JPH05248631A - Method for controlling furnace temperature - Google Patents
Method for controlling furnace temperatureInfo
- Publication number
- JPH05248631A JPH05248631A JP8152492A JP8152492A JPH05248631A JP H05248631 A JPH05248631 A JP H05248631A JP 8152492 A JP8152492 A JP 8152492A JP 8152492 A JP8152492 A JP 8152492A JP H05248631 A JPH05248631 A JP H05248631A
- Authority
- JP
- Japan
- Prior art keywords
- burner
- combustion
- furnace temperature
- furnace
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000002485 combustion reaction Methods 0.000 claims abstract description 43
- 239000000446 fuel Substances 0.000 claims abstract description 12
- 238000013459 approach Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、バーナを熱源とする工
業用炉において、バーナの燃焼を制御し炉内温度を目標
温度に安定的にコントロールする炉温度制御方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace temperature control method for controlling the combustion of a burner and stably controlling the temperature inside the furnace to a target temperature in an industrial furnace using a burner as a heat source.
【0002】[0002]
【従来の技術】ラジアントチューブバーナが設けられた
熱処理炉、或いは直火式加熱炉等の熱源としてバーナを
使用している工業用炉においては、炉内温度を目標温度
にコントロールするために、従来から炉内温度を検出し
バーナへ送給される燃焼用空気,燃料等の供給量をPI
D調節計等の制御器を介して流量調節弁により操作する
ことによりフィードバック制御する方式が採られてい
る。2. Description of the Related Art In a heat treatment furnace provided with a radiant tube burner, or in an industrial furnace using a burner as a heat source such as a direct-fired heating furnace, a conventional furnace is used to control the temperature inside the furnace to a target temperature. Detects the temperature inside the furnace from the PI and determines the supply amount of combustion air, fuel, etc., to be sent to the burner.
A method of performing feedback control by operating a flow rate control valve via a controller such as a D controller is adopted.
【0003】しかし流量調節弁を絞ることによってバー
ナの燃焼を安定して変化させ得る発熱量の範囲は1:3
程度であり、それ以下に流量調節弁を絞ると燃焼不良を
起こし事故を招くおそれがある。However, the range of calorific value that can stably change the combustion of the burner by throttling the flow control valve is 1: 3.
However, if the flow control valve is throttled below that, combustion failure may occur and an accident may occur.
【0004】そこで上記変化範囲を拡大するため従来か
ら間引き制御が行なわれていた。この間引き制御とは、
複数のバーナが設けられている場合、それを例えば2つ
の系統に分け、発熱量が少ないときは一方の系統のバー
ナのみを燃焼させ他方の系統のバーナは休止させ、多く
の発熱量を要するときは両系統のバーナとも燃焼させる
ようにするものである。Therefore, in order to expand the range of change, thinning control has been conventionally performed. This thinning control is
When multiple burners are provided, divide them into, for example, two systems, and when the calorific value is small, burn the burner of one system only and the burner of the other system is stopped, and a large calorific value is required. Is to burn both burners.
【0005】[0005]
【発明が解決しようとする課題】しかし上記のようにバ
ーナを複数の系統に分割すると、電磁弁,調節弁,操作
スイッチ,電気回路等の機器がその分割数にほぼ比例し
て数倍必要になって来るためコストがかさむという問題
がある。However, when the burner is divided into a plurality of systems as described above, the equipment such as the solenoid valve, the control valve, the operation switch, and the electric circuit needs to be several times in proportion to the number of divisions. However, there is a problem in that the cost will increase because of the increase.
【0006】また、上記PID調節計等の制御器は、検
出温度と目標温度との偏差の比例項と積分項と微分項と
を三要素とする操作量が出力され、周知のように、炉内
温度を目標温度に早期に安定的に収束させようとするも
のであるが、実際の炉操業においては、上記各項の係数
が例えば均熱時における加熱と冷却の切換を伴なう時に
温度偏差のふらつきを小さくするための値と、温度目標
値の変化に炉温を追従させる時の過渡応答を良くするた
めの値とでは相違するなど調整が難しく、かつ性能に限
界があった。また加熱と冷却の切換時には積分項を排除
し切換応答性を高めることもあったので加熱と冷却の切
換えを伴なう区間(均熱時等)において積分項本来の機
能が得られず制御性能がよくなかった。Further, the controller such as the PID controller outputs a manipulated variable having three elements of a proportional term, an integral term and a differential term of the deviation between the detected temperature and the target temperature, and as is well known, it is a furnace. Although it is intended to quickly and stably converge the internal temperature to the target temperature, in the actual furnace operation, the coefficient of each of the above-mentioned terms is, for example, the temperature when switching between heating and cooling during soaking. It was difficult to make adjustments such as a difference between the value for reducing the fluctuation of the deviation and the value for improving the transient response when making the furnace temperature follow the change of the target temperature value, and the performance was limited. Also, when switching between heating and cooling, the integral term was sometimes eliminated to improve the switching response, so the original function of the integral term cannot be obtained in the section that involves switching between heating and cooling (at the time of soaking) and control performance is improved. Was not good.
