[go: up one dir, main page]

JPH052503B2 - - Google Patents

Info

Publication number
JPH052503B2
JPH052503B2 JP17721687A JP17721687A JPH052503B2 JP H052503 B2 JPH052503 B2 JP H052503B2 JP 17721687 A JP17721687 A JP 17721687A JP 17721687 A JP17721687 A JP 17721687A JP H052503 B2 JPH052503 B2 JP H052503B2
Authority
JP
Japan
Prior art keywords
monomer
resin
polymer
fluorine
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17721687A
Other languages
Japanese (ja)
Other versions
JPS6422547A (en
Inventor
Seiichi Katsuragawa
Chikafumi Kawashima
Yasuhiro Shiga
Toshihide Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP17721687A priority Critical patent/JPS6422547A/en
Publication of JPS6422547A publication Critical patent/JPS6422547A/en
Publication of JPH052503B2 publication Critical patent/JPH052503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は伸縮性機能をもつた柔軟性、耐薬品
性、耐汚染性、耐光、耐侯性および不粘着性を具
備させた新規なフツ素樹脂からなる基材への被覆
材に関する。 (従来技術) 従来、よく知られている一般のポリウレタン系
合成皮革は、その風合、外観が天然皮革に酷似し
ているため、主として鞄、袋物、履物、衣料等の
比較的流行サイクルの短いフアツシヨン性素材と
して多用されているが、耐用期間の長い、家具、
室内装材としては、数年で脆化する宿命的な加水
分解性のため表面の粘着性、更には耐薬品性、耐
汚染性、耐侯性の改善等について種々の提案がな
されており、以下のフツ素樹脂被覆も提案されて
いる。 すなわち、フツ素樹脂フイルム被覆積層体とし
ては、ポリフツ化ビニルフイルムをポリウレタン
層を介して高強度織物と複合させる方法(特開昭
56−162647)、ポリフツ化ビニリデンの加熱融着
(特開昭52−69989)あるいは各種ブツ素樹脂フイ
ルムを溶融温度以上に加熱し、ガラス基材に溶融
貼着させたシート(特開昭61−61849)、さらには
PVDF、PTFE、PFAなどとの積層が提案されて
いる。 (発明が解決しようとする問題点) しかしながら、これらフツ素樹脂は、耐薬品
性、耐侯性および耐汚染性には優れているが、ポ
リウレタン樹脂等にくらべて柔軟性に劣り、また
有機溶媒への可溶性が悪いため例えば合成皮革製
造工程でキヤステイングフイルムを成形するため
の樹脂溶解液を製造することが困難である。 (問題点を解決するための手段) 本発明は上記欠点を改善するためになされたも
ので、基材上にポリウレタン樹脂を介して被覆す
るフツ素系被覆材が、すくなくとも一種以上の含
フツ素単量体と、分子内に二重結合とペルオキシ
結合を同時に有する単量体とを共重合せしめて、
そのガラス転位温度が室温以下である含フツ素弾
性共重合体(幹ポリマー)を製造し、この幹ポリ
マー100重量部に対してフツ化ビニリデン単量体
を40〜70重量部共重合せしめた軟質系フツ素樹脂
からなる被覆材の提供にある。 本発明で対象とする基材は特に限定されるもの
ではないが、例えば綿、羊毛、絹、麻等の天然繊
維、もしくはレーヨン、ビスコース、スフ、アセ
テート等の再生繊維、またはポリエステル、ポリ
アクリロニトリル、ポリ塩化ビニル、ポリ塩化ビ
ニリデン等の合成繊維等の単独または各種混繊
維、ガラス繊維、石綿等の無機質繊維からなる編
織布、不織布、さらには紙類、木材、ゴム、プラ
スチツク、金属等である。 本発明で前記基材上に接着剤層として使用する
ウレタン樹脂はフタル酸、アジピン酸などの多塩
基酸のエチレングリコール、ジエチレングリコー
ルなどの多価ヒドロキシル化合物との縮重合反応
によつて得られるポリエステルジオールと、脂肪
族ジイソシアネートから得られる末端に−NCO
基を有するウレタンプレポリマーをジアミンで鎖
伸長してから得られるポリウレタン樹脂、あるい
はポリオキシプロピレングリコール、エチレング
リコール、トリレンジイソシアネートとの反応で
得たポリエーテル系ポリウレタンとグリセリン、
エチレングリコールおよびトリレンジイソシアネ
ートを反応させた架稿剤と、アミン系接触ジエチ
