[go: up one dir, main page]

JPH0525387B2 - - Google Patents

Info

Publication number
JPH0525387B2
JPH0525387B2 JP62181017A JP18101787A JPH0525387B2 JP H0525387 B2 JPH0525387 B2 JP H0525387B2 JP 62181017 A JP62181017 A JP 62181017A JP 18101787 A JP18101787 A JP 18101787A JP H0525387 B2 JPH0525387 B2 JP H0525387B2
Authority
JP
Japan
Prior art keywords
discharge tube
microwave
magnetic field
discharge
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62181017A
Other languages
Japanese (ja)
Other versions
JPS6425417A (en
Inventor
Kazuo Suzuki
Tadashi Sonobe
Yasuhiro Mochizuki
Takuya Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP18101787A priority Critical patent/JPS6425417A/en
Publication of JPS6425417A publication Critical patent/JPS6425417A/en
Publication of JPH0525387B2 publication Critical patent/JPH0525387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理装置に係わり、特に、マ
イクロ波放電により生成したプラズマを利用し、
試料表面に薄膜生成、又はエツチング、スパツタ
リング、プラズマ酸化等の高効率プラズマ処理、
及び大面積処理を行うに好適なプラズマ処理装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma processing apparatus, and in particular, the present invention relates to a plasma processing apparatus that uses plasma generated by microwave discharge,
High-efficiency plasma processing such as thin film formation, etching, sputtering, plasma oxidation, etc. on the sample surface,
The present invention also relates to a plasma processing apparatus suitable for large area processing.

〔従来の技術〕[Conventional technology]

従来の磁場中のマイクロ波放電によるプラズマ
を利用したプラズマ処理装置は、放電空間の一部
である放電管の軸方向長さ寸法が、その内径寸法
よりも大きく、前記軸方向磁場分布の最大位置と
前記マイクロ波入射端がずれており、放電管内に
は最大磁束密度位置をはさんで両側にプラズマが
分割している状態となり、マイクロ波入射側のプ
ラズマは試料室側に押出され難く、かつ、試料の
処理に有効なマイクロ波入射側と最大磁束密度位
置にはさんで反対側のプラズマの生成効率を下げ
る結果となつている。また、これを改善する意味
で前記放電管のマイクロ波入射端部近傍へ最大磁
束密度位置を発生させると、改善前の試料室側放
電空間の磁束密度分布形状を維持しなければなら
ない要求より、コイル重量及びその電源容量と
も、2倍以上必要となつていた。
In conventional plasma processing equipment that uses plasma generated by microwave discharge in a magnetic field, the axial length of the discharge tube, which is a part of the discharge space, is larger than its inner diameter, and the maximum position of the axial magnetic field distribution is The microwave incidence end is shifted, and the plasma is divided on both sides of the maximum magnetic flux density position in the discharge tube, making it difficult for the plasma on the microwave incidence side to be pushed out toward the sample chamber. This results in a decrease in the efficiency of plasma generation on the side opposite to the microwave incidence side, which is effective for sample processing, and the position of maximum magnetic flux density. Furthermore, in order to improve this, if the maximum magnetic flux density position is generated near the microwave incident end of the discharge tube, it is necessary to maintain the magnetic flux density distribution shape of the discharge space on the sample chamber side before the improvement. Both the weight of the coil and its power supply capacity were required to be more than twice as large.

さらに、放電管形状が、半球型及びマイクロ波
入射方向(進行方向)に対して垂直平板窓等のも
のが知られているが、これらは、マイクロ波の電
界振動面に対して、進行波から見て垂直に放電管
(又は放電室)を形成する誘導体が存在すること
になり、マイクロ波から見たインピーダンスの変
化はかなり大きいものとなる。このため、前記放
電管のマイクロ波入射端面でマイクロ波の反射率
が増大し、プラズマ生成効率が上がらなかつた嫌
いがある。
In addition, discharge tubes with a hemispherical shape and a flat plate window perpendicular to the direction of microwave incidence (traveling direction) are known, but these are difficult to prevent from traveling waves with respect to the electric field vibration plane of microwaves. There is a dielectric that forms a discharge tube (or discharge chamber) vertically when viewed, and the change in impedance seen from the microwave becomes quite large. For this reason, the reflectance of microwaves increases at the microwave incident end face of the discharge tube, making it difficult to improve plasma generation efficiency.

