JPH0525475B2 - - Google Patents
Info
- Publication number
- JPH0525475B2 JPH0525475B2 JP57176743A JP17674382A JPH0525475B2 JP H0525475 B2 JPH0525475 B2 JP H0525475B2 JP 57176743 A JP57176743 A JP 57176743A JP 17674382 A JP17674382 A JP 17674382A JP H0525475 B2 JPH0525475 B2 JP H0525475B2
- Authority
- JP
- Japan
- Prior art keywords
- threonine
- producing
- partial pressure
- atm
- dissolved oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 56
- 239000004473 Threonine Substances 0.000 claims description 30
- 229960002898 threonine Drugs 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 25
- 239000001301 oxygen Substances 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 25
- 244000005700 microbiome Species 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 241000588722 Escherichia Species 0.000 claims description 6
- 238000000855 fermentation Methods 0.000 claims description 5
- 230000004151 fermentation Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 4
- 238000005273 aeration Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000002609 medium Substances 0.000 description 9
- 238000012258 culturing Methods 0.000 description 6
- 238000011218 seed culture Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000186146 Brevibacterium Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- LGVJIYCMHMKTPB-UHFFFAOYSA-N 3-hydroxynorvaline Chemical compound CCC(O)C(N)C(O)=O LGVJIYCMHMKTPB-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は発酵法によるL−スレオニンの製造法
に関する。
従来発酵法によるL−スレオニンの製造法とし
ては、ブレビバクテリウム属に属する微生物を用
いる方法(特公昭45−26708号公報参照)やエシ
エリヒア属に属する組換え微生物を用いる方法
(特開昭55−131397号公報参照)等が知られてい
る。これらの方法ではL−スレオニン生産性の高
い菌株の取得を目的とした育種が行われている
が、一方ではL−スレオニン生産菌株の培養方法
の検討によりL−スレオニンの生産性を向上しよ
うとする試みもある。例えばAgric.Biol.Chem.、
第43巻、2087〜2092頁(1979年)には、L−スレ
オニン発酵に及ぼす酸素供給の影響が記載されて
いる。これによるとブレビバクテリウム属に属す
る微生物を用いたL−スレオニン生産においては
液体培地中の溶存酸素分圧が0.01atm以上でL−
スレオニンの最大蓄積が得られる一方、溶存酸素
分圧がゼロになると生産性が低下することを確認
されている。
本発明者らは従来の発酵法によるL−スレオニ
ンの製造法により改善すべく種々検討した結果、
エシエリヒア属に属しL−スレオニン生産能を有
する微生物を、液体培地中の溶存酸素分圧が
0.07atm以上0.17atm以下の範囲で酸素供給条件
を設定して培養すれば、極めて高い収率でL−ス
レオニンを製造できることを見い出した。
即ち、この発明はエシエリヒア属に属しL−ス
レオニン生産能を有する微生物を液体培地中の溶
存酸素分圧が0.07atmから0.17atmの範囲になる
ようにして酸素供給条件を制御しつつ培養するこ
とを特徴とするL−スレオニンの製造法である。
本発明において使用されるL−スレオニン生産
能を有する微生物としてはエシエリヒア属のα−
アミノ−β−ヒドロキシ吉草酸耐性及びイソロイ
シン要求性変異株(特公昭45−26709)、エシエリ
ヒア属のL−スレオニン生合成に関与する遺伝子
が組み込まれているプラスミドpBR322を含有す
るL−スレオニン生産菌(特開昭55−131397、特
開昭55−156591)等がある。
これらの微生物を培養する際には、液体培地中
の溶存酸素分圧が0.07atm以上0.17atm以下の酸
素供給条件で培養する。
培養液の溶存酸素分圧の測定方法は通常の方法
でよい。
例えば市販の溶存酸素分圧測定用の酸素膜電極
を発酵槽に取りつけて測定すればよい。
当該溶存酸素分圧を0.07atm以上0.17atm以下
の範囲で酸素供給条件を設定する期間は微生物の
増殖が開始された後、制御すべき溶存酸素分圧に
達した時点、又は菌体増殖がL−スレオニン生成
に必要な菌体量に達した時点等から、L−スレオ
ニンの生成が実質的に終了する迄である。なお、
一時的にであれば、上記の酸素供給条件から逸脱
してもさして大きな弊害はない。
又、L−スレオニン生産菌を培養する培地は特
に従来の方法と変らない。すなわち、炭素源とし
て各種の糖、有機酸等、窒素源としてはアンモニ
アガス、アンモニア水、アンモニウム塩、その他
が使用できる。炭素源、窒素源は、一度に添加す
るか、或いは培養中に数回に亘り、経時的に添加
するかいずれでもよい。
この他にリン酸イオン、鉄イオン、マグネシウ
ムイオン、カリイオン等の無機イオンが適宜培地
に添加される。更にビタミン、アミノ酸等の有機
微量栄養素が必要であれば使用される。
培養の酸素供給条件は溶存酸素分圧で0.07atm
以上0.17atm以下の範囲で行われ、培養の間、培
地PHを5ないし8の範囲に、温度を27ないし37℃
の範囲に調節すれば最も望ましい結果が得られ
る。
かくして1ないし5日間も培養を続ければ、L
−スレオニンが高い収率で生産される。培地中に
生成、蓄積されたL−スレオニンを採取する方法
は通常の方法でよい。
以下実施例を示す。
実施例 1
第1表に示した種培養培地50mlを500ml容フラ
スコに入れて115℃にて15分間加圧殺菌した。こ
れにエシエリヒアコリAJ11335(FERM BP−
1484)(特開昭55−131397、エシエリヒア・コリ
AJ11332(FERM BP−1640)より得たL−スレ
オニン生合成に関与する遺伝子が組み込まれてい
るプラスミドpBR322を含有するL−スレオニン
生産菌)を1〜3白金耳接種して31.5℃で24時間
振とう培養して種培養液を得た。
次に1容ジヤーフアーメンターに種培養液を
接種した後の最終濃度が第1表に示した培地組成
になるように調製した培地240mlを入れて115℃に
て15分間殺菌して培地を得た。これに種培養液60
mlを接種して31.5℃にて通気量1/3VVm、攪拌
数1000rpm、PH6.0で培養を開始した。培養液中
の溶存酸素分圧を酸素膜電極にて測定し、第2表
に示した溶存酸素濃度に達た時点からこの値に基
づいて通気量又は攪拌数を変化させて培養終了時
迄、この値を維持して72時間培養を行つた。