ルエタノールアミンを配合したもの等ポリウレタ
ン樹脂を主体とするものすべてが使用可能であ
る。 次に本発明における最も重要な特徴部分である
軟質フツ素樹脂について説明する。 本発明者らは、特開昭58−206615において柔軟
性を有するフツ素樹脂の製造方法に関する提案を
行つたが、例えば合成皮革被覆剤として使用する
ためには樹脂の溶解性および樹脂の柔軟性の面よ
り新たな検討改良が必要となつた。 使用する軟質フツ素樹脂は少なくとも一種の含
フツ素単量体を含む一種以上の単量体と分子内に
二重結合と、ペルオキシ結合を同時に有する単量
体とを共重合せしめて、その分子内にペルオキシ
基を含有させかつ、そのガラス転位点温度か室温
以下である含フツ素弾性共重合体(幹ポリマー)
を製造し、この幹ポリマーの水性乳濁液または、
分散溶媒中で幹ポリマー100重量部に対してフツ
化ビニリデン単量体を40〜70重量部グラフト重合
せしめたフツ素樹脂で、かつ当該樹脂がN,N−
ジメチルホルムアミド等の有機溶剤に150g/
以上溶解性のあるフツ素樹脂で、特に当該フツ素
樹脂中の幹ポリマーは、そのガラス転位点温度が
室温以下である含フツ素共重合体により構成され
ているため、室温およびそれ以上の温度では弾性
体の性状を呈し、従来のPTFE、PFA、FEP、
ETFE、PCTFE、PVDF、PVF等のフツ素樹脂
と比較すると極めて柔軟性に富むものである。 本発明ではかかる軟質系フツ素樹脂の使用に特
徴があるが、ポリウレタン系合成皮革表皮に当該
樹脂の薄いフイルム(例えば、5〜25ミクロン
厚)を積層するためには、樹脂溶解液を塗布し、
乾燥機中で溶媒を蒸発せしめることによりフイル
ム化する成形法、いわゆるテヤステイングフイル
ム成形法によつて得られら樹脂層が適用される。 フツ素樹脂のキヤステイングフイルム成形法に
おける問題点は耐有機溶剤性が良好なために、樹
脂溶解性が小さいこと、さらには有機溶剤への溶
解性がポリマー中のフツ素含量増加につれて極端
に低下することもあつて、現在のところポリフツ
化ビニル樹脂(PVF)を除いてキヤステイング
フイルム成形は実施されていない状況にある。し
かしPVFは硬い樹脂であり、柔軟性の必要な各
種基剤への被覆材としては良好なものとはいえな
い。 本発明者らはその基材への具体的実施の一例に
合成皮革被覆材として、ポリウレタン合成皮革の
問題点である耐汚染性、耐薬品性等を改良しつ
つ、合成皮革の弾力的な触感を保持するための検
討を行なつてきたところ、本発明に係るフツ素樹
脂の薄いフイルムは合成皮革被覆材として極めて
有用であることが判明し、そのためにキヤステイ
ングフイルム形成できる軟質系フツ素樹脂の改
質、特に溶剤可溶性樹脂への改質が重要となつ
た。 ここでキヤステイングフイルム形成の樹脂溶解
液に使用する有機溶剤は、N,N−ジメチルホル
ムアミド(DMF)、メチルエチルケトン(MEK)
およびトルエン(TOL)等の混合溶剤の使用が
一般的であり、これら溶剤の中ではDMFが当該
フツ素樹脂の溶解性が良好であるためDMFを軟
質フツ素樹脂の主要配合溶剤として選定した。溶
解液の樹脂濃度は、少なくとも150g/、好ま
しくは200g/以上することが望ましく、キヤ
ステイングフイルム成形ラインでフイルムを成形
する場合、150g/以下ではフイルム乾燥工程
で蒸発させる溶剤量が多くなり、経済的でない。 軟質フツ素樹脂について、溶剤への溶解性を増
加せしめる方法として、含フツ素弾性共重合体
(幹ポリマー)にフツ化ビニリデン(VDF)単量
体をブラフト共重合させることにより溶解性が大
きくなることが判明した。テトラフルオロエチレ
ン単量体、クロロトリフルオロエチレン単量体、
テトラフルオロエチレン/エチレンおよびクロロ
トリフルオロエチレン/エチレン等の共重合体で
は溶剤中で樹脂の膨潤は認められるが、150g/
以上の濃度を有する樹脂の可溶化はいずれも困
難であつた。 また、溶解性に及ぼす幹ポリマーへのVDF単
量体のグラフト量の影響は、幹ポリマー100重量
部に対し40〜70重量部が適当であり、DMFへの
溶解性試験で、40重量部以下のグラフト量ではゲ
ル状となつて溶解し難く、また70重量部以上では
樹脂物性の柔軟性が減少し、軟質フツ素樹脂の特
徴であるゴム的性質が損なわれるため、各種柔軟
性を有する基材例えば合成皮革の被覆材としては
好ましくなくなる。 このように、DMFに可溶性のある軟質フツ素
樹脂は、第一段階の共重合反応で、ペルオキシ結
合を有する含フツ素弾性共重合体(幹ポリマー)
を得、第二段階反応で第一段階反応で得られた共
重合体の分散溶媒中で、ペルオキシ結合を分解
し、ラジカルを発生せしめる温度以下でVDF単
量体をグラフト共重合することによつて得られ
る。 当該樹脂の重合条件(温度、撹拌数、オートク
レーブ容量、触媒量など)はポリマー重合度に影
響し、該重合度は樹脂溶解性に影響するが、重合
反応が二段階反応であり複雑となるため、最終物
質であるグラフト共重合体のDMFを主剤とする
有機溶剤への溶解性で樹脂の使用範囲を選定すれ
ばよい。 ここで用いられる不飽和ペルオキシドとして
は、t−ブチルペルオキシメタクリレート、t−
