JPH05251354A - Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw material - Google Patents
Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw materialInfo
- Publication number
- JPH05251354A JPH05251354A JP11661291A JP11661291A JPH05251354A JP H05251354 A JPH05251354 A JP H05251354A JP 11661291 A JP11661291 A JP 11661291A JP 11661291 A JP11661291 A JP 11661291A JP H05251354 A JPH05251354 A JP H05251354A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- gas
- raw material
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 239000000126 substance Substances 0.000 title claims abstract description 14
- 239000002994 raw material Substances 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 29
- 230000015572 biosynthetic process Effects 0.000 title claims description 9
- 239000010409 thin film Substances 0.000 title abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 239000007789 gas Substances 0.000 claims abstract description 48
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 19
- 238000003860 storage Methods 0.000 claims abstract description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims description 21
- 238000000354 decomposition reaction Methods 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 6
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 239000002912 waste gas Substances 0.000 claims description 2
- 229960001730 nitrous oxide Drugs 0.000 claims 2
- 235000013842 nitrous oxide Nutrition 0.000 claims 2
- -1 hydrogen Chemical compound 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 83
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 abstract description 3
- 229910000077 silane Inorganic materials 0.000 abstract 3
- 238000005755 formation reaction Methods 0.000 description 13
- GIRKRMUMWJFNRI-UHFFFAOYSA-N tris(dimethylamino)silicon Chemical compound CN(C)[Si](N(C)C)N(C)C GIRKRMUMWJFNRI-UHFFFAOYSA-N 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 206010000369 Accident Diseases 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- GAYGRJOSBKBBLF-UHFFFAOYSA-N n-methylmethanamine;silicon Chemical compound [Si].CNC GAYGRJOSBKBBLF-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化学気相成長により基
板に薄膜を形成するときに使用する膜形成の原料、なら
びにこの原料を用いて薄膜を化学気相成長により形成す
る方法および装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming raw material used when a thin film is formed on a substrate by chemical vapor deposition, and a method and apparatus for forming a thin film by chemical vapor deposition using this raw material. ..
【0002】[0002]
【従来技術】化学気相成長(CVD)法は、原料ガスを
基板上に導き、熱分解還元等の化学反応を行わせ、基板
上に薄膜を形成する方法である。このCVD法は、例え
ば半導体ウェーハ等の表面に耐食材、耐摩耗材、硬化材
等、絶縁材の膜を形成するために用いられている。2. Description of the Related Art The chemical vapor deposition (CVD) method is a method of forming a thin film on a substrate by introducing a source gas onto a substrate and causing a chemical reaction such as thermal decomposition reduction. This CVD method is used for forming a film of an insulating material such as a food material, an abrasion resistant material, a hardening material, etc. on the surface of a semiconductor wafer or the like.
【0003】CVD法においてシリコンまたはシリコン
化合物の薄膜を形成するとき、モノシラン(SiH4)、
ジシラン(SiH4)などがその原料として使用されてい
る。図2は、これら原料を用いてCVD法によりシリコ
ンまたはシリコン化合物の薄膜を形成する従来のプラズ
マCVD装置の概略図を示す。When forming a thin film of silicon or a silicon compound by the CVD method, monosilane (SiH 4 ),
Disilane (SiH 4 ) or the like is used as the raw material. FIG. 2 is a schematic view of a conventional plasma CVD apparatus that uses these raw materials to form a thin film of silicon or a silicon compound by the CVD method.
【0004】図2において、反応容器1の中に、それぞ
れが互い違いにでかつ平行に並べられた2組の電極2
a、2bが配置され、その反応容器1の周囲を取り巻く
ようにコイルから成る加熱手段3が配置されている。電
極2a、2bの両側(ただし、両端の電極には内側)に
基板4が配置されている。それら電極に接続された高周
波電源2cにより、電極間にプラズマを発生させること
ができる。In FIG. 2, two sets of electrodes 2 are arranged in a reaction vessel 1 in a staggered and parallel manner.
a and 2b are arranged, and a heating means 3 composed of a coil is arranged so as to surround the periphery of the reaction vessel 1. Substrates 4 are arranged on both sides of the electrodes 2a and 2b (however, inside the electrodes on both ends). Plasma can be generated between the electrodes by the high frequency power supply 2c connected to the electrodes.
【0005】反応容器1の上流には、バルブ5および流
量コントローラ6を介して、膜形成の原料を貯蔵する貯
蔵容器7a、7b、7cが連結されている。各貯蔵容器
には、たとえばSiH4、Si2H6、SiH2Cl2などが
貯蔵される。同様に、反応容器1には、バルブ5′およ
び流量コントローラ6′を介して、薄膜形成の原料と反
応して所定の薄膜を形成するのに必要なキャリアガスを
貯蔵する貯蔵容器8a〜8eが連結されている。各貯蔵
容器には、たとえばNH3、N2O、N2、O2、CH4な
どが貯蔵される。Upstream of the reaction vessel 1, storage vessels 7a, 7b and 7c for storing film forming raw materials are connected via a valve 5 and a flow rate controller 6. Each storage container stores, for example, SiH 4 , Si 2 H 6 , SiH 2 Cl 2, and the like. Similarly, the reaction container 1 is provided with storage containers 8a to 8e for storing a carrier gas necessary for forming a predetermined thin film by reacting with a raw material for forming a thin film via a valve 5'and a flow rate controller 6 '. It is connected. NH 3 , N 2 O, N 2 , O 2 , CH 4, etc. are stored in each storage container.