第3図、及び第4図に従来例の詳細構造を示す
が、第3図は、放電管の軸方向長さ(高さ)h′が
その内径(直径)φdに比らべh′>dの場合であ
り、最大磁束密度位置(ほぼコイル中心)と放電
管先端が明らかにずれており、最大磁場位置を境
に両側にプラズマが分割する問題があり、図中破
線で示す位置に磁場コイル1′を付け加えた場合
の磁束密度分布が、第2図中の破線で示したも
のとなる。
The detailed structure of the conventional example is shown in FIGS. 3 and 4. In FIG. 3, the axial length (height) h' of the discharge tube is compared with its inner diameter (diameter) φd. In case d, the maximum magnetic flux density position (approximately the center of the coil) and the tip of the discharge tube are clearly misaligned, and there is a problem that the plasma is split on both sides at the maximum magnetic field position, and the magnetic field is located at the position indicated by the broken line in the figure. The magnetic flux density distribution when the coil 1' is added is as shown by the broken line in FIG.

第4図は、放電管径φdに比らべ管長h″は短い
半球型放電管であるが、マイクロ波入射端面では
φd′の平板絶縁物がマイクロ波進行方向にほぼ直
角に対向しているため、導波管から見たインピー
ダンスが急激に変化するため、反射波が増える傾
向にあつた。
Figure 4 shows a hemispherical discharge tube whose tube length h'' is shorter than the discharge tube diameter φd, but at the microwave incidence end face, the flat plate insulator φd' faces almost perpendicular to the direction of microwave propagation. As a result, the impedance seen from the waveguide changes rapidly, which tends to increase reflected waves.

尚、プラズマ処理装置に関しては、特開昭61−
256725号公報、特開昭61−256726号公報、及び特
開昭59−3018号公報等に開示されている。
Regarding plasma processing equipment, please refer to JP-A-61-
It is disclosed in JP-A No. 256725, JP-A-61-256726, JP-A-59-3018, and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、放電管寸法と磁束密度分布形
状、及びそれに伴うプラズマの生成領域が考慮さ
れておらず、プラズマ生成効率が低いため、装置
が大型で使用電力も大きいという問題があつた。
The above-mentioned conventional technology does not take into consideration the discharge tube dimensions, magnetic flux density distribution shape, and plasma generation area associated therewith, and has a problem in that the plasma generation efficiency is low, resulting in a large device and large power consumption.

本発明の目的は、処理に必要なプラズマ生成領
域をできるだけ小さくし、マイクロ波の放電管へ
の入射効率を下げずにプラズマ処理を行うことに
より、使用電力を減少し得るプラズマ処理装置を
提供することにある。
An object of the present invention is to provide a plasma processing apparatus that can reduce power consumption by minimizing the plasma generation area necessary for processing and performing plasma processing without reducing the efficiency of microwave incidence into a discharge tube. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、プラズマ生成に有効な電子サイク
ルトロン共鳴磁場を含み、放電管のマイクロ波入
射端から試料室方向へ単調減少する磁束密度分布
を持ち、放電管の軸方向長さを放電管内径寸法程
度以下とし、かつ、放電管形状を凸形の円錐形と
すると共に、磁場発生手段の軸方向中心近傍に前
記放電管のマイクロ波入射端が位置していること
により達成することができる。
The above purpose includes an electron cycletron resonance magnetic field that is effective for plasma generation, has a magnetic flux density distribution that monotonically decreases from the microwave incidence end of the discharge tube toward the sample chamber, and has the axial length of the discharge tube equal to the inner diameter of the discharge tube. This can be achieved by making the discharge tube a convex conical shape, and by locating the microwave incident end of the discharge tube near the axial center of the magnetic field generating means.

〔作用〕[Effect]

一般に、空心ソレノイド磁場コイルは、コイル
の平均半径よりも軸方向寸法(長さ)が長くなる
と磁束密度分布が山形でなく水平分布が現われて
くる。一方、有磁場マイクロ波放電では、マイク
ロ波の周波数により決まる電子サイクロトロン共
鳴磁場近傍にて、効果的なマイクロ波共鳴吸収が
行なわれプラズマを生成し、片側磁気ミラー効果
により試料室側へプラズマを押し出している。
Generally, in an air-core solenoid magnetic field coil, when the axial dimension (length) is longer than the average radius of the coil, the magnetic flux density distribution becomes horizontal instead of mountain-shaped. On the other hand, in magnetic field microwave discharge, effective microwave resonance absorption occurs near the electron cyclotron resonance magnetic field determined by the microwave frequency, generating plasma, and pushing the plasma toward the sample chamber side by the one-sided magnetic mirror effect. ing.