ブチルペルオキシクロトネート等の不飽和ペルオ
キシエステル類、およびt−ブチルペルオキシア
リルカーボネート、P−メンタンペルオキシアリ
ルカーボネート等の不飽和ペルオキシカーボネー
ト類が例示できる。 また、含フツ素単量体の一種以上の組成として
は、フツ素ゴムの組成を有する弾性重合体で、フ
ツ化ビニリデン(VDF)とヘキサフルオロピロ
ペン(HFP)の二元系、VDFとHFPとテトラフ
ルオロエチレン(TFE)の三元系、およびVDF
とクロロトリフルオロエチレン(CTFE)の二元
系などの単量体組成が例示できる。 本発明において、基材上に施工されるポリウレ
タン樹脂層および軟質フツ素樹脂の厚さには格別
の制限はなく、一般に0.01〜1mm程度の厚さで使
用されるが、耐侯性、防汚性、耐久性並びに柔軟
性の目的を達するものであれば、より厚く、また
はより薄くすることができ特に制約はない。 ウレタン樹脂の塗布は、トツピング、カレンダ
ーリング、コーテイングその他の方法で行なわ
れ、ポリウレタン樹脂には所要の可塑剤、安定
剤、着色剤、滑剤等が慣用の使用範囲内で自由に
添加されてもよい。 一方表面層を形成する軟質フツ素樹脂層にも着
色剤の添加、さらには樹脂フイルムの表面コロナ
放電処理、薬品処理等により、接着性能を高める
ための粗面活性化を図ることもできる。 以下実施例により本発明を詳述するが、これら
によつて限定されるものではない。 実施例および比較例 1 幹ポリマーの製造 30容量のステンレス製オートクレーブに純
水15Kg、過硫酸カリウム30g、パーフロロオク
タン酸アンモニウム40gおよびt−ブチルペル
オキシアリルカーボネート30gを加え、排気後
フツ化ビニリデン単量体3.8Kg、クロロトリフ
ルオロエチレン単量体2.3Kgを仕込み、撹拌し
ながら51℃の温度で19時間重合反応を行ない、
反応終了時に撹拌の回転数を上げることによつ
てポリマーを析出させ、パウダー状のポリマー
を得た。水洗、乾燥後の収量は5.0Kgで、共重
合体中のt−ブチルペルオキシアリルカーボネ
ートにもとづく活性酸素量は、ヨウ素滴定法に
より、0.041%の測定された。 2 グラフト共重合体の製造(その1) 上記の共重合反応で得られた幹ポリマー144
gとフロンR113、1500gをステンレス製オー
トクレーブに仕込み、排気後、第1表に示す単
量体、VDF(実施例1)、TFE(比較例1)およ
びエチレン−CTFE(モル比約1:1)(比較例
2)をそれぞれ100g仕込み、98℃で22時間グ
ラフト重合を行なつた。 生成したポリマーを溶媒と分離後水洗乾燥
し、第1表の結果を得た。
(Industrial Application Field) The present invention provides a base material made of a novel fluorocarbon resin that has elasticity, chemical resistance, stain resistance, light resistance, weather resistance, and non-adhesive properties. Regarding covering materials. (Prior art) Conventional well-known general polyurethane synthetic leather has a texture and appearance that closely resembles natural leather, so it is mainly used for bags, bags, footwear, clothing, etc., which have a relatively short fashion cycle. Furniture, which is often used as a fashionable material and has a long service life.
As an interior material, various proposals have been made to improve surface adhesion, as well as chemical resistance, stain resistance, and weather resistance due to its hydrolyzable property, which causes it to become brittle within a few years. A fluororesin coating has also been proposed. In other words, as a fluororesin film-coated laminate, a method of combining a polyfluorinated vinyl film with a high-strength fabric via a polyurethane layer (Japanese Patent Application Laid-open No.