【0006】反応容器1の下流には、反応容器を真空に
するための真空装置9が連結され、反応容器内の圧力を
制御するための圧力制御装置10が反応容器1と真空装
置9との間に設置されている。A vacuum device 9 for evacuating the reaction container is connected downstream of the reaction container 1, and a pressure control device 10 for controlling the pressure inside the reaction container is provided between the reaction container 1 and the vacuum device 9. It is installed in between.
【0007】[0007]
【発明が解決しようとする課題】このような装置におい
て使用する原料となるシリコン化合物は可燃性が高く、
非常に危険で、その取り扱いが難しく、リークなどで空
気中に放出されただけでも爆発的に燃焼をおこし、爆発
事故、火災事故につながることが一般的に知られてい
る。そこで、このような事故を防止するために、リーク
防止装置、安全装置等を設けているが、このことは、装
置全体を複雑化し、製造コストを引き上げ、さらにラン
ニングコストを上昇させていた。さらにまた、薄膜形成
のための操作の外に、安全管理のための定期検査を必要
とするため、装置の可動率が低下せざるを得なかった。The silicon compound as a raw material used in such an apparatus has high flammability,
It is generally known that it is extremely dangerous, its handling is difficult, and that even if it is released into the air due to a leak or the like, it will explosively burn, leading to an explosion accident or a fire accident. Therefore, in order to prevent such an accident, a leak prevention device, a safety device, etc. are provided, but this complicates the entire device, raises the manufacturing cost, and further increases the running cost. Furthermore, in addition to the operation for forming a thin film, a periodical inspection for safety management is required, so that the operability of the device must be lowered.
【0008】ところで、従来の薄膜の原料とキャリアガ
スとの反応は分解、結合、成膜反応という反応行程をた
どる。たとえば、原料をSiH4とし、キャリアガスを
NH3としたとき、まずケイ素と水素の分解、窒素と水
素の分解という分解反応がおこり、それからケイ素と窒
素の結合反応がおこり、最終的に、Si3N4という窒化
膜が基板上に形成される。このような複雑な反応の制御
をすることは非常に難しく、そのため膜厚の制御、膜質
の制御が非常に困難となっていた。さらに、下地に対す
る段差被膜性(ステップカバレージ)も悪かった。By the way, the conventional reaction between the raw material for the thin film and the carrier gas follows the reaction steps of decomposition, bonding and film formation reaction. For example, when the raw material is SiH 4 and the carrier gas is NH 3 , a decomposition reaction such as decomposition of silicon and hydrogen, decomposition of nitrogen and hydrogen occurs first, and then a bond reaction between silicon and nitrogen occurs, and finally, Si A nitride film of 3 N 4 is formed on the substrate. It is very difficult to control such a complicated reaction, and thus it has been very difficult to control the film thickness and the film quality. In addition, the step coverage with respect to the base was also poor.
【0009】そこで、本願発明の目的は、CVD法によ
りさまざまなシリコン膜等を基板上に形成する際に安全
かつ膜形成反応の制御が容易な膜形成の原料を提供する
ことである。Therefore, an object of the present invention is to provide a raw material for film formation, which is safe and easy to control the film formation reaction when various silicon films and the like are formed on a substrate by the CVD method.
【0010】本発明の他の目的は、シリコン膜等を基板
上に形成する際に安全かつ膜形成反応制御が容易な膜形
成の原料を利用してCVD法により良好な膜厚、膜質を
もつ薄膜を形成する方法を提供することである。Another object of the present invention is to obtain a good film thickness and film quality by the CVD method by using a film forming raw material which is safe and can easily control the film forming reaction when forming a silicon film or the like on a substrate. It is to provide a method of forming a thin film.
【0011】さらに、本発明の目的は、シリコン膜を基
板上に形成する際に安全かつ薄膜形成反応制御の容易な
膜形成の原料を利用してCVD法により良好な膜厚、膜
質をもつ薄膜を形成する装置を提供することである。Further, an object of the present invention is to use a raw material for film formation, which is safe and easy to control a thin film formation reaction when forming a silicon film on a substrate, and to obtain a thin film having a good film thickness and film quality by a CVD method. Is to provide a device for forming.
【0012】[0012]
【課題を解決するための手段】本発明の化学気相成長に
おいて使用する膜形成の原料は、化学式HxSi(N
R2)4-xで示される。ここで、Rがアルキル基で、x=
0、1、2、3である。The raw material for film formation used in the chemical vapor deposition of the present invention is represented by the chemical formula HxSi (N
R 2 ) 4-x . Here, R is an alkyl group, and x =
It is 0, 1, 2, 3.