このため、有効、かつ最小限必要な磁場分布形
状は、前記電子サイクロトロン共鳴磁場を含み、
マイクロ波入射側から試料室に単調減少する磁場
勾配を有することである。
Therefore, the effective and minimum required magnetic field distribution shape includes the electron cyclotron resonance magnetic field,
It has a magnetic field gradient that monotonically decreases from the microwave incidence side to the sample chamber.

それ故、本発明では、上記条件を満足し、最小
限寸法にできる構造として、磁場コイルの内側に
備える放電管の長さを前記放電管内径寸法と同程
度以下とし、磁場コイルの軸方向中心近傍に前記
放電管のマイクロ波入射端を位置させ、同時にマ
イクロ波の放電管への入射効率を改善するため
に、マイクロ波導入側へ凸型の円錐形状の放電管
とする。
Therefore, in the present invention, as a structure that satisfies the above conditions and can be minimized in size, the length of the discharge tube provided inside the magnetic field coil is equal to or less than the inner diameter of the discharge tube, and the axial center of the magnetic field coil is In order to locate the microwave incident end of the discharge tube nearby and at the same time improve the efficiency of microwave incidence into the discharge tube, the discharge tube has a conical shape convex toward the microwave introduction side.

これにより、水平磁場分布をもたない磁束密度
分布形状の最大値近傍に放電管のマイクロ波入射
端が位置し、かつ凸型の放電管のためマイクロ波
の反射率は低減される。これにより磁場コイルを
最小化するとともに、コイル電源及びマイクロ波
発振装置電源電力を効率よくプラズマに注入する
ことが可能となる。
As a result, the microwave incidence end of the discharge tube is located near the maximum value of the magnetic flux density distribution shape having no horizontal magnetic field distribution, and the microwave reflectance is reduced because the discharge tube is of a convex shape. This makes it possible to minimize the magnetic field coil and to efficiently inject the coil power source and the microwave oscillator power source power into the plasma.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図、及び第2図に
より説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、有磁場マイクロ波放電により試料表
面処理(成膜)を行うプラズマ処理装置に本発明
を適用した例で、第1図は、構成図を示し、該図
において磁場コイル1を外側に備えた放電管2に
導波管3を通してマイクロ波4が導入され、前記
放電管2内に導入されたプラズマ用ガス6を、前
記磁場コイル1にて発生する磁場中の電子サイク
ロトロン運動と前記マイクロ波4による電子サイ
クロトロン共鳴により励起、または電離すること
によりプラズマを生成し、前記放電管2と連結さ
れ、処理される試料7を保持する試料台8を備え
る試料室9方向に前記磁場コイル1にて発生する
磁場の勾配により前記プラズマを押し出し、新た
に前記試料室9内の試料7前面に導入された材料
ガス10を前記プラズマ流により励起、または電
離しながら試料7表面に輸送することにより、試
料表面に前記プラズマ用ガス6、及び前記材料ガ
ス10による組成の薄膜を生成するプラズマ処理
装置である。
Figure 1 shows an example in which the present invention is applied to a plasma processing apparatus that performs sample surface treatment (film formation) using magnetic field microwave discharge. Microwaves 4 are introduced through a waveguide 3 into a discharge tube 2 prepared for this purpose. The magnetic field coil 1 is connected to the discharge tube 2 and extends in the direction of the sample chamber 9, which generates plasma by excitation or ionization by electron cyclotron resonance using the microwave 4 and is equipped with a sample stage 8 that holds a sample 7 to be processed. The plasma is pushed out by the gradient of the magnetic field generated in the sample chamber 9, and the material gas 10 newly introduced in front of the sample 7 is excited or ionized by the plasma flow and transported to the surface of the sample 7. , is a plasma processing apparatus that generates a thin film having a composition of the plasma gas 6 and the material gas 10 on the surface of a sample.

第2図は、本実施例の前記放電管2から試料台
8方向の軸方向の磁束密度分布を示したもので、
横軸が軸方向距離を示し、縦軸が磁束密度を示
す。本発明では、第2図の実線で示した磁束密
度分布形状であり、前記放電管の位置がh(第1
図、第2図)で示した場所にあり、第2図の破
線、及び放電管位置h′(第2図)は、従来の磁束
密度分布、及び従来の放電管位置を示す。
FIG. 2 shows the magnetic flux density distribution in the axial direction from the discharge tube 2 to the sample stage 8 direction of this example.
The horizontal axis shows the axial distance, and the vertical axis shows the magnetic flux density. In the present invention, the magnetic flux density distribution shape is shown by the solid line in FIG. 2, and the position of the discharge tube is h (first
The broken line in FIG. 2 and the discharge tube position h' (FIG. 2) indicate the conventional magnetic flux density distribution and the conventional discharge tube position.