【0007】[0007]
【課題を解決するための手段】本発明の炉温度制御方法
は上記課題を解決しようとするもので、炉内温度を検出
しバーナへ送給する燃焼用空気,燃料等の供給量を制御
器を介して流量調節弁により操作することによりバーナ
の燃焼を止めることなく炉内温度を目標温度にフィード
バック制御する連続燃焼式制御系と、上記連続燃焼式制
御系の作動中にバーナへの燃焼用空気,燃料等の供給量
が低流量カットポイントを下まわったときに移行する間
歇燃焼式制御系とを具備し、該間歇燃焼式制御系は、予
め決められた周期ごとに、前記制御器より出力される所
要操作量に相当する時間長をもってバーナを燃焼させる
ようにし、間歇燃焼制御系にあって該バーナの燃料の低
流量カット弁が閉じられている時には該バーナに供給す
る燃焼用空気の量を同時に低減または閉止させるように
したことを特徴とするものである。SUMMARY OF THE INVENTION A furnace temperature control method of the present invention is intended to solve the above-mentioned problems and is to control the supply amount of combustion air, fuel, etc. for detecting the temperature inside the furnace and sending it to the burner. A continuous combustion control system that controls the furnace temperature to the target temperature without stopping the combustion of the burner by operating the flow rate control valve via the An intermittent combustion type control system that shifts when the supply amount of air, fuel, etc. falls below a low flow rate cut point, and the intermittent combustion type control system is provided from the controller every predetermined cycle. The burner is burned for a time length corresponding to the required operation amount to be output, and when the low flow cut valve for fuel of the burner in the intermittent combustion control system is closed, the combustion air supplied to the burner is amount It is characterized in that so as to reduce or close simultaneously.
【0008】[0008]
【作用】系統を複数にすることなく発熱量変化範囲を広
くできるので低コストで制御系の性能を向上できる。ま
た、間歇燃焼制御系にあって低流量カット弁を閉じてい
る時にバーナへの無用な燃料用空気の供給を低減させる
ことで、その時の熱損失を減らす。Since the range of change in the amount of heat generation can be widened without using a plurality of systems, the performance of the control system can be improved at low cost. Further, by reducing the supply of unnecessary fuel air to the burner when the low flow cut valve is closed in the intermittent combustion control system, heat loss at that time is reduced.
【0009】[0009]
【実施例】次に本発明の実施例を図面と共に説明する。
図1において、1は炉体2に設けられたラジアントチュ
ーブで、その一端にバーナ3が設けられている。4は該
バーナ3に燃焼用空気を供給する給気管、5は該バーナ
3に燃料を供給する給ガス管である。Embodiments of the present invention will now be described with reference to the drawings.
In FIG. 1, reference numeral 1 is a radiant tube provided in the furnace body 2, and a burner 3 is provided at one end thereof. Reference numeral 4 is an air supply pipe for supplying combustion air to the burner 3, and 5 is a gas supply pipe for supplying fuel to the burner 3.
【0010】給気管4にはコントロールモータ6によっ
て開度を調節し得る流量調節弁7が設けられている。8
は該給ガス管5に設けられた流量調節弁で、該流量調節
弁8は給気管4と給ガス管5の差圧により作動するダイ
ヤフラム9により開度が調節され、該給ガス管5を流れ
る燃料量が給気管4を流れる空気量に比例しバーナ3に
おける空燃比が常に望ましい値に保たれるようにしてい
る。10は給ガス管5に設けられた低流量カット弁であ
る。The air supply pipe 4 is provided with a flow rate adjusting valve 7 whose opening can be adjusted by a control motor 6. 8
Is a flow rate control valve provided in the gas supply pipe 5, and the flow rate control valve 8 has its opening adjusted by a diaphragm 9 operated by the differential pressure between the gas supply pipe 4 and the gas supply pipe 5, The amount of fuel flowing is proportional to the amount of air flowing through the air supply pipe 4, and the air-fuel ratio in the burner 3 is always kept at a desired value. Reference numeral 10 is a low flow rate cut valve provided in the gas supply pipe 5.