【0013】本発明の基板に化学気相成長により膜を形
成する方法は、a)化学式HxSi(NR2)4-xで示され
る膜形成の原料を用意する工程と、b)原料をガス化する
工程と、c)ガス化した原料の流量を制御して基板が配置
された反応容器内に供給する工程と、d)供給されたガス
を基板上で分解反応させる工程と、e)所望の膜厚が形成
されるまでガスの分解反応を維持する工程とから成るも
のである。The method of forming a film on the substrate by chemical vapor deposition is as follows: a) preparing a film forming raw material represented by the chemical formula H x Si (NR 2 ) 4-x ; A step of gasifying, c) a step of controlling the flow rate of the gasified raw material to supply it into the reaction vessel in which the substrate is arranged, d) a step of decomposing the supplied gas on the substrate, and e) The process of maintaining the decomposition reaction of gas until a desired film thickness is formed.
【0014】ここで、供給された原料ガスの圧力は常圧
であっても、0.5〜50Torrの低圧でもよい。Here, the pressure of the supplied source gas may be normal pressure or a low pressure of 0.5 to 50 Torr.
【0015】本発明の基板に化学気相成長により膜を形
成する方法は、さらに分離ガスをその流量を制御して、
供給された原料ガスと反応容器内で混合する工程を含ん
でもよい。The method of forming a film on a substrate by chemical vapor deposition according to the present invention further controls the flow rate of the separation gas,
It may include a step of mixing the supplied raw material gas in the reaction vessel.
【0016】基板に形成すべき膜がシリコン窒化膜であ
るときは、分離ガスが水素、窒素またはアンモニアガス
であり、基板に形成すべき膜がシリコン酸化膜であると
きは、分離ガスが酸素ガス、オゾンまたは一酸化二窒素
であり、基板に形成すべき膜がシリコン窒化酸化膜であ
るときは、分離ガスが酸素ガスおよびアンモニアガスま
たは一酸化二窒素であり、基板に形成すべき膜がシリコ
ン炭化膜であるときは、分離ガスが四塩化炭素ガスであ
る。When the film to be formed on the substrate is a silicon nitride film, the separation gas is hydrogen, nitrogen or ammonia gas, and when the film to be formed on the substrate is a silicon oxide film, the separation gas is oxygen gas. , Ozone or nitrous oxide, and the film to be formed on the substrate is a silicon oxynitride film, the separation gas is oxygen gas and ammonia gas or nitrous oxide, and the film to be formed on the substrate is silicon. When it is a carbonized film, the separation gas is carbon tetrachloride gas.
【0017】本発明の基板に化学気相成長により膜を堆
積させる装置は、a)真空装置により真空排気され、基板
が中に配置される反応容器と、b)該容器に流量コントロ
ーラを介して連結され、化学式HxSi(NR2)4-xで示
されるところの膜形成の原料を貯蔵する貯蔵容器と、c)
反応容器内に流入される原料を基板上で分解反応させる
手段と、d)反応容器内の廃ガスを排出する排出手段と、
から成るものである。The apparatus of the present invention for depositing a film on a substrate by chemical vapor deposition includes a) a reaction vessel in which the substrate is placed in a vacuum chamber and the substrate is placed inside the vessel, and b) a flow controller in the vessel. A storage container connected to store a raw material for forming a film having a chemical formula of H x Si (NR 2 ) 4-x , and c).
A means for decomposing the raw material introduced into the reaction vessel on the substrate, and a discharge means for discharging waste gas in the reaction vessel,
It consists of
【0018】本発明の基板に化学気相成長により膜を形
成する装置は反応容器に流量コントローラを介して連結
される分離ガスを貯蔵する貯蔵容器をさらに含んでもよ
い。The apparatus for forming a film on a substrate by chemical vapor deposition according to the present invention may further include a storage container for storing a separation gas, which is connected to the reaction container via a flow controller.
【0019】[0019]
【作用】本発明の化学式HxSi(NR2)4-xで示される
膜形成の原料は空気とは全く反応しないため安全であ
る。The raw material for film formation represented by the chemical formula HxSi (NR 2 ) 4-x of the present invention is safe because it does not react with air at all.
【0020】本発明の上記膜形成の原料には、その中に
Si−N結合を有しているため、適切な分離ガスを用い
ることにより、不要な要素が原料ガスから分離され、基
板上に所望の薄膜が形成される。たとえば、シリコン窒
化膜(Si3N4)を形成する場合、分離ガスとして水素
またはアンモニアを用いると、原料ガスからメチル基が
分離されるとともに成膜反応して基板上にシリコン窒化
膜が形成される。Since the raw material for forming the film of the present invention has a Si--N bond in it, unnecessary elements are separated from the raw material gas by using an appropriate separation gas, and the raw material gas is deposited on the substrate. A desired thin film is formed. For example, when forming a silicon nitride film (Si 3 N 4 ) and using hydrogen or ammonia as a separation gas, methyl groups are separated from the source gas and a film formation reaction occurs to form a silicon nitride film on the substrate. It
【0021】[0021]
【実施例】図1は本発明の化学式HxSi(NR2)4-xで
示される膜形成の原料を用いて、プラズマCVD法によ
り基板上に薄膜を形成する装置を示す。図1において図
2に示す装置の要素と同じ要素については同一の符号が
付されている。EXAMPLE FIG. 1 shows an apparatus for forming a thin film on a substrate by a plasma CVD method using a film forming raw material represented by the chemical formula HxSi (NR 2 ) 4-x of the present invention. 1, the same elements as those of the apparatus shown in FIG. 2 are designated by the same reference numerals.