56-162647), heat-fused polyvinylidene fluoride (Japanese Patent Laid-Open No. 52-69989), or sheets made by heating various resin films above their melting temperature and melting and pasting them onto glass substrates (Japanese Patent Laid-Open No. 61-1999). 61849), and even
Laminations with PVDF, PTFE, PFA, etc. have been proposed. (Problems to be Solved by the Invention) However, although these fluororesins have excellent chemical resistance, weather resistance, and stain resistance, they are inferior in flexibility compared to polyurethane resins, and are also sensitive to organic solvents. Because of its poor solubility, it is difficult to produce a resin solution for molding a casting film in the synthetic leather production process, for example. (Means for Solving the Problems) The present invention has been made to improve the above-mentioned drawbacks, and the fluorine-based coating material coated on the base material through the polyurethane resin contains at least one kind of fluorine-containing material. By copolymerizing a monomer and a monomer having both a double bond and a peroxy bond in the molecule,
A flexible fluorine-containing elastic copolymer (stem polymer) whose glass transition temperature is below room temperature is produced, and 40 to 70 parts by weight of vinylidene fluoride monomer is copolymerized with 100 parts by weight of this backbone polymer. The purpose of the present invention is to provide a coating material made of a fluorocarbon resin. The base materials targeted by the present invention are not particularly limited, but include natural fibers such as cotton, wool, silk, and hemp, recycled fibers such as rayon, viscose, cotton wool, and acetate, or polyester and polyacrylonitrile. , synthetic fibers such as polyvinyl chloride and polyvinylidene chloride alone or mixed fibers, woven fabrics and non-woven fabrics made of inorganic fibers such as glass fibers and asbestos, as well as paper, wood, rubber, plastics, metals, etc. . The urethane resin used as the adhesive layer on the base material in the present invention is a polyester diol obtained by a polycondensation reaction of a polybasic acid such as phthalic acid or adipic acid with a polyhydric hydroxyl compound such as ethylene glycol or diethylene glycol. and −NCO at the terminal obtained from aliphatic diisocyanate.
Polyurethane resin obtained by chain-extending a urethane prepolymer having a group with diamine, or polyether-based polyurethane obtained by reaction with polyoxypropylene glycol, ethylene glycol, tolylene diisocyanate and glycerin,
Any material based on polyurethane resin can be used, such as a crosslinking agent made by reacting ethylene glycol and tolylene diisocyanate with amine-based catalytic diethylethanolamine. Next, the soft fluororesin, which is the most important feature of the present invention, will be explained. The present inventors proposed a method for producing a flexible fluororesin in JP-A-58-206615. From this point of view, new examination and improvement became necessary. The soft fluororesin used is made by copolymerizing one or more monomers including at least one fluorine-containing monomer with a monomer having both a double bond and a peroxy bond in the molecule. A fluorine-containing elastic copolymer (stem polymer) that contains peroxy groups and whose glass transition temperature is below room temperature.
and produce an aqueous emulsion of this stem polymer or
A fluororesin in which 40 to 70 parts by weight of vinylidene fluoride monomer is graft-polymerized to 100 parts by weight of the main polymer in a dispersion solvent, and the resin is N,N-
150g/in organic solvent such as dimethylformamide
The above-mentioned soluble fluororesin, in particular, the backbone polymer in the fluororesin is composed of a fluorine-containing copolymer whose glass transition point temperature is below room temperature. exhibits the properties of an elastic body, and conventional PTFE, PFA, FEP,
It is extremely flexible compared to fluororesins such as ETFE, PCTFE, PVDF, and PVF. The present invention is characterized by the use of such a soft fluororesin, but in order to laminate a thin film (for example, 5 to 25 microns thick) of the resin on the polyurethane synthetic leather surface, a resin solution must be applied. ,
A resin layer obtained by a so-called tearing film molding method, in which a film is formed by evaporating a solvent in a dryer, is applied. The problem with the casting film molding method for fluorine resins is that they have good organic solvent resistance, but the resin solubility is low, and furthermore, the solubility in organic solvents decreases dramatically as the fluorine content in the polymer increases. For this reason, casting film molding is not currently being carried out except for polyvinyl fluoride (PVF). However, PVF is a hard resin and cannot be said to be a good coating material for various base materials that require flexibility. As a concrete example of its application to the base material, the present inventors have improved the stain resistance, chemical resistance, etc., which are problems of polyurethane synthetic leather, while also improving the elastic touch of synthetic leather. As a result of conducting studies on how to maintain the properties of the fluorine resin, it was found that the thin film of the fluorocarbon resin according to the present invention is extremely useful as a synthetic leather coating material. The modification of resins, especially to solvent-soluble resins, has become important. The organic solvents used in the resin solution for forming the casting film are N,N-dimethylformamide (DMF) and methyl ethyl ketone (MEK).