【0011】11は炉体2内の温度を検出する熱電対で
ある。しかしてこの制御系では、熱電対11によって検
出された炉内温度と目標温度との偏差が演算されその偏
差がPID調節計等の制御器12に入力される。制御器
12はその偏差の大小,時間的変位,時間的累積、即
ち、比例値,微分値,積分値を演算するもので、その和
が操作量としてロジック回路13に出力される。Reference numeral 11 is a thermocouple for detecting the temperature in the furnace body 2. In this control system, however, the deviation between the furnace temperature detected by the thermocouple 11 and the target temperature is calculated, and the deviation is input to the controller 12 such as a PID controller. The controller 12 calculates the magnitude of the deviation, the temporal displacement, the temporal accumulation, that is, the proportional value, the derivative value, and the integral value, and the sum is output to the logic circuit 13 as the manipulated variable.
【0012】ロジック回路13では制御器12から受け
た操作量に従い流量調節弁7に開度を指令する。このた
め給気管4を通してバーナ3に流量調節弁7の開度に即
した燃焼用空気が供給されると共に、その流量に従いダ
イヤフラム9によって流量調節弁8の開度が調節される
ためにバーナ3にその燃料ガスが供給されバーナ3で燃
焼しラジアントチューブ1を介して炉体2内を加熱す
る。In the logic circuit 13, the opening degree is commanded to the flow rate control valve 7 according to the operation amount received from the controller 12. Therefore, the combustion air is supplied to the burner 3 through the air supply pipe 4 in accordance with the opening degree of the flow rate adjusting valve 7, and the diaphragm 9 adjusts the opening degree of the flow rate adjusting valve 8 according to the flow rate of the combustion air. The fuel gas is supplied and burned in the burner 3 to heat the inside of the furnace body 2 via the radiant tube 1.
【0013】このような連続燃焼式制御系にロジック回
路13より指令される流量調節弁7の開度は制御器12
より出力される操作量に従い変化する。即ち図2に例示
したようにロジック回路13より指令される流量調節弁
7の開度が所定の低流量カットポイント以上であるとき
は、低流量カット弁10は開状態にあり該ロジック回路
13より指令される流量調節弁7の開度が制御器12よ
り出力される操作量に比例して増大するようにし、該流
量調節弁7,流量調節弁8の開度が調節されることによ
りバーナ3の発熱量が調整され、そのとき熱電対11に
て検出される炉内温度がフィードバックされることによ
り炉内温度が目標温度に自動制御されるようにしてい
る。The opening of the flow rate control valve 7 instructed by the logic circuit 13 in such a continuous combustion control system is controlled by the controller 12.
It changes according to the manipulated variable output. That is, as illustrated in FIG. 2, when the opening degree of the flow rate control valve 7 commanded by the logic circuit 13 is equal to or higher than a predetermined low flow rate cut point, the low flow rate cut valve 10 is in the open state and the logic circuit 13 The commanded opening of the flow rate adjusting valve 7 is increased in proportion to the operation amount output from the controller 12, and the opening degrees of the flow rate adjusting valve 7 and the flow rate adjusting valve 8 are adjusted. The calorific value is adjusted, and the furnace temperature detected by the thermocouple 11 at that time is fed back, so that the furnace temperature is automatically controlled to the target temperature.
【0014】一方、炉内温度が目標温度に近くなり制御
器12より出力される操作量が小さくなって流量調節弁
7に指令される開度が低流量カットポイントを下まわっ
たとき間歇燃焼式制御系に移行する。この間歇燃焼式制
御系ではロジック回路13は図4に示したように流量調
節弁7および低流量カット弁10に予め決められた一定
周期tごとに開指令を出す。この開指令の出ている時間
長m、即ちバーナ3の燃焼持続時間は図3に示したよう
に制御器12より出力される操作量に比例して(A),
(B),(C)に示したように次第に長くなるようにす
る。なおこのときの流量調節弁7の開度は低流量カット
ポイントの少し上に保持される。On the other hand, when the temperature inside the furnace is close to the target temperature, the manipulated variable output from the controller 12 becomes small, and the opening degree commanded to the flow rate control valve 7 falls below the low flow rate cut point, intermittent combustion type Move to control system. In this intermittent combustion type control system, the logic circuit 13 issues an open command to the flow rate control valve 7 and the low flow rate cut valve 10 at every predetermined constant period t as shown in FIG. The length m of the open command, that is, the combustion duration of the burner 3 is proportional to the operation amount output from the controller 12 as shown in FIG.
As shown in (B) and (C), the length is gradually increased. The opening of the flow rate control valve 7 at this time is maintained slightly above the low flow rate cut point.