【0022】図1に示す装置において、反応容器1の中
に、それぞれが互い違いにでかつ平行に並べられた2組
の電極2a、2bが配置され、その反応容器1の周囲を
取り巻くようにコイルから成る加熱手段3が配置されて
いる。電極2a、2bの両側(ただし、両端の電極には
内側)に基板4が配置されている。それら電極に接続さ
れた高周波電源2cにより、電極間にプラズマを発生さ
せることができる。In the apparatus shown in FIG. 1, two sets of electrodes 2a and 2b, which are arranged alternately and in parallel, are arranged in a reaction vessel 1, and a coil is arranged so as to surround the circumference of the reaction vessel 1. A heating means 3 consisting of Substrates 4 are arranged on both sides of the electrodes 2a and 2b (however, inside the electrodes on both ends). Plasma can be generated between the electrodes by the high frequency power supply 2c connected to the electrodes.
【0023】反応容器1の上流には、バルブ5および流
量コントローラ6を介して、膜形成の原料を貯蔵する貯
蔵容器7が連結されている。本発明の膜形成の原料は室
温で液状でるため、原料をガス化するためにヒータ7a
が設けられている。A storage container 7 for storing a film-forming raw material is connected upstream of the reaction container 1 via a valve 5 and a flow rate controller 6. Since the raw material for forming the film of the present invention is liquid at room temperature, the heater 7a is used to gasify the raw material.
Is provided.
【0024】反応容器1には、バルブ5′および流量コ
ントローラ6′を介して、膜形成の原料と分離反応して
所定の薄膜を形成する分離ガスを貯蔵する貯蔵容器8が
連結されている。A storage container 8 is connected to the reaction container 1 via a valve 5'and a flow rate controller 6'to store a separation gas for forming a predetermined thin film by separating and reacting with a raw material for film formation.
【0025】反応容器1の下流には、反応容器を真空に
するための真空装置9が連結され、反応容器内の圧力を
制御するための圧力制御装置10が反応容器1と真空装
置9との間に設置されている。A vacuum device 9 for evacuating the reaction container is connected downstream of the reaction container 1, and a pressure control device 10 for controlling the pressure inside the reaction container is provided between the reaction container 1 and the vacuum device 9. It is installed in between.
【0026】上記装置は、好適な装置であるが、この外
に常圧下で反応を行うプラズマCVD装置、熱CVD装
置、すなわち基板を高温に加熱してその表面でに化学反
応により膜を生成する装置(減圧CVD法、常圧力CV
D法の場合も含む)を用いても良い。The above-mentioned apparatus is a suitable apparatus, but in addition to this, a plasma CVD apparatus or a thermal CVD apparatus for carrying out a reaction under normal pressure, that is, a substrate is heated to a high temperature to form a film on its surface by a chemical reaction. Equipment (Low pressure CVD method, Normal pressure CV
(Including the case of method D) may also be used.
【0027】化学式HxSi(NR2)4-xの1つであるト
リジメチルアミンシリコン(以下TDMASという)を
原料として、かつアンモニアを分離ガスとして上記装置
を用いて基板上にシリコン窒化膜(Si3N4)を形成す
る操作について以下に説明する。A silicon nitride film (Si 3) is formed on a substrate using tridimethylamine silicon (hereinafter referred to as TDMAS), which is one of the chemical formulas HxSi (NR 2 ) 4-x , as a raw material and ammonia as a separation gas. The operation of forming N 4 ) will be described below.
【0028】複数の基板4を反応容器1内に平行に設置
された電極2a、bの上に、互いに向かい合うように配
置し、反応容器1を真空装置により真空排気する。そし
て、加熱手段3により基板4の温度を100〜400℃
となるように、加熱維持する。A plurality of substrates 4 are arranged on the electrodes 2a and 2b arranged in parallel in the reaction container 1 so as to face each other, and the reaction container 1 is evacuated by a vacuum device. Then, the temperature of the substrate 4 is set to 100 to 400 ° C. by the heating means 3.
And keep heating.
【0029】一方、TDMASを貯蔵する貯蔵容器7を
ヒータ7aにより50℃〜100℃に加熱する。これ
は、原料となるTDMASは室温では液体であるからで
ある。これにより、TDMASはガス化する。生成した
原料ガスを流量コントローラ6により100〜500c
c/minに流量を制御しながらバルブ5を経由して反応容
器1へと導入する。ここで、好適例として、原料をTD
MASを用いたが、化学式HxSi(NR2)4-xの他の例
のモノジメチルアミンシリコン、ジジメチルアミンシリ
コン等もまた、TDMAS同様に良好な膜厚、膜質を得
られる。On the other hand, the storage container 7 for storing TDMAS is heated to 50 ° C. to 100 ° C. by the heater 7a. This is because TDMAS as a raw material is a liquid at room temperature. As a result, TDMAS is gasified. The generated source gas is 100 to 500c by the flow rate controller 6.