第1図において、放電管2の内径をφdとし、
長さ(高さ)をhとすると、hdを満足し、か
つ、マイクロ波4入射側に凸型の円錐形状の放電
管となつており、その先端は、磁場コイル1のほ
ぼ中央に配置されている。又、磁場コイル1の磁
束密度分布は第2図実線に示す形状となつてお
り、前記放電管2のマイクロ波入射側端がほぼ最
大磁束密度位置となつている。このため、第2図
中、前記最大磁束密度位置よりも試料室9方向に
ほぼ単調減少する磁束密度に、マイクロ波の周波
数により決まる電子サイクロトロン共鳴磁束密度
が少なくとも1点あれば、その近傍にて生成され
たプラズマは磁場勾配により試料室9側に押し出
され、有効に利用されることになる。
In FIG. 1, the inner diameter of the discharge tube 2 is φd,
If the length (height) is h, then it is a conical discharge tube that satisfies hd and has a convex shape on the microwave 4 incident side, and its tip is placed approximately at the center of the magnetic field coil 1. ing. The magnetic flux density distribution of the magnetic field coil 1 has a shape shown by the solid line in FIG. 2, and the microwave incident side end of the discharge tube 2 is approximately at the maximum magnetic flux density position. Therefore, if there is at least one electron cyclotron resonance magnetic flux density determined by the microwave frequency in the magnetic flux density that decreases almost monotonically in the direction of the sample chamber 9 from the maximum magnetic flux density position in FIG. The generated plasma is pushed toward the sample chamber 9 side by the magnetic field gradient and is effectively used.

ところが、従来例に示した如く、放電管の軸方
向長さh′がh′>d(放電管内径)の場合(第3図
h′>φd)、最大磁束密度位置よりもマイクロ波入
射端側に生成、又は拡散してきたプラズマは放電
管先端側に押し出され、放電管にダメージを与
え、かつ、マイクロ波の伝搬を減衰させ、マイク
ロ波電力を処理すべきプラズマに投入できなくな
る。また、この磁束密度分布形状を改善する目的
で、改善前の最大磁束密度位置から試料室9方向
の磁束密度分布を変えることなく前記放電管のマ
イクロ波入射端から試料室9方向へ単調減少磁場
すると、コイル重量、コイルの電源容量共、約2
倍以上必要となる。さらに、放電管の軸方向長さ
を、その管径以下とした例もあるが、半球形状放
電管、又は平板絶縁物窓のため、放電管のマイク
ロ波入射端面部での軸方向断面をみると、半球形
状放電管の場合でも、前記マイクロ波入射面の誘
導体の占積率は、半分以上となり(第4図、
φd′寸法)、マイクロ波の伝送系からみたインピ
ーダンスは、マイクロ波の主なる電界振動面が前
記軸方向断面に添う方向であるため、マイクロ波
の進行方向に前記占積率の大きい面が急激に現わ
れることにより急激に変化する。これによりマイ
クロ波は、プラズマに入射する前に放電管表面、
又は入射平板窓等により反射される量が増加し、
効率的にマイクロ波電力をプラズマに注入できな
くなる傾向がある。
However, as shown in the conventional example, when the axial length h' of the discharge tube is h'>d (inner diameter of the discharge tube) (Fig. 3).
h'> φd), the plasma generated or diffused closer to the microwave incidence end than the maximum magnetic flux density position is pushed toward the tip of the discharge tube, damaging the discharge tube and attenuating microwave propagation. , microwave power cannot be input to the plasma to be processed. In addition, in order to improve this magnetic flux density distribution shape, a magnetic field is monotonically decreased from the microwave incidence end of the discharge tube to the sample chamber 9 direction without changing the magnetic flux density distribution in the sample chamber 9 direction from the maximum magnetic flux density position before improvement. Then, the weight of the coil and the power capacity of the coil are approximately 2
More than twice as much is required. Furthermore, there are examples where the axial length of the discharge tube is less than the tube diameter, but since the discharge tube has a hemispherical shape or a flat insulator window, the axial cross section at the microwave incident end of the discharge tube is taken. Even in the case of a hemispherical discharge tube, the space factor of the dielectric on the microwave incidence surface is more than half (Fig. 4,
φd' dimension), the impedance seen from the microwave transmission system is such that the main electric field vibration surface of the microwave is in the direction along the axial cross section, so the surface with a large space factor suddenly changes in the direction of microwave propagation. It changes rapidly due to the appearance of This allows the microwave to reach the surface of the discharge tube before entering the plasma.
Or the amount reflected by the incident flat window increases,
There is a tendency that microwave power cannot be efficiently injected into the plasma.