It is common to use mixed solvents such as and toluene (TOL), and among these solvents, DMF was selected as the main compounding solvent for the flexible fluororesin because it has good solubility for the fluororesin. It is desirable that the resin concentration of the solution be at least 150g/, preferably 200g/or more.When forming a film on a casting film forming line, if it is less than 150g/, the amount of solvent evaporated during the film drying process will increase, making it economical. Not on target. As a method for increasing the solubility of soft fluororesins in solvents, the solubility is increased by graft copolymerizing vinylidene fluoride (VDF) monomers with fluorine-containing elastic copolymers (backbone polymers). It has been found. Tetrafluoroethylene monomer, chlorotrifluoroethylene monomer,
With copolymers such as tetrafluoroethylene/ethylene and chlorotrifluoroethylene/ethylene, resin swelling is observed in solvents, but at 150g/ethylene, swelling of the resin is observed.
It was difficult to solubilize any resin having a concentration higher than that. In addition, regarding the influence of the amount of VDF monomer grafted onto the backbone polymer on solubility, the appropriate range is 40 to 70 parts by weight per 100 parts by weight of the backbone polymer, and the solubility test in DMF shows that it is 40 parts by weight or less. If the amount of grafting exceeds 70 parts by weight, it will become gel-like and difficult to dissolve, and if it exceeds 70 parts by weight, the flexibility of the resin's physical properties will decrease and the rubbery properties that are characteristic of soft fluororesins will be lost. It becomes undesirable as a covering material for materials such as synthetic leather. In this way, a soft fluororesin that is soluble in DMF is produced by forming a fluorine-containing elastic copolymer (base polymer) with peroxy bonds in the first stage of the copolymerization reaction.
In the second step reaction, VDF monomers are graft copolymerized in a dispersion solvent of the copolymer obtained in the first step reaction at a temperature below which decomposes peroxy bonds and generates radicals. You can get it. The polymerization conditions of the resin (temperature, stirring number, autoclave capacity, catalyst amount, etc.) affect the degree of polymerization, and the degree of polymerization affects the resin solubility, but since the polymerization reaction is a two-step reaction and is complicated. The range of use of the resin may be selected based on the solubility of the final material, the graft copolymer, in an organic solvent containing DMF as the main ingredient. The unsaturated peroxides used here include t-butyl peroxy methacrylate, t-
Examples include unsaturated peroxyesters such as butylperoxycrotonate, and unsaturated peroxycarbonates such as t-butylperoxyallyl carbonate and P-menthane peroxyallyl carbonate. In addition, as the composition of one or more fluorine-containing monomers, an elastic polymer having a composition of fluorine rubber, a binary system of vinylidene fluoride (VDF) and hexafluoropyropene (HFP), VDF and HFP and tetrafluoroethylene (TFE), and VDF
An example is a monomer composition such as a binary system of and chlorotrifluoroethylene (CTFE). In the present invention, there is no particular restriction on the thickness of the polyurethane resin layer and soft fluororesin applied on the base material, and they are generally used at a thickness of about 0.01 to 1 mm, but they have good weather resistance and antifouling properties. There are no particular restrictions, and the thickness can be made thicker or thinner as long as the objectives of durability and flexibility are achieved. The urethane resin is applied by topping, calendering, coating, or other methods, and necessary plasticizers, stabilizers, colorants, lubricants, etc. may be freely added to the polyurethane resin within the range of customary use. . On the other hand, by adding a coloring agent to the soft fluororesin layer forming the surface layer, and further treating the resin film with surface corona discharge, chemical treatment, etc., it is possible to activate the surface roughness in order to improve adhesive performance. The present invention will be described in detail below with reference to Examples, but is not limited thereto. Examples and Comparative Example 1 Production of backbone polymer 15 kg of pure water, 30 g of potassium persulfate, 40 g of ammonium perfluorooctanoate, and 30 g of t-butylperoxyallyl carbonate were added to a 30-capacity stainless steel autoclave, and after evacuation, the vinylidene fluoride monomer was dissolved. 3.8 kg of chlorotrifluoroethylene monomer and 2.3 kg of chlorotrifluoroethylene monomer were charged, and the polymerization reaction was carried out at a temperature of 51°C for 19 hours with stirring.