なお、培養途中にグルコース300g/、硫安
100g/の培地を予め115℃にて15分間加圧殺菌
して調製した培地を30mlづつ3回添加した。
培養終了後に培養液中に生成したL−スレオニ
ンの蓄積量を第2表に示した。
The present invention relates to a method for producing L-threonine by fermentation. Conventional fermentation methods for producing L-threonine include methods using microorganisms belonging to the genus Brevibacterium (see Japanese Patent Publication No. 45-26708) and methods using recombinant microorganisms belonging to the genus Escherichia (Japanese Unexamined Patent Publication No. 55-1982). 131397) etc. are known. In these methods, breeding is carried out with the aim of obtaining strains with high L-threonine productivity, but on the other hand, efforts are being made to improve L-threonine productivity by examining methods of culturing L-threonine-producing strains. There are also attempts. For example, Agric.Biol.Chem.
Volume 43, pages 2087-2092 (1979) describes the influence of oxygen supply on L-threonine fermentation. According to this, in L-threonine production using microorganisms belonging to the genus Brevibacterium, when the dissolved oxygen partial pressure in the liquid medium is 0.01 atm or more, L-
It has been confirmed that while maximum accumulation of threonine is obtained, productivity decreases when the dissolved oxygen partial pressure becomes zero. The present inventors conducted various studies to improve the production method of L-threonine using conventional fermentation methods, and found that
Microorganisms belonging to the genus Escherichia and capable of producing L-threonine are
It has been found that L-threonine can be produced at an extremely high yield by culturing with oxygen supply conditions set in the range of 0.07 atm or more and 0.17 atm or less. That is, the present invention involves culturing a microorganism belonging to the genus Escherichia and having the ability to produce L-threonine while controlling the oxygen supply conditions so that the dissolved oxygen partial pressure in the liquid medium is in the range of 0.07 atm to 0.17 atm. This is a characteristic method for producing L-threonine. The microorganisms capable of producing L-threonine used in the present invention include α-
Amino-β-hydroxyvaleric acid resistant and isoleucine auxotrophic mutant strain (Japanese Patent Publication No. 45-26709), an L-threonine-producing bacterium containing plasmid pBR322 containing a gene involved in L-threonine biosynthesis of the genus Escherichia ( JP-A-55-131397, JP-A-55-156591), etc. When culturing these microorganisms, the culture is performed under oxygen supply conditions such that the partial pressure of dissolved oxygen in the liquid medium is 0.07 atm or more and 0.17 atm or less. A conventional method may be used to measure the dissolved oxygen partial pressure of the culture solution. For example, measurement may be carried out by attaching a commercially available oxygen membrane electrode for measuring dissolved oxygen partial pressure to the fermenter. The period during which the oxygen supply conditions are set so that the dissolved oxygen partial pressure is between 0.07 atm and 0.17 atm is the period after microbial growth has started and when the dissolved oxygen partial pressure to be controlled is reached, or when bacterial cell growth is at L. - From the time when the amount of bacterial cells necessary for threonine production is reached until the production of L-threonine is substantially completed. In addition,
Temporarily, deviation from the above oxygen supply conditions will not cause much harm. Further, the medium for culturing the L-threonine producing bacteria is not particularly different from the conventional method. That is, various sugars, organic acids, etc. can be used as a carbon source, and ammonia gas, aqueous ammonia, ammonium salts, etc. can be used as a nitrogen source. The carbon source and nitrogen source may be added at once or may be added over time over several times during culture. In addition, inorganic ions such as phosphate ions, iron ions, magnesium ions, potassium ions, etc. are added to the medium as appropriate. Furthermore, organic micronutrients such as vitamins and amino acids are used if necessary. Oxygen supply conditions for culture are dissolved oxygen partial pressure of 0.07 atm.
During cultivation, the culture medium pH is kept in the range of 5 to 8 and the temperature is kept in the range of 27 to 37℃.
The most desirable results can be obtained by adjusting the range. Thus, if the culture is continued for 1 to 5 days, L.
- Threonine is produced in high yield. The L-threonine produced and accumulated in the culture medium may be collected by any conventional method. Examples are shown below. Example 1 50 ml of the seed culture medium shown in Table 1 was placed in a 500 ml flask and sterilized under pressure at 115°C for 15 minutes. This is combined with Esierihiakori AJ11335 (FERM BP−
1484) (Japanese Patent Publication No. 55-131397, Esierhia coli
AJ11332 (FERM BP-1640) was inoculated with 1 to 3 platinum loops of L-threonine producing bacteria (containing plasmid pBR322 containing genes involved in L-threonine biosynthesis) and shaken at 31.5°C for 24 hours. A seed culture solution was obtained by culturing. Next, 240 ml of the culture medium prepared so that the final concentration after inoculating the seed culture solution has the medium composition shown in Table 1 was placed in a 1-volume jar fermenter, and the medium was sterilized at 115°C for 15 minutes. Obtained. Seed culture solution 60
ml was inoculated and culture was started at 31.5°C with aeration rate of 1/3 VVm, stirring number of 1000 rpm, and pH 6.0. The dissolved oxygen partial pressure in the culture solution was measured with an oxygen membrane electrode, and from the time when the dissolved oxygen concentration shown in Table 2 was reached, the aeration amount or stirring rate was changed based on this value until the end of the culture. This value was maintained for 72 hours. In addition, during the cultivation, 300g of glucose/ammonium sulfate was added.
A medium prepared by previously pressurizing 100 g/100 g of medium at 115° C. for 15 minutes was added three times in 30 ml portions. Table 2 shows the amount of L-threonine accumulated in the culture solution after the completion of the culture.
【表】
第2表
溶存酸素分圧 L−スレオニン(atm) 蓄積量(g/)
0.05 1.59
0.07 3.26
0.10 3.75
0.15 4.20
0.17 3.63
0.20 2.84
実施例 2
実施例1と同様に調製した種培養培地にエシエ
リヒア・コリAJ11332(FERM P−4898)を1〜
3白金耳接種して種培養液を得た。
次に実施例1と同様の方法で第3表に示す溶存
酸素分圧で31.5℃で72時間培養して培養液中に生
成したL−スレオニンの蓄積量を第3表に示す。
但し、グルコース300g/、硫安100g/の培
地は培養途中、1回添加した。
第3表
溶存酸素分圧 L−スレオニン(atm) 蓄積量(g/)
0.05 0.38
0.07 0.93
0.10 1.04
0.15 1.37
0.17 1.15
0.20 0.80[Table] Table 2 Dissolved oxygen partial pressure L-threonine (atm) Accumulation amount (g/) 0.05 1.59 0.07 3.26 0.10 3.75 0.15 4.20 0.17 3.63 0.20 2.84 Example 2 Escherichia spp.・Koli AJ11332 (FERM P-4898) from 1 to
Three platinum loops were inoculated to obtain a seed culture solution. Next, in the same manner as in Example 1, the cells were cultured at 31.5° C. for 72 hours at the dissolved oxygen partial pressure shown in Table 3, and the amount of L-threonine accumulated in the culture solution is shown in Table 3.
However, a medium containing 300 g of glucose and 100 g of ammonium sulfate was added once during the culture. Table 3 Dissolved oxygen partial pressure L-Threonine (ATM) Accumulation amount (g/) 0.05 0.38 0.07 0.93 0.10 1.04 0.15 1.37 0.17 1.15 0.20 0.80
Claims (1)
を有する微生物を液体培地中に通気攪拌培養しL
−スレオニンを製造するに際し、通気量及び/又
は攪拌数を変化させることにより該液体培地中の
溶存酸素分圧が0.07から0.17atmの範囲になるよ
うに酸素供給条件を制御しつつ培養することを特
徴とする発酵法によるL−スレオニンの製造法。1 A microorganism belonging to the genus Escherichia and capable of producing L-threonine was cultured in a liquid medium with aeration and stirring.
- When producing threonine, culture is carried out while controlling the oxygen supply conditions so that the dissolved oxygen partial pressure in the liquid medium is in the range of 0.07 to 0.17 atm by changing the aeration amount and/or the number of stirrings. A method for producing L-threonine using a characteristic fermentation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17674382A JPS5966891A (en) | 1982-10-07 | 1982-10-07 | Preparation of l-threonine by fermentation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17674382A JPS5966891A (en) | 1982-10-07 | 1982-10-07 | Preparation of l-threonine by fermentation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5966891A JPS5966891A (en) | 1984-04-16 |
JPH0525475B2 true JPH0525475B2 (en) | 1993-04-13 |
Family
ID=16019019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17674382A Granted JPS5966891A (en) | 1982-10-07 | 1982-10-07 | Preparation of l-threonine by fermentation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5966891A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57173971A (en) * | 1981-04-20 | 1982-10-26 | Matsushita Electric Ind Co Ltd | Manufacture of solid state image pickup device |
-
1982
- 1982-10-07 JP JP17674382A patent/JPS5966891A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57173971A (en) * | 1981-04-20 | 1982-10-26 | Matsushita Electric Ind Co Ltd | Manufacture of solid state image pickup device |
Also Published As
Publication number | Publication date |
---|---|
JPS5966891A (en) | 1984-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7138266B2 (en) | Bacterial strain of Escherichia coli BKIIM B-3996 as the producer of L-threonine | |
EP0593792B1 (en) | Novel L-threonine-producing microbacteria and a method for the production of L-threonine | |
US5175107A (en) | Bacterial strain of escherichia coli bkiim b-3996 as the producer of l-threonine | |
US5705371A (en) | Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine | |
JP3966583B2 (en) | Method for producing L-amino acid by fermentation | |
JP3301140B2 (en) | Method for producing L-glutamic acid by fermentation method | |
JPS61202694A (en) | Production of l-glutamine by fermentation method | |
JPS6321479B2 (en) | ||
JP3008565B2 (en) | Method for producing L-glutamic acid by fermentation method | |
JPS6115695A (en) | Preparation of l-isoleucine by fermentation method | |
JP3704737B2 (en) | Method for producing L-leucine | |
JP3717970B2 (en) | Method for producing L-isoleucine by fermentation | |
US4368266A (en) | Method for producing L-glutamic acid by fermentation | |
JPH0525475B2 (en) | ||
JPH0665314B2 (en) | Fermentation method for producing L-valine | |
JPS62232392A (en) | Production of l-thereonine and l-isoleucine | |
JPS6047692A (en) | Production of l-threonine by fermentation | |
JP3006907B2 (en) | Method for producing L-alanine by fermentation method | |
US4326030A (en) | Process for the production of pyruvic acid and citric acid | |
SU661006A1 (en) | Method of obtaining biomass enriched with polynucleotidephosphorilase | |
Dumenil et al. | Study of some factors influencing growth and vitamin B 12 production of a facultative methylotrophic Corynebacterium | |
CN119391786A (en) | Method for producing L-proline by fermenting recombinant corynebacterium glutamicum | |
JP2775948B2 (en) | Escherichia coli BKIIM B-3996 strain as L-threonine producer | |
JPS635080B2 (en) | ||
JPH06125781A (en) | Production of adenosine by fermentation method |