It is introduced into the reaction vessel 1 via the valve 5 while controlling the flow rate at c / min. Here, as a preferred example, the raw material is TD
Although MAS was used, monodimethylamine silicon, didimethylamine silicon, etc., which are other examples of the chemical formula H x Si (NR 2 ) 4-x , can also obtain good film thickness and film quality as in TDMAS.
【0030】一方、分離ガスの貯蔵容器8に貯蔵され、
自然気化したアンモニアガスを流量コントローラ6′に
より1〜10リットル/minに流量を制御しながらバルブ
5′を経由して反応容器1へと導入する。On the other hand, the separated gas is stored in the storage container 8,
The naturally vaporized ammonia gas is introduced into the reaction vessel 1 through the valve 5'while controlling the flow rate to 1 to 10 liters / min by the flow rate controller 6 '.
【0031】導入された各々のガスは、既に真空装置9
により真空排気された反応容器1内で混合される。反応
容器1内の圧力が0.5〜50Torrとなるように圧
力制御装置により圧力を調整する。Each of the introduced gases is already in the vacuum device 9
Are mixed in the reaction container 1 that has been evacuated. The pressure is adjusted by the pressure control device so that the pressure in the reaction vessel 1 becomes 0.5 to 50 Torr.
【0032】反応条件が安定したところで高周波電源2
cにより電極2a、bに電圧を印加する。これにより、
電極間にあるガスはプラズマ化し、分離ガスによる原料
ガスの分離反応、すなわちメチル基が分離され、シリコ
ン窒化膜が基板上に形成される。このように、TDMA
Sを使用することにより、分解反応が生じる同時に成膜
反応が生じ、そのため反応工程が単純化する。このこと
は、在来の原料を使用したとき、膜の形成には分解反
応、結合反応、成膜反応を経なけばならなかったことと
対照的である。When the reaction conditions are stable, the high frequency power source 2
A voltage is applied to the electrodes 2a and 2b by c. This allows
The gas between the electrodes is turned into plasma, the separation reaction of the source gas by the separation gas, that is, the methyl group is separated, and a silicon nitride film is formed on the substrate. Thus, TDMA
By using S, a film formation reaction occurs at the same time that a decomposition reaction occurs, and thus the reaction process is simplified. This is in contrast to the use of conventional raw materials, which had to undergo a decomposition reaction, a binding reaction, and a film formation reaction to form a film.
【0033】成膜中に生じた副生成物、未反応ガスは真
空排気装置9により排ガス処理システム(図示せず)へ
と排気される。By-products and unreacted gas generated during film formation are exhausted to an exhaust gas treatment system (not shown) by the vacuum exhaust device 9.
【0034】ここで、分離ガスとしてアンモニアガスを
用いたが、基板に形成すべき膜がシリコン窒化膜である
ときは水素またはアンモニアガスを、基板に形成すべき
膜がシリコン酸化膜であるときは酸素ガスを、基板に形
成すべき膜がシリコン窒化酸化膜であるときは酸素ガス
またはアンモニアガスを、基板に形成すべき膜がシリコ
ン炭化膜であるときは四塩化炭素ガスを用いる。Although ammonia gas was used as the separation gas, hydrogen or ammonia gas is used when the film to be formed on the substrate is a silicon nitride film, and hydrogen gas or ammonia gas is used when the film to be formed on the substrate is a silicon oxide film. Oxygen gas, oxygen gas or ammonia gas is used when the film to be formed on the substrate is a silicon oxynitride film, and carbon tetrachloride gas is used when the film to be formed on the substrate is a silicon carbide film.
【0035】図3は、上記工程により形成された膜のフ
ーリエ変換赤外線吸収分光分析のグラフである。図3に
示すように、Si−Nに鋭いピークをもち、したがっ
て、成膜が窒化膜であることが確認された。FIG. 3 is a graph of Fourier transform infrared absorption spectroscopy analysis of the film formed by the above process. As shown in FIG. 3, it was confirmed that the film had a sharp peak in Si—N, and thus the film was a nitride film.
【0036】本発明にしたがった薄膜生成工程におけ
る、薄膜の堆積速度と高周波電源出力との関係を図4に
示す。この図から分かるように堆積速度と高周波電源出
力との関係が単純であり、したがって、堆積速度と成膜
(堆積)時間を制御することにより、任意の膜厚を形成
できる。FIG. 4 shows the relationship between the deposition rate of the thin film and the output of the high frequency power source in the thin film forming step according to the present invention. As can be seen from this figure, the relationship between the deposition rate and the output of the high-frequency power source is simple. Therefore, by controlling the deposition rate and the film formation (deposition) time, an arbitrary film thickness can be formed.