本実施例は、これら両方の問題点を同時に解決
し、マイクロ波電力、磁場コイル電力を効率的に
使用し、磁場コイル重量の低減等の効果がある
他、ソレノイド磁場コイルからワンターン磁場コ
イル形状に近づけることにより磁束密度分布の発
散率を大きくできるため、前記放電管径に比らべ
大きい外径を持つ試料も均一に処理可能となると
いう効果がある。
This embodiment solves both of these problems at the same time, efficiently uses microwave power and magnetic field coil power, reduces the weight of the magnetic field coil, and changes the shape of the solenoid magnetic field coil to a one-turn magnetic field coil. By bringing them close together, the divergence rate of the magnetic flux density distribution can be increased, which has the effect that even samples having an outer diameter larger than the diameter of the discharge tube can be processed uniformly.

第5図、第6図は本発明の他の実施例、応用例
を示したもので、第5図は、導波管3を放電管2
に添う様に極力小さくし、同時に磁場コイル1も
極力小さくした場合のプラズマ処理装置である。
5 and 6 show other embodiments and application examples of the present invention. In FIG. 5, the waveguide 3 is connected to the discharge tube 2.
This is a plasma processing apparatus in which the magnetic field coil 1 is made as small as possible so as to comply with the following.

第6図は、磁場コイル1による発散磁束密度分
布の調整を行う補助磁場コイル12を有するもの
を示す。
FIG. 6 shows an apparatus having an auxiliary magnetic field coil 12 for adjusting the divergent magnetic flux density distribution by the magnetic field coil 1. FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明のプラズマ処理装置によれ
ば、放電ガスが導入され、放電空間の一部を形成
する放電管は、その長手方向寸法が放電管の内径
(直径)寸法と同程度以下であり、かつ、マイク
ロ波導入側に凸型の円錐形状を成し、しかも、放
電管の放電空間内に磁場を発生する磁場発生手段
の軸方向中芯近傍に前記放電管のマイクロ波入射
端が位置しているものであるから、処理に必要な
プラズマ生成領域をできるだけ小さくし、マイク
ロ波の放電管への入射効率を下げずにプラズマ処
理を行うことができるので、使用電力を減少させ
ることができる効果がある。
According to the plasma processing apparatus of the present invention described above, the discharge tube into which the discharge gas is introduced and which forms part of the discharge space has a longitudinal dimension that is equal to or smaller than the inner diameter (diameter) of the discharge tube. , and the microwave incidence end of the discharge tube is located near the axial center of a magnetic field generating means that has a convex conical shape on the microwave introduction side and generates a magnetic field within the discharge space of the discharge tube. This makes it possible to minimize the plasma generation area required for processing and perform plasma processing without reducing the efficiency of microwave injection into the discharge tube, reducing power consumption. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すプラズマ処理
装置の断面図、第2図はプラズマ処理装置の軸方
向磁束密度分布を示す図、第3図、及び第4図は
それぞれ従来のプラズマ処理装置を示す断面図、
第5図、及び第6図はそれぞれ本発明の他の実施
例を示すプラズマ処理装置の断面図である。 1……磁場コイル、2……放電管、3……導波
管、4……マイクロ波、6……プラズマ生成用ガ
ス、7……試料、8……試料台、9……試料室、
10……材料ガス、11……真空排気、12……
補助磁場コイル。
FIG. 1 is a cross-sectional view of a plasma processing apparatus showing an embodiment of the present invention, FIG. 2 is a diagram showing the axial magnetic flux density distribution of the plasma processing apparatus, and FIGS. 3 and 4 are each a diagram showing conventional plasma processing. A cross-sectional view showing the device;
5 and 6 are sectional views of plasma processing apparatuses showing other embodiments of the present invention, respectively. 1... Magnetic field coil, 2... Discharge tube, 3... Waveguide, 4... Microwave, 6... Plasma generation gas, 7... Sample, 8... Sample stage, 9... Sample chamber,
10...Material gas, 11...Vacuum exhaust, 12...
Auxiliary magnetic field coil.