【0015】このように一定周期tでバーナ3を燃焼さ
せると共にその燃焼持続時間mが操作量に比例して制御
されることによってその時間内の発熱量が制御され、炉
内温度を目標温度に維持できる。そして低流量カットポ
イント以上になったときはこの間歇燃焼式制御系から元
の連続燃焼式制御系に戻されロジック回路13は流量調
節弁7に元どおり開度指令を出すようになる。In this way, the burner 3 is burned at a constant cycle t, and the combustion duration m is controlled in proportion to the manipulated variable, whereby the calorific value within that time is controlled and the furnace temperature is brought to the target temperature. Can be maintained. When the low flow rate cut point or more is reached, the intermittent combustion control system is returned to the original continuous combustion control system, and the logic circuit 13 issues the opening command to the flow control valve 7 again.
【0016】なお周期tは短かく設定したほうが炉内温
度の変動幅をより小さくできるが、あまり短かくすると
流量調節弁7,低流量カット弁10の開閉頻度がはげし
くなりその耐久性が問題となるので、実用上2〜5分程
度が望ましく、その場合均熱時の炉内温度変動幅を2℃
以内に抑えることができ、従来の変動幅(7℃以上)に
比べ大幅な改善が認められた。なお周期tの最適値は炉
の温度特性や弁の耐久性等を考慮して決定されるので上
記2〜5分の範囲外になることもある。It should be noted that if the cycle t is set short, the fluctuation range of the temperature in the furnace can be made smaller, but if it is set too short, the opening and closing frequency of the flow rate control valve 7 and the low flow rate cut valve 10 becomes unfavorable and its durability becomes a problem. Therefore, about 2 to 5 minutes is desirable for practical use, in which case the temperature fluctuation range in the furnace during soaking is 2 ° C.
It was possible to suppress the fluctuation within the range, and a significant improvement was recognized compared to the conventional fluctuation range (7 ° C or higher). Since the optimum value of the cycle t is determined in consideration of the temperature characteristics of the furnace, the durability of the valve, etc., it may fall outside the range of 2 to 5 minutes.
【0017】なお、低流量カット弁10が閉じられたと
き流量調節弁7を開状態のままにしておくとバーナ3に
燃焼用空気のみがそのまま供給されその燃焼用空気はラ
ジアントチューブ1中を循回するので炉体2が冷却され
熱損失となるが、本発明では低流量カット弁10が閉じ
られると同時に流量調節弁7を閉止または絞ることによ
りバーナ3に供給される燃焼用空気を低減または閉止す
るようにしたので、ラジアントチューブ1を介して炉体
2が冷却することなく無用な熱放出がなくなり省エネル
ギー上有益となる。If the flow control valve 7 is left open when the low flow cut valve 10 is closed, only the combustion air is supplied to the burner 3 as it is, and the combustion air circulates in the radiant tube 1. Since the furnace body 2 is cooled and heat is lost because it is rotated, in the present invention, the low flow cut valve 10 is closed and at the same time the flow control valve 7 is closed or throttled to reduce the combustion air supplied to the burner 3. Since it is closed, the furnace body 2 is not cooled through the radiant tube 1 and unnecessary heat release is eliminated, which is beneficial for energy saving.
【0018】[0018]
【発明の効果】このように本発明の炉温度制御方法は、
連続燃焼式制御系と間歇燃焼式制御系を具備することに
よつてバーナの単位時間内の発熱量を実質的に大幅に変
化させることができ、炉内温度を広範に調節し得るよう
になる。しかも炉内温度を目標温度に精度良く維持でき
るようになり制御性能が向上するほか、省エネルギー上
も有益なる効果がある。As described above, the furnace temperature control method of the present invention is
By providing a continuous combustion type control system and an intermittent combustion type control system, the calorific value of the burner per unit time can be changed substantially substantially, and the temperature inside the furnace can be adjusted over a wide range. .. In addition, the furnace temperature can be maintained at the target temperature with high accuracy, the control performance is improved, and there is an effect of saving energy.
【図1】本発明に係る炉温度制御方法のブロック図。FIG. 1 is a block diagram of a furnace temperature control method according to the present invention.
【図2】操作量と流量調節弁開度の関係を示す線図。FIG. 2 is a diagram showing a relationship between an operation amount and a flow control valve opening.
【図3】操作量とバーナの燃焼持続時間の関係を示す線
図。FIG. 3 is a diagram showing the relationship between the manipulated variable and the burner combustion duration.
【図4】バーナ燃焼のタイミングチャート。FIG. 4 is a timing chart of burner combustion.