At the end of the reaction, the stirring speed was increased to precipitate the polymer to obtain a powdery polymer. The yield after washing with water and drying was 5.0 kg, and the amount of active oxygen based on t-butyl peroxyallyl carbonate in the copolymer was determined to be 0.041% by iodometric titration. 2 Production of graft copolymer (Part 1) Stem polymer 144 obtained by the above copolymerization reaction
Put 1,500 g of Freon R113 into a stainless steel autoclave, and after evacuation, add the monomers shown in Table 1, VDF (Example 1), TFE (Comparative Example 1), and ethylene-CTFE (molar ratio of about 1:1). (Comparative Example 2) was charged in an amount of 100 g each, and graft polymerization was carried out at 98° C. for 22 hours. The produced polymer was separated from the solvent, washed with water, and dried to obtain the results shown in Table 1.

【表】 3 溶解性試験(その1) 上記グラフト共重合で得られたポリマー50g
を夫々300mlのビーカーに入れ、N,N−ジメ
チルホルムアミド(DMF、試薬一級)を225ml
を加えて、三田村理研工業(株)製ラボラトリーデ
イスパーザーにて20分間撹拌し、一昼夜室温に
て静置後、メチルエチルケトン25mlを添加し
て、再度ラボラトリーデイスパーザーにて5分
間撹拌後静置し、ポリマー溶解液の性状を観察
し、粘度を測定した。その結果を第2表に示
す。
[Table] 3 Solubility test (Part 1) 50g of polymer obtained from the above graft copolymerization
Place each in a 300 ml beaker and add 225 ml of N,N-dimethylformamide (DMF, first grade reagent).
was added, stirred for 20 minutes using a laboratory disperser manufactured by Mitamura Riken Kogyo Co., Ltd., and allowed to stand overnight at room temperature, then 25 ml of methyl ethyl ketone was added, stirred again using a laboratory disperser for 5 minutes, and then allowed to stand. The properties of the polymer solution were observed and the viscosity was measured. The results are shown in Table 2.

【表】 上記結果により、VDFグラフト共重合体は
溶解するが、TFEおよびE−CTFE共重合体
は溶解液とならず、キヤステイングフイルム成
形用樹脂として不適であつた。 4 グラフト共重合体の製造(その2) 上記の共重合体反応で得られた幹ポリマー
144gとフロンR113、1500gをステンレス製オ
ートクレーブに仕込み、排気後、VDF単量体
を第3表に示すようにその仕込量を変化させて
仕込み、98℃、22時間でグラフト重合を行なつ
た。 生成したポリマーを溶媒と分離後水洗乾燥
し、下記表の結果を得た。
[Table] According to the above results, the VDF graft copolymer was dissolved, but the TFE and E-CTFE copolymers were not dissolved and were unsuitable as resins for casting film molding. 4 Production of graft copolymer (Part 2) Stem polymer obtained by the above copolymer reaction
144 g and 1500 g of Freon R113 were placed in a stainless steel autoclave, and after evacuation, VDF monomer was charged in varying amounts as shown in Table 3, and graft polymerization was carried out at 98°C for 22 hours. The produced polymer was separated from the solvent, washed with water, and dried to obtain the results shown in the table below.

【表】 ト増加量
5 溶解性試験およびせん断弾性率の測定 上記VDFグラフト共重合体で得られたポリ
マーについて前記の溶解性試験法により、溶解
液の性状を観察し、B型粘度計を用い、25℃に
おける粘度を測定した。 また、VDFグラフト共重合体を加熱ロール
で素練り後、1mm厚のシートを加熱プレスにて
成形し、捩れ自由減衰型粘弾性測定装置(レス
カ社製RD−1100AD型、試験片寸法、8cm×
1cm×1mm厚)にて30℃におけるせん断弾性率
を測定した。その結果を第4表に示す。
[Table] Increase in amount 5 Solubility test and shear modulus measurement For the polymer obtained with the VDF graft copolymer, the properties of the solution were observed using the solubility test method described above, and using a B-type viscometer. , the viscosity at 25°C was measured. In addition, after masticating the VDF graft copolymer with a heated roll, a 1 mm thick sheet was formed using a heated press, and a torsional free damping type viscoelasticity measuring device (Model RD-1100AD manufactured by Resca, test piece size, 8 cm ×
The shear modulus at 30°C was measured at 1 cm x 1 mm thick). The results are shown in Table 4.

