て、P偏光成分とS偏光成分の波長領域が等しくなり、
ダイクロイックミラ−等、帯域選択素子における偏光成
分の違いによる帯域選択特性のずれが問題にならなくな
る。また、図6のような立体的な光学系では、ダイクロ
イックミラ−の後段の適当な反射面をダイクロイックミ
ラ−に置換えるだけで実施できる。According to the projection type color display device of the first aspect, the wavelength regions of the P-polarized component and the S-polarized component of the primary color light or the mixed color light reflected by the first reflecting surface are equal,
The deviation of the band selection characteristic due to the difference in the polarization component in the band selection element such as the dichroic mirror does not pose a problem. Further, in the three-dimensional optical system as shown in FIG. 6, it can be carried out only by substituting an appropriate reflecting surface after the dichroic mirror for the dichroic mirror.
【0058】請求項2の投射型カラ−表示装置によれ
ば、第1反射面の透過光に含まれる不必要な波長成分が
除去されるから、第1反射面で分離された隣接する波長
領域の2つの原色光の波長領域が相互に独立して色純度
が高まるため、高彩度の投射画像を形成できる。According to the projection type color display device of the second aspect, since unnecessary wavelength components contained in the transmitted light of the first reflecting surface are removed, adjacent wavelength regions separated by the first reflecting surface are removed. Since the wavelength regions of the two primary color lights are independent of each other and the color purity is increased, a projection image with high saturation can be formed.
【0059】請求項3の投射型カラ−表示装置によれ
ば、第1反射面で反射された原色光または混色光につい
て、P偏光成分とS偏光成分の波長領域が等しくなり、
ダイクロイックミラ−等、帯域選択素子における偏光成
分の違いによる帯域選択特性のずれが問題にならなくな
る。According to the projection type color display device of the third aspect, the wavelength regions of the P-polarized component and the S-polarized component are equal in the primary color light or the mixed color light reflected by the first reflecting surface,
The deviation of the band selection characteristic due to the difference in the polarization component in the band selection element such as the dichroic mirror does not pose a problem.
【0060】請求項4の投射型カラ−表示装置によれ
ば、第1反射面の透過光に含まれる不必要な波長成分が
除去されるから、第1反射面で分離された隣接する波長
領域の2つの原色光の波長領域が相互に独立して色純度
が高まるため、高彩度の投射画像を形成できる。According to the projection type color display device of the fourth aspect, since unnecessary wavelength components contained in the transmitted light of the first reflecting surface are removed, adjacent wavelength regions separated by the first reflecting surface are removed. Since the wavelength regions of the two primary color lights are independent of each other and the color purity is increased, a projection image with high saturation can be formed.
【図1】第1実施例の投射型カラ−表示装置の模式図で
ある。FIG. 1 is a schematic diagram of a projection type color display device according to a first embodiment.
【図2】図1におけるダイクロイックミラ−の帯域選択
特性の線図である。FIG. 2 is a diagram showing band selection characteristics of the dichroic mirror in FIG.
【図3】図1における別のダイクロイックミラ−の帯域
選択特性の線図である。FIG. 3 is a diagram of band selection characteristics of another dichroic mirror in FIG.
【図4】図1における別のダイクロイックミラ−の帯域
選択特性の線図である。4 is a diagram of band selection characteristics of another dichroic mirror in FIG. 1. FIG.
【図5】図1における光源の変形例の模式図である。5 is a schematic diagram of a modified example of the light source in FIG.
【図6】図1における光源の別の変形例の模式図であ
る。FIG. 6 is a schematic view of another modification of the light source in FIG.
【図7】第2実施例の液晶プロジェクタ−の模式図であ
る。FIG. 7 is a schematic diagram of a liquid crystal projector according to a second embodiment.
【図8】図6の光学系の説明図である。8 is an explanatory diagram of the optical system in FIG.
【図9】図6における青原色光の光学系の斜視図であ
る。9 is a perspective view of an optical system for blue primary color light in FIG.
【図10】図6における赤原色光の光学系の斜視図であ
る。10 is a perspective view of an optical system for red primary color light in FIG.
【図11】図6における緑原色光の光学系の斜視図であ
る。11 is a perspective view of an optical system for green primary color light in FIG.
B 青原色光の光学系 G 緑原色光の光学系 R 赤原色光の光学系 K 投射レンズ L 光源 E1 像表示素子 D1 ダイクロイックミラ− D5 ダイクロイックミラ− M1 ミラ− F1 帯域選択フィルタ− H1 λ/4板 H2 λ/4板 B Optical system for blue primary color G Optical system for green primary color R Optical system for red primary color K Projection lens L Light source E1 Image display device D1 Dichroic mirror-D5 Dichroic mirror-M1 Mira-F1 Band selection filter-H1 λ / 4 Plate H2 λ / 4 plate
Claims (4)
された白色光から複数の原色成分を抽出する帯域選択光
学系と、それぞれの原色成分を用いて投影像の原色パタ
−ンを形成する複数の像表示素子とを有し、それぞれの
原色パタ−ンを同一光軸に合成して投射する投射型カラ
−表示装置において、前記帯域選択光学系は、入射光に
対して斜めに配置した所定の波長選択特性を有する第1
反射面と、第1反射面のP偏光反射成分をS偏光成分と
して斜め入射させるように配置した第1反射面にほぼ等
しい波長選択特性の第2反射面と、を含むことを特徴と
する投射型カラ−表示装置。1. A light source for generating and emitting white light, a band selection optical system for extracting a plurality of primary color components from the emitted white light, and a primary color pattern of a projected image using each primary color component. In a projection type color display device having a plurality of image display elements to be formed and synthesizing and projecting respective primary color patterns on the same optical axis, the band selection optical system is oblique to the incident light. Arranged first having a predetermined wavelength selection characteristic
A projection including: a reflecting surface; and a second reflecting surface having a wavelength selection characteristic substantially equal to that of the first reflecting surface arranged so that the P-polarized reflection component of the first reflecting surface is obliquely incident as the S-polarized component. Type color display device.