Claims (1)

【特許請求の範囲】 1 放電ガスが導入され、放電空間の一部を形成
する放電管と、該放電管の放電空間内に磁場を発
生する磁場発生手段と、前記放電空間内にマイク
ロ波を導入する手段と、前記放電管に連結され、
かつ、処理されるべき試料を保持する試料台を有
する試料室とを備えたプラズマ処理装置におい
て、 前記放電管は、その長手方向寸法が放電管の内
径(直径)寸法と同程度以下であり、かつ、マイ
クロ波導入側に凸型の円錐形状を成し、しかも、
前記磁場発生手段の軸方向中心近傍に前記放電管
のマイクロ波入射端が位置していることを特徴と
するプラズマ処理装置。 2 前記試料室内の前記試料台に保持される試料
の外径寸法が、前記放電管内径寸法よりも大きい
ことを特徴とする特許請求の範囲第1項記載のプ
ラズマ処理装置。
[Scope of Claims] 1. A discharge tube into which a discharge gas is introduced and which forms a part of a discharge space, a magnetic field generating means for generating a magnetic field within the discharge space of the discharge tube, and a microwave source that generates microwaves within the discharge space. a means for introducing the discharge tube;
and a sample chamber having a sample stage for holding a sample to be processed, wherein the longitudinal dimension of the discharge tube is approximately equal to or smaller than the inner diameter (diameter) of the discharge tube; Moreover, it has a convex conical shape on the microwave introduction side, and
A plasma processing apparatus characterized in that a microwave incident end of the discharge tube is located near the axial center of the magnetic field generating means. 2. The plasma processing apparatus according to claim 1, wherein the outer diameter of the sample held on the sample stage in the sample chamber is larger than the inner diameter of the discharge tube.
JP18101787A 1987-07-22 1987-07-22 Plasma treatment device Granted JPS6425417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18101787A JPS6425417A (en) 1987-07-22 1987-07-22 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18101787A JPS6425417A (en) 1987-07-22 1987-07-22 Plasma treatment device

Publications (2)

Publication Number Publication Date
JPS6425417A JPS6425417A (en) 1989-01-27
JPH0525387B2 true JPH0525387B2 (en) 1993-04-12

Family

ID=16093297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18101787A Granted JPS6425417A (en) 1987-07-22 1987-07-22 Plasma treatment device

Country Status (1)

Country Link
JP (1) JPS6425417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435561A (en) * 2013-08-19 2013-12-11 上海交通大学 Novel D-amino acid oxidase inhibitor and preparation and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181425A (en) * 1988-01-08 1989-07-19 Sumitomo Metal Ind Ltd Plasma processing device
JP2705222B2 (en) * 1989-06-13 1998-01-28 富士電機株式会社 ECR plasma CVD equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134423A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Microwave plasma etching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134423A (en) * 1983-12-23 1985-07-17 Hitachi Ltd Microwave plasma etching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435561A (en) * 2013-08-19 2013-12-11 上海交通大学 Novel D-amino acid oxidase inhibitor and preparation and application thereof

Also Published As

Publication number Publication date
JPS6425417A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
JP2002503015A (en) Permanent magnet ECR plasma source with optimized magnetic field
JPS62229641A (en) Electron cyclotron resonance ion source
JPS61118938A (en) Ignition method and apparatus for superhigh frequency ion source
US5869802A (en) Plasma producing structure
JPS63213344A (en) plasma processing equipment
JPH0525387B2 (en)
Rostomyan Dissipative instability of overlimiting electron beam in a nonuniform–cross-section waveguide
JP3080471B2 (en) Microwave plasma generator
JPH0217636A (en) dry etching equipment
JP2857090B2 (en) Microwave-excited plasma processing equipment
JP2738809B2 (en) Plasma processing method
US3409847A (en) Solid state plasma structures
JP3396345B2 (en) Plasma generator
JP2644203B2 (en) Microwave power supply device and plasma generator using the same
JPH0831443B2 (en) Plasma processing device
JPH0821476B2 (en) ECR plasma generator
JPH03109726A (en) Plasma processing apparatus
JP2974635B2 (en) Microwave plasma generator
JP3866590B2 (en) Plasma generator
JPS63293824A (en) plasma processing equipment
JPH0594899A (en) Plasma processing device
JP3364064B2 (en) Sheet plasma generator
JP2749264B2 (en) Plasma processing equipment
JPH05331649A (en) Plasma processing method
JP2520641B2 (en) Standing wave accelerator