【0037】本発明のTDMASを用いて生成した窒化
膜と在来の原料を用いて生成した窒化膜の圧縮応力と屈
折率を以下の表に示す。 表 原料 圧縮応力(×109(dyn/cm2) 屈折率 TDMAS+NH3 0.8〜1.2 1.95 SiH4+NH3 3〜5 2.05 この表より明らかなように、本発明に従って成膜をする
と従来と比べて圧縮応力が小さい。したがって、たとえ
ば基板上にアルミニウムが配線されているとき、この上
に本発明に従ってシリコン窒化膜を形成すると、アルミ
ニウムへの負荷が従来よりも非常に減少し、良好な被膜
を形成できる。The following table shows the compressive stress and the refractive index of the nitride film formed by using the TDMAS of the present invention and the nitride film formed by using the conventional raw material. Table Raw material Compressive stress (× 10 9 (dyn / cm 2 ) Refractive index TDMAS + NH 3 0.8 to 1.2 1.95 SiH 4 + NH 3 3 to 5 2.05 As is clear from this table, When the film is formed, the compressive stress is smaller than that of the prior art, so that when aluminum is wired on a substrate, for example, when a silicon nitride film is formed on the aluminum, the load on the aluminum is significantly reduced as compared with the prior art. And a good film can be formed.
【0038】図5は、TDMAの膜形成の原料を用い
て、段差のある基板上に形成された薄膜と在来の原料を
用いて基板上に形成された薄膜の断面を示す。この図か
ら明らかなように、本発明に従って形成された薄膜の下
地段差被覆性は従来のものに比べて優れている。FIG. 5 shows a cross section of a thin film formed on a substrate having a step using a raw material for forming a TDMA film and a thin film formed on a substrate using a conventional raw material. As is clear from this figure, the step coverage of the underlayer of the thin film formed according to the present invention is superior to the conventional one.
【0039】[0039]
【発明の効果】以上説明したように、本発明の膜形成の
原料を用いることにより、爆発、火災等の危険性がなく
なり、また装置が簡素化し、また装置の操作が単純化
し、さらに装置の製造コストが低下する。さらにまた、
本発明にしたがうことにより良好な膜質を形成でき、さ
らに膜厚を容易に制御できる。As described above, the use of the film forming raw material of the present invention eliminates the risk of explosion, fire, etc., simplifies the apparatus, simplifies the operation of the apparatus, and Manufacturing costs are reduced. Furthermore,
According to the present invention, a good film quality can be formed and the film thickness can be easily controlled.
【図1】本発明の膜形成の原料を用いて、プラズマCV
D法により基板上に薄膜を形成する装置を示す。FIG. 1 is a plasma CV using the film forming raw material of the present invention.
An apparatus for forming a thin film on a substrate by the D method is shown.
【図2】在来の膜形成の原料を用いて、プラズマCVD
法により基板上に薄膜を形成する装置を示す。FIG. 2: Plasma CVD using conventional film forming raw materials.
An apparatus for forming a thin film on a substrate by the method is shown.
【図3】TDMAの膜形成の原料を用いて基板上に形成
された薄膜が窒化膜であることを示すスペクトルグラフ
である。FIG. 3 is a spectrum graph showing that a thin film formed on a substrate using a TDMA film forming raw material is a nitride film.
【図4】本発明にしたがった薄膜生成工程における薄膜
の堆積速度と高周波電源出力との関係を示す。FIG. 4 shows a relationship between a deposition rate of a thin film and a high frequency power output in a thin film forming process according to the present invention.
【図5】TDMAの膜形成の原料を用いて基板上に形成
された薄膜と在来の原料を用いて基板上に形成された薄
膜の断面を示す。FIG. 5 shows cross sections of a thin film formed on a substrate using a TDMA film forming raw material and a thin film formed on a substrate using a conventional raw material.
1 反応容器 2a,b 電極 2c 高周波電源 3 加熱手段 4 基板 5、5′ バルブ 6、6′ 流量コントローラ 7 原料貯蔵容器 7a ヒータ 8 分離ガス貯蔵容器 9 真空装置 10 圧力制御装置 DESCRIPTION OF SYMBOLS 1 Reaction container 2a, b Electrode 2c High frequency power supply 3 Heating means 4 Substrate 5, 5'valve 6, 6'Flow controller 7 Raw material storage container 7a Heater 8 Separation gas storage container 9 Vacuum device 10 Pressure control device
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年6月14日[Submission date] June 14, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】 [Figure 5]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 池戸 洋三 神奈川県相模原市東橋本2−23−3 303 号 (72)発明者 町田 英明 神奈川県座間市小松原2−5275−1 105 号 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yozo Ikedo 2-23-3 303 Higashi Hashimoto, Sagamihara City, Kanagawa Prefecture (72) Hideaki Machida 2-5275-1 105 Komatsubara, Zama City, Kanagawa Prefecture
Claims (17)
法であって、 a) 化学式HxSi(NR2)4-xで示され、ここでRが
アルキル基で、x=0、1、2、3である膜形成の原料
を用意する工程と、 b) 前記原料をガス化する工程と、 c) ガス化した原料の流量を制御して、基板が配置され
た反応容器内に供給する工程と、 d) 前記供給されたガスを前記基板上で分解反応させる
工程と、 e) 所望の膜厚が形成されるまでガスの分解反応を維持
する工程と、 から成る方法。1. A method for forming a film on a substrate by chemical vapor deposition, comprising: a) a chemical formula H x Si (NR 2 ) 4-x , wherein R is an alkyl group, and x = 0, A step of preparing a film-forming raw material which is 1, 2, or 3; b) a step of gasifying the raw material; and c) controlling the flow rate of the gasified raw material into the reaction vessel in which the substrate is placed. A method comprising: a supplying step, d) a decomposition reaction of the supplied gas on the substrate, and an e) maintaining the decomposition reaction of the gas until a desired film thickness is formed.
法。2. The method according to claim 1, wherein the pressure of the supplied gas is normal pressure.
る、ところの方法。3. The method according to claim 1, wherein the pressure of the supplied gas is 0.5 to 50 Torr.
せる工程である、ところの方法。4. The method according to claim 2 or 3, wherein the decomposition reaction step is a step of generating plasma to cause a decomposition reaction.
解反応させる工程である、ところの方法5. The method according to claim 2 or 3, wherein the decomposition reaction step is a step of causing the decomposition reaction by heating the substrate.
れたガスと前記反応容器内で混合する工程を含む方法。6. The method according to claim 1, further comprising the step of controlling the flow rate of the separated gas and mixing the supplied gas with the supplied gas in the reaction vessel.
容器内に原料および分離ガスを供給し、プラズマを発生
させ分離反応させる工程である、ところの方法。7. The method according to claim 6, wherein the decomposition reaction step is a step of heating the substrate and then supplying a raw material and a separation gas into the reaction vessel to generate plasma to cause a separation reaction. That's the way.
記分離ガスが水素、窒素またはアンモニアガスである、
ところの方法。8. The method according to claim 7, wherein when the film to be formed on the substrate is a silicon nitride film, the separation gas is hydrogen, nitrogen or ammonia gas.
By the way.
記分離ガスが酸素ガス、オゾンまたは一酸化二窒素であ
る、ところの方法。9. The method according to claim 7, wherein when the film to be formed on the substrate is a silicon oxide film, the separation gas is oxygen gas, ozone or dinitrogen monoxide. ..
は、前記分離ガスが酸素ガスおよびアンモニアガス、ま
たは一酸化二窒素である、ところの方法。10. The method according to claim 7, wherein when the film to be formed on the substrate is a silicon oxynitride film, the separation gas is oxygen gas and ammonia gas, or dinitrogen monoxide. By the way.
記分離四塩化炭素ガスである、ところの方法。11. The method according to claim 7, wherein when the film to be formed on the substrate is a silicon carbide film, the separated carbon tetrachloride gas is used.
装置であって、 a) 真空装置により真空排気され、基板が中に配置され
る反応容器と、 b) 該容器に流量コントローラを介して連結され、 化学式HxSi(NR2)4-xで示され、Rがアルキル基
で、x=0、1、2、3であるところの膜形成の原料を
貯蔵する貯蔵容器と、 c) 前記反応容器内に流入される前記原料を前記基板上
で分離反応させる手段と、 d) 前記反応容器内の廃ガスを排出する排出手段と、 から成る装置。12. An apparatus for forming a film on a substrate by chemical vapor deposition, comprising: a) a reaction vessel which is evacuated by a vacuum apparatus and in which the substrate is placed; and b) a flow controller in the vessel. A storage container for storing a film-forming raw material, wherein R is an alkyl group and x = 0, 1, 2, 3 and is represented by the chemical formula H x Si (NR 2 ) 4-x , ) An apparatus comprising: a means for separating and reacting the raw material flowing into the reaction container on the substrate; and d) a discharging means for discharging a waste gas in the reaction container.
離ガスを貯蔵する貯蔵容器をさらに含む、ところの装
置。13. The apparatus according to claim 12, further comprising a storage container for storing separated gas, which is connected to the reaction container via a flow controller.
の装置。14. The apparatus of claim 12, further comprising means for gasifying the feedstock.
び該電極に接続された高周波電源から成る、ところの装
置。15. The apparatus according to claim 12, wherein the separation reaction means comprises an electrode on which the substrate is arranged, and a high frequency power source connected to the electrode.
給し、化学反応により基板上に膜を形成する化学気相成
長において使用する、化学式HxSi(NR2)4-xで示さ
れ、Rがアルキル基で、x=0、1、2、3であるとこ
ろの膜形成の原料。16. A chemical formula HxSi (NR 2 ) 4-x , which is supplied in the gas state in the vicinity of a substrate on which a film is formed and is used in chemical vapor deposition for forming a film on the substrate by a chemical reaction, A raw material for film formation, wherein R is an alkyl group and x = 0, 1, 2, 3.