2 炉体 3 バーナ 4 給気管 5 給ガス管 7 流量調節弁 8 流量調節弁 10 低流量カット弁 11 熱電対 12 制御器 13 ロジック回路 2 furnace body 3 burner 4 air supply pipe 5 gas supply pipe 7 flow control valve 8 flow control valve 10 low flow cut valve 11 thermocouple 12 controller 13 logic circuit
Claims (1)
用空気,燃料等の供給量を制御器を介して流量調節弁に
より操作することによりバーナの燃焼を止めることなく
炉内温度を目標温度にフィードバック制御する連続燃焼
式制御系と、上記連続燃焼式制御系の作動中にバーナへ
の燃焼用空気,燃料等の供給量が低流量カットポイント
を下まわったときに移行する間歇燃焼式制御系とを具備
し、該間歇燃焼式制御系は、予め決められた周期ごと
に、前記制御器より出力される所要操作量に相当する時
間長をもってバーナを燃焼させるようにし、間歇燃焼制
御系にあって該バーナの燃料の低流量カット弁が閉じら
れている時には該バーナに供給する燃焼用空気の量を同
時に低減または閉止させるようにしたことを特徴とする
炉温度制御方法。1. A furnace temperature is detected without stopping combustion of the burner by controlling the supply amount of combustion air, fuel, etc., which detects the furnace temperature and supplies it to the burner, via a controller. A continuous combustion control system that performs feedback control to the target temperature, and an intermittent combustion that shifts when the supply amount of combustion air, fuel, etc. to the burner falls below the low flow cut point during the operation of the above continuous combustion control system. The intermittent combustion control system is configured to burn the burner for a predetermined period and for a time length corresponding to a required operation amount output from the controller, thereby controlling the intermittent combustion control. A furnace temperature control method characterized in that when the low flow cut valve for fuel of the burner is closed in the system, the amount of combustion air supplied to the burner is simultaneously reduced or closed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8152492A JPH05248631A (en) | 1992-03-02 | 1992-03-02 | Method for controlling furnace temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8152492A JPH05248631A (en) | 1992-03-02 | 1992-03-02 | Method for controlling furnace temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05248631A true JPH05248631A (en) | 1993-09-24 |
Family
ID=13748728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8152492A Pending JPH05248631A (en) | 1992-03-02 | 1992-03-02 | Method for controlling furnace temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05248631A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959431B2 (en) * | 2008-04-21 | 2011-06-14 | Fives North American Combustion, Inc. | Radiant tube with recirculation |
CN109871052A (en) * | 2019-04-03 | 2019-06-11 | 上海颐柏科技股份有限公司 | A kind of electrothermal radiation tube temperature control equipment and its control method |
-
1992
- 1992-03-02 JP JP8152492A patent/JPH05248631A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959431B2 (en) * | 2008-04-21 | 2011-06-14 | Fives North American Combustion, Inc. | Radiant tube with recirculation |
CN109871052A (en) * | 2019-04-03 | 2019-06-11 | 上海颐柏科技股份有限公司 | A kind of electrothermal radiation tube temperature control equipment and its control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101737797A (en) | Pulse combustion control system and control method | |
CN112859961B (en) | Heating furnace and control method and control system for temperature of heating furnace | |
CN103305683A (en) | Low-power burner combustion control system and method for continuous annealing furnace | |
JPH05248631A (en) | Method for controlling furnace temperature | |
CN115576194B (en) | Gas main pressure control method based on pulse combustion continuous annealing furnace | |
JPH05187629A (en) | Controlling method of furnace temperature | |
JPS61295457A (en) | Combustion control unit of hot water supplier | |
JP3060702B2 (en) | Burner combustion control method | |
JPH03279736A (en) | Temperature controller | |
CN112413639B (en) | Intelligent control method and system for combustion-supporting air volume of heating furnace group | |
JP2600915B2 (en) | Water heater | |
KR20010061662A (en) | Method for controlling temperature of a hot blower for a furnace | |
JPH04314835A (en) | Melt temperature controlling device for aluminum melting furnace | |
JP3769660B2 (en) | Water heater | |
JPH0580864A (en) | Furnace temperature combustion control method | |
JPH0470530B2 (en) | ||
JP3091810B2 (en) | Water heater | |
JP2002130661A (en) | Combustion controller for heating | |
CN117452984A (en) | Automatic temperature adjusting method for hot air thawing warehouse | |
JPH09101026A (en) | Combustion control system for baking furnace | |
JPH06123556A (en) | Batch type firing furnace | |
JPH0449007B2 (en) | ||
JP2945721B2 (en) | Combustion equipment | |
SU1615517A2 (en) | Device for controlling temperature of blast in cupola furnace | |
JP3098721B2 (en) | Combined combustion device |