て、第1反射面の透過光を垂直入射させるように配置し
た透過型の帯域選択フィルタ−と、該フィルタ−の前後
に配置した、互いの結晶光軸の方向を直角に交差させた
一対のλ/4板と、を設けたことを特徴とする投射型カ
ラ−表示装置。2. The projection type color display device according to claim 1, wherein a transmission type band selection filter is arranged so that the transmitted light of the first reflection surface is vertically incident, and is arranged before and after the filter. A projection type color display device, comprising: a pair of λ / 4 plates in which the directions of the crystal optical axes intersect each other at a right angle.
された白色光から複数の原色成分を抽出する帯域選択光
学系と、それぞれの原色成分を用いて投影像の原色パタ
−ンを形成する複数の像表示素子とを有し、それぞれの
原色パタ−ンを同一光軸に合成して投射する投射型カラ
−表示装置において、前記帯域選択光学系は、入射光に
対して斜めに配置した所定の波長選択特性を有する第1
反射面と、第1反射面の反射光を垂直入射させるように
配置した透過型の帯域選択フィルタ−と、該フィルタ−
の前後に配置した、互いの結晶光軸方向を直角に組合せ
た一対のλ/4板と、を含むことを特徴とする投射型カ
ラ−表示装置。3. A light source for generating and emitting white light, a band selection optical system for extracting a plurality of primary color components from the emitted white light, and a primary color pattern of a projected image using each primary color component. In a projection type color display device having a plurality of image display elements to be formed and synthesizing and projecting respective primary color patterns on the same optical axis, the band selection optical system is oblique to the incident light. Arranged first having a predetermined wavelength selection characteristic
A reflective surface, a transmissive band-selecting filter arranged so that the reflected light from the first reflective surface is vertically incident, and the filter
And a pair of λ / 4 plates, which are arranged in front of and behind each other and whose crystal optical axis directions are combined at a right angle, and a projection type color display device.
て、第1反射面の透過光を垂直入射させるように配置し
た透過型の帯域選択フィルタ−と、該フィルタ−の前後
に配置した、互いの結晶光軸の方向を直角に交差させた
一対のλ/4板と、を設けたことを特徴とする投射型カ
ラ−表示装置。4. The projection type color display device according to claim 3, wherein the transmission type band selection filter is arranged so that the light transmitted through the first reflection surface is vertically incident, and the transmission type band selection filter is arranged before and after the filter. A projection type color display device, comprising: a pair of λ / 4 plates in which the directions of the crystal optical axes intersect each other at a right angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4088359A JPH05257115A (en) | 1992-03-13 | 1992-03-13 | Projection type color display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4088359A JPH05257115A (en) | 1992-03-13 | 1992-03-13 | Projection type color display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05257115A true JPH05257115A (en) | 1993-10-08 |
Family
ID=13940620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4088359A Pending JPH05257115A (en) | 1992-03-13 | 1992-03-13 | Projection type color display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05257115A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478429B1 (en) | 1998-10-29 | 2002-11-12 | Fujitsu Limited | Reflective projector |
JP2006507514A (en) * | 2002-01-28 | 2006-03-02 | トムソン ライセンシング | Three-dimensional light engine architecture |
JP2008165244A (en) * | 2003-03-06 | 2008-07-17 | Seiko Epson Corp | projector |
-
1992
- 1992-03-13 JP JP4088359A patent/JPH05257115A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478429B1 (en) | 1998-10-29 | 2002-11-12 | Fujitsu Limited | Reflective projector |
JP2006507514A (en) * | 2002-01-28 | 2006-03-02 | トムソン ライセンシング | Three-dimensional light engine architecture |
JP2008165244A (en) * | 2003-03-06 | 2008-07-17 | Seiko Epson Corp | projector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3480702B2 (en) | Projection display system for reflective light valve | |
JP3768381B2 (en) | LCD projector | |
JP3444521B2 (en) | Projection type image display device | |
JPH03217814A (en) | Liquid crystal projector | |
JPH0274903A (en) | Dichroic optical element and projection type display device | |
JPH11218725A (en) | Liquid crystal projector | |
JPH02149882A (en) | Image projector | |
CN1200491A (en) | reflective projector | |
JP3417757B2 (en) | Liquid crystal display device and light beam separating method thereof | |
JPH04341089A (en) | Liquid crystal projector | |
JP3609715B2 (en) | Color separation / synthesis device and liquid crystal projector using the same | |
JP3060230B2 (en) | Image projection device | |
CN1973552B (en) | Imaging unit for color projection engine including reflective display | |
JP3385915B2 (en) | Projection image display | |
JPWO2009041038A1 (en) | Non-polarization cross dichroic prism, optical unit, and projection display device | |
JPH0672987B2 (en) | Projection type color display device | |
JP4520943B2 (en) | Compound prism and light source unit | |
JPH01302385A (en) | Projection type display | |
JPH05257115A (en) | Projection type color display device | |
JPH04113309A (en) | Projection type color display device | |
JP2003161916A (en) | Projection type image display device and image display system | |
JPH07113708B2 (en) | Projection display device | |
JP3915712B2 (en) | Polarization separating element and projection display device using the same | |
JP2691785B2 (en) | Projection display device | |
JPH10161255A (en) | Projection type liquid crystal display device and liquid crystal panel |