【表】 参考値。
上記結果より、幹ポリマー100重量部に対し
てのVDFグラフト量が40重量部未満ではポリ
マーの溶解液作成で問題があり、一方、70重量
部を超えると、ポリマーのせん断弾性率が大き
くなり、フイルムが硬くなるため合成皮革の表
面材としては使用が好ましくない。 また、市販のPVDF樹脂(ペンウオルト社
製)およびPTFE樹脂(ダイキン社製)につい
て、せん断弾性率を測定した結果、30℃での測
定値は、 PVDF 8×109 dyne/cm2 PTFE 2×109 dyne/cm2 であり、当該軟質フツ素樹脂よりもPVDFおよ
びPTFEはより硬い樹脂であり、合成皮革被覆
材としては好ましくない。 6 合成皮革の作成 ポリプロピレン製離型紙上に前記溶解性試験
で製作した実施例3の溶解液(VDFグラフト
量54重量部、濃度200g/)を第5表実施例
に示す組成で塗布し、100℃1分間乾燥し、固
形分付着量20g/m2の表面層(10μm)を形成
させた。次いで第5表に示す組成の二液性ポリ
ウレタン樹脂からなる接着剤を塗布し、80℃で
1分間乾燥して固形分付着量40g/m2のポリウ
レタン接着層(20μm)を形成させたのち、直
ちにクロス基材(1mm)に貼り合わせ、常温で
24時間熟成を行つた。しかるのち離型紙を剥離
してフツ素樹脂被覆の合成皮革を作成した。ま
た、比較例として同様な加工仕様により、ポリ
ウレタン合成皮革を作成した。その組成仕様を
第5表に、評価テストの結果を第6表に示し
た。 7 合成皮革の試験方法 (1) 耐光性試験 JISA−6921「壁紙」に準じた方法でテスト
した。 (2) NOx試験 亜硝酸ナトリウム 0.4g 希硫酸 10ml デシケーターの内壁に任意の大きさの試料
を貼り、デシケーター内に上記薬品を時計皿
に入れデシケーターの蓋を閉め10分間後に試
料を取り出し判定した。 評価方法は5段階表示で5が最高値を示
す。 (3) 耐薬品性、耐汚染性試験 夫々の共試液(滴下液)を水平に保持され
た合成皮革上に、約1.0〜1.5ml滴下し24時間
後湿布で拭て取り乾燥後、供試液を再度同一
場所に滴下する操作を7回くり返し目視観察
で評価し、変化なし○、かすかに着色汚染
△、明らかに着色汚染が認められたものを×
とした。 (4) 風合いは、肌合触感による評価で○は優で
ある。 (5) 洗濯性は変化なしを○とした。
[Table] Reference values.
From the above results, if the amount of VDF grafted to 100 parts by weight of the main polymer is less than 40 parts by weight, there will be a problem in creating a polymer solution, while if it exceeds 70 parts by weight, the shear modulus of the polymer will increase. Because the film becomes hard, it is not preferable to use it as a surface material for synthetic leather. In addition, as a result of measuring the shear modulus of commercially available PVDF resin (manufactured by Pennwalt) and PTFE resin (manufactured by Daikin), the measured value at 30°C was: PVDF 8 × 10 9 dyne/cm 2 PTFE 2 × 10 9 dyne/cm 2 , and PVDF and PTFE are harder resins than the soft fluororesin, and are not preferred as synthetic leather covering materials. 6. Preparation of synthetic leather The solution of Example 3 prepared in the above solubility test (54 parts by weight of VDF graft, concentration 200 g/) was applied onto a polypropylene release paper with the composition shown in Table 5 Example. It was dried for 1 minute at °C to form a surface layer (10 μm) with a solid content of 20 g/m 2 . Next, an adhesive made of a two-component polyurethane resin having the composition shown in Table 5 was applied and dried at 80°C for 1 minute to form a polyurethane adhesive layer (20 μm) with a solid content coverage of 40 g/m 2 . Immediately adhere to a cloth base material (1 mm) and leave at room temperature.
It was aged for 24 hours. Thereafter, the release paper was peeled off to create a fluororesin-coated synthetic leather. In addition, as a comparative example, polyurethane synthetic leather was created using the same processing specifications. The composition specifications are shown in Table 5, and the results of the evaluation test are shown in Table 6. 7 Test method for synthetic leather (1) Light resistance test Tested in accordance with JISA-6921 "Wallpaper". (2) NO x test Sodium nitrite 0.4g Dilute sulfuric acid 10ml A sample of any size was pasted on the inner wall of a desiccator, the above chemicals were placed in a watch glass, the lid of the desiccator was closed, and after 10 minutes the sample was taken out and evaluated. . The evaluation method is a 5-level scale, with 5 being the highest value. (3) Chemical resistance and stain resistance test Approximately 1.0 to 1.5 ml of each test solution (dropped solution) was dropped onto synthetic leather held horizontally. After 24 hours, wiped with a compress and dried. The operation of dropping the liquid on the same spot was repeated 7 times and visually observed, and the results were evaluated as ○ with no change, △ with faint colored contamination, and × with obvious colored contamination.