Rがアルキル基で、x=0、1、2、3であるところの
膜形成の原料をガス化して分離ガスと混合し、そのガス
を加熱された基板の近傍に流し、基板上で前記原料ガス
を分解反応することにより基板上に形成された窒化膜を
有して成る基板。17. A chemical formula of H x Si (NR 2 ) 4-x ,
When R is an alkyl group and x = 0,1,2,3, the film-forming raw material is gasified and mixed with a separation gas, and the gas is caused to flow in the vicinity of the heated substrate, and then the raw material is formed on the substrate. A substrate having a nitride film formed on the substrate by decomposing a gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11661291A JPH0793271B2 (en) | 1991-04-22 | 1991-04-22 | Raw material for thin film formation used in chemical vapor deposition, and chemical vapor deposition method and apparatus for forming thin film on substrate using this raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11661291A JPH0793271B2 (en) | 1991-04-22 | 1991-04-22 | Raw material for thin film formation used in chemical vapor deposition, and chemical vapor deposition method and apparatus for forming thin film on substrate using this raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05251354A true JPH05251354A (en) | 1993-09-28 |
JPH0793271B2 JPH0793271B2 (en) | 1995-10-09 |
Family
ID=14691488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11661291A Expired - Lifetime JPH0793271B2 (en) | 1991-04-22 | 1991-04-22 | Raw material for thin film formation used in chemical vapor deposition, and chemical vapor deposition method and apparatus for forming thin film on substrate using this raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0793271B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002093722A (en) * | 2000-09-14 | 2002-03-29 | Mitsubishi Electric Corp | Plasma CVD apparatus, thin film forming method, and solar cell manufacturing method |
US6365231B2 (en) | 1998-06-26 | 2002-04-02 | Kabushiki Kaisha Toshiba | Ammonium halide eliminator, chemical vapor deposition system and chemical vapor deposition process |
JP2003124460A (en) * | 2001-10-15 | 2003-04-25 | Atsushi Ogura | Gate oxide film, element, gate oxide film forming method, gate oxide film forming material |
-
1991
- 1991-04-22 JP JP11661291A patent/JPH0793271B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6365231B2 (en) | 1998-06-26 | 2002-04-02 | Kabushiki Kaisha Toshiba | Ammonium halide eliminator, chemical vapor deposition system and chemical vapor deposition process |
JP2002093722A (en) * | 2000-09-14 | 2002-03-29 | Mitsubishi Electric Corp | Plasma CVD apparatus, thin film forming method, and solar cell manufacturing method |
JP4496401B2 (en) * | 2000-09-14 | 2010-07-07 | 三菱電機株式会社 | Plasma CVD apparatus and method for manufacturing solar cell |
JP2003124460A (en) * | 2001-10-15 | 2003-04-25 | Atsushi Ogura | Gate oxide film, element, gate oxide film forming method, gate oxide film forming material |
Also Published As
Publication number | Publication date |
---|---|
JPH0793271B2 (en) | 1995-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5356722A (en) | Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity | |
KR101639490B1 (en) | Semiconductor device manufacturing method, substrate processing apparatus and program | |
US8946092B2 (en) | Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus | |
US6410463B1 (en) | Method for forming film with low dielectric constant on semiconductor substrate | |
US8343594B2 (en) | Film formation method and apparatus for semiconductor process | |
US8895457B2 (en) | Method of manufacturing semiconductor device and substrate processing apparatus | |
US5508067A (en) | Deposition of silicon nitride by plasma-enchanced chemical vapor deposition | |
US7253084B2 (en) | Deposition from liquid sources | |
KR101676558B1 (en) | Method of manufacturing semiconductor device, substrate processing apparatus, and program | |
US20040255868A1 (en) | Plasma etch resistant coating and process | |
KR101726946B1 (en) | Manufacturing method of semiconductor device, substrate processing apparatus and program | |
WO2008024566A2 (en) | Overall defect reduction for pecvd films | |
KR101624452B1 (en) | Semiconductor device manufacturing method, substrate processing apparatus and program | |
US20020192982A1 (en) | Method of forming a carbon doped oxide layer on a substrate | |
JP7342138B2 (en) | Substrate processing equipment, plasma generation equipment, semiconductor device manufacturing method, plasma generation method and program | |
WO2018055700A1 (en) | Substrate processing device, method for manufacturing semiconductor device, and electrode fixing unit | |
US5750195A (en) | Deposition of diamond on oxidizable material | |
JP2884968B2 (en) | Method for manufacturing silicon oxide film | |
CN107240563B (en) | Substrate processing apparatus and manufacturing method of semiconductor device | |
US5061514A (en) | Chemical vapor deposition (CVD) process for plasma depositing silicon carbide films onto a substrate | |
US5352487A (en) | Process for the formation of SiO2 films | |
JPH05251354A (en) | Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw material | |
JPH05263255A (en) | Plasma cvd device | |
JPS61234531A (en) | Formation of silicon oxide | |
JPWO2020053996A1 (en) | Substrate processing equipment, substrate holders, semiconductor device manufacturing methods and programs |