And so. (4) Texture was evaluated based on the feel against the skin, and ○ means excellent. (5) No change in washability was rated as ○.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 基板材にポリウレタン樹脂層を介して、被覆
するフツ素樹脂が、すくなくとも一種の含フツ素
単量体を含む一種以上の単量体と、分子内に二重
結合とペルオキシ結合を同時に有する単量体とを
共重合せしめて、そのガラス転位温度が、室温以
下である含フツ素弾性共重合体(幹ポリマー)を
製造し、該幹ポリマー100重量部に対してフツ化
ビニリデン単量体を40〜70重量部グラフト重合せ
しめた軟質系フツ素樹脂からなる被覆材。
1. The fluororesin coated on the substrate material via a polyurethane resin layer contains at least one kind of monomer containing at least one kind of fluorine-containing monomer and a monomer having both a double bond and a peroxy bond in the molecule. A fluorine-containing elastic copolymer (stem polymer) whose glass transition temperature is below room temperature is produced by copolymerizing the vinylidene fluoride monomer with 100 parts by weight of the backbone polymer. A coating material made of a soft fluororesin grafted with 40 to 70 parts by weight.
JP17721687A 1987-07-17 1987-07-17 Fluoroplastic covered material Granted JPS6422547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17721687A JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17721687A JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Publications (2)

Publication Number Publication Date
JPS6422547A JPS6422547A (en) 1989-01-25
JPH052503B2 true JPH052503B2 (en) 1993-01-12

Family

ID=16027189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17721687A Granted JPS6422547A (en) 1987-07-17 1987-07-17 Fluoroplastic covered material

Country Status (1)

Country Link
JP (1) JPS6422547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031850A (en) * 2005-07-22 2007-02-08 Toray Coatex Co Ltd Synthetic leather having oil-repellent stain-resistant performance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615225B2 (en) * 1989-04-17 1994-03-02 セントラル硝子株式会社 STRUCTURAL MEMBRANE MATERIAL, MEMBRANE STRUCTURE, AND METHOD FOR PRODUCING THEM
JPH03113619U (en) * 1990-03-07 1991-11-20
JP3327447B2 (en) * 1995-12-04 2002-09-24 セントラル硝子株式会社 Adhesive for vinylidene fluoride resin
US5863657A (en) * 1995-12-27 1999-01-26 Central Glass Company, Limited Adhesive for bonding together vinylidene fluoride resin and substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031850A (en) * 2005-07-22 2007-02-08 Toray Coatex Co Ltd Synthetic leather having oil-repellent stain-resistant performance

Also Published As

Publication number Publication date
JPS6422547A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
US2773050A (en) Water vapor permeable compositions and articles containing a polyacrylic ester and polyvinyl alcohol
JP2000517360A (en) Method of improving adhesion between fluoropolymer and hydrocarbon substrate
JP5949853B2 (en) Moisture permeable waterproof fabric and method for producing the same
JPH052503B2 (en)
US5863657A (en) Adhesive for bonding together vinylidene fluoride resin and substrate
JPH0615225B2 (en) STRUCTURAL MEMBRANE MATERIAL, MEMBRANE STRUCTURE, AND METHOD FOR PRODUCING THEM
EP0098091B1 (en) Polymer compositions and their use in producing binders, coatings and adhesives and substrates coated or impregnated therewith
KR101665226B1 (en) Moisture-permeable waterproof fabric
US20070100063A1 (en) Acrylic polymer emulsion and glove formed from the same
US5795654A (en) Adhesive for bonding together polyvinylidene fluoride resin and substrate
JPH01185376A (en) Coating fluorocarbon resin and fluorocarbon resin solution
JP7111160B2 (en) ANTI-SLIP PROCESSING AGENT, ANTI-SLIP FIBERS AND METHOD FOR MANUFACTURING ANTI-SLIP FIBERS
JP2000192329A (en) Yarn composed of functional grafted polyurethane and its production
US3330886A (en) Graft copolymers of polyvinyl chloride with butadiene, acrylate ester and diethylenic compound
JP3652858B2 (en) Chloroprene-based copolymer latex and adhesive composition thereof
JPS63286340A (en) Laminate of soft fluorine resin and rubber
JPH03182538A (en) Fluororesin coating solution
JPH0576968B2 (en)
JPS5840312A (en) Production of flexible thermoplastic resin
US2829066A (en) Antistatic copolymer of sulfonated styrene and vinyl-pyridine and treatment therewith of synthetic shaped articles
JPH034381B2 (en)
US3833684A (en) Stable,homogeneous solutions of polyalkyl glutamates containing dissolved elastomers
JPH02135269A (en) Fluororesin solution for coating
JP2751366B2 (en) Method for producing gas barrier sheet
JPH0812957A (en) Adhesive for vinylidene fluoride resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees