[go: up one dir, main page]

JPH05246065A - Heating control structure of heating element - Google Patents

Heating control structure of heating element

Info

Publication number
JPH05246065A
JPH05246065A JP29397892A JP29397892A JPH05246065A JP H05246065 A JPH05246065 A JP H05246065A JP 29397892 A JP29397892 A JP 29397892A JP 29397892 A JP29397892 A JP 29397892A JP H05246065 A JPH05246065 A JP H05246065A
Authority
JP
Japan
Prior art keywords
heating element
metal body
heating
heat generating
supporting metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29397892A
Other languages
Japanese (ja)
Other versions
JPH0813548B2 (en
Inventor
Tsuneo Ochi
庸夫 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP29397892A priority Critical patent/JPH0813548B2/en
Publication of JPH05246065A publication Critical patent/JPH05246065A/en
Publication of JPH0813548B2 publication Critical patent/JPH0813548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

(57)【要約】 【目的】 電気的な制御回路を簡略化したものでありな
がら、発熱素子の温度上昇を所定の範囲内に制限するこ
とが可能な発熱素子の制御構造を提供する。 【構成】 発熱素子11の下面側のほぼ中央部に熱膨張
係数の大なるPb等からなる支持金属体7が、またその
両側には接地側導電体10が配置され発熱素子11に接
触している。支持金属体7は活電側導電体6に接続され
ており、この活電側導電体6を介して電流が供給される
と接地側導電体10に向けて電流が流れ発熱素子11が
発熱する。発熱が続き発熱素子11の温度が上昇する
と、熱膨張係数が大きい支持金属体が熱膨張し、発熱素
子11を押上げる。発熱素子11のこの上昇により、そ
れまで接触していた接地側導電体10が発熱素子11か
ら離間する。これにより、発熱素子11への電流の経路
が遮断され、発熱素子11の温度は下降し始めることに
なり、温度上昇が所定範囲内に制限される。
(57) [Summary] [Object] To provide a heating element control structure capable of limiting the temperature rise of a heating element within a predetermined range while simplifying an electric control circuit. [Structure] A supporting metal body 7 made of Pb or the like having a large thermal expansion coefficient is arranged substantially in the center of the lower surface side of the heating element 11, and grounding side conductors 10 are arranged on both sides thereof so as to contact the heating element 11. There is. The supporting metal body 7 is connected to the live side conductor 6, and when a current is supplied through the live side conductor 6, a current flows toward the ground side conductor 10 and the heat generating element 11 generates heat. .. When heat generation continues and the temperature of the heating element 11 rises, the supporting metal body having a large coefficient of thermal expansion thermally expands and pushes up the heating element 11. Due to this rise of the heating element 11, the ground-side conductor 10 that has been in contact with the heating element 11 is separated from the heating element 11. As a result, the current path to the heating element 11 is cut off, the temperature of the heating element 11 starts to drop, and the temperature rise is limited within the predetermined range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はサーマルヘッド等に用
いられる発熱素子の発熱制御構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat generation control structure for a heat generating element used in a thermal head or the like.

【0002】[0002]

【従来の技術】従来、サーマルヘッド等に用いられる発
熱素子の発熱方法は、基板上に設けられた多数の発熱素
子に駆動回路部から選択的に電圧を印加することによ
り、選択された発熱素子に電流を流して発熱させ、この
熱で感熱記録を行なうように構成されている。この場
合、発熱素子に印加される電圧は、駆動回路部から発熱
素子にパルス状に与えられ、このパルスで発熱素子に電
流が流れる時間等を制御することにより、発熱素子の発
熱温度を制御している。
2. Description of the Related Art Conventionally, a method of heating a heating element used in a thermal head or the like has been described by selectively applying a voltage from a driving circuit section to a large number of heating elements provided on a substrate. An electric current is passed through to generate heat, and the heat is used for thermal recording. In this case, the voltage applied to the heating element is applied in pulses from the drive circuit to the heating element, and the heating temperature of the heating element is controlled by controlling the time during which the current flows through the heating element with this pulse. ing.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述したサー
マルヘッド等に用いられる発熱素子の発熱制御方法で
は、連続した文字等を印字する場合、印字の始めと終り
では発熱素子の温度が異なるが変化することによる印字
濃度のバラツキが生じるものであった。これは発熱素子
の温度は、印字の開始時では常温(室温)であるのに対
し、印字の終了時ではその発熱素子の使用頻度によって
常温から印字温度の間で変化する。これに対処して均一
な印字濃度の感熱記録を行なうには、発熱素子に電流を
流す時間やタイミング等をその使用頻度に応じて制御し
なければならず、制御回路が極めて複雑で高価になると
いう問題があった。この発明の目的は、電気的な制御回
路を簡略化したものでありながら、発熱素子の温度上昇
を所定の範囲内に制限することが可能な発熱素子の制御
構造を提供することにある。
However, in the heat generation control method for the heat generating element used in the thermal head or the like, when printing continuous characters, the temperature of the heat generating element is different at the beginning and end of printing. As a result, variations in printing density occur. This is because the temperature of the heating element is room temperature (room temperature) at the start of printing, but at the end of printing, the temperature changes from room temperature to the printing temperature depending on the frequency of use of the heating element. In order to cope with this and perform heat-sensitive recording with uniform print density, it is necessary to control the time and timing of passing current through the heating element according to the frequency of use, which makes the control circuit extremely complicated and expensive. There was a problem. An object of the present invention is to provide a heating element control structure capable of limiting the temperature rise of the heating element within a predetermined range while simplifying the electric control circuit.

【0004】[0004]

【課題を解決するための手段】この発明は上述した目的
を達成するために、活電側導電体と接地側導電体とに接
触する発熱素子を熱膨張係数の大なる金属体で支持し、
前記発熱素子の発熱により前記金属体が膨張することに
より、前記発熱素子が一定温度以上になると前記導電体
との接触を断つようにしたものである。
In order to achieve the above-mentioned object, the present invention supports a heating element in contact with a live side conductor and a ground side conductor with a metal body having a large thermal expansion coefficient,
The metal body expands due to the heat generated by the heating element, so that the contact with the conductor is cut off when the heating element reaches a certain temperature or higher.

【0005】[0005]

【作用】この発明の発熱素子の発熱制御構造によれば、
活電側導電体と接地側導電体とに接触する発熱素子が頻
繁に発熱してその温度が所定以上になると、発熱素子を
支持している金属体が発熱素子の熱により熱膨張し、こ
の金属体の熱膨張により前記発熱素子と前記導電体との
接触を断つ。そのため、発熱素子の通電が断たれ、発熱
素子の温度上昇を抑えることができる。しかも、金属体
の熱膨張により発熱素子への通電を自動的に断つので、
発熱素子に電流を流す時間やタイミング等をその使用頻
度に応じて電気的に制御する必要がなく、発熱素子の電
気的な制御を簡略化することができる。
According to the heat generation control structure of the heat generating element of the present invention,
When the heating element in contact with the live conductor and the ground conductor frequently generates heat and its temperature exceeds a predetermined value, the metal body supporting the heating element thermally expands due to the heat of the heating element, The thermal expansion of the metal body interrupts the contact between the heating element and the conductor. Therefore, the heating element is de-energized and the temperature rise of the heating element can be suppressed. Moreover, because the thermal expansion of the metal body automatically cuts off the power supply to the heating element,
It is not necessary to electrically control the time, timing, and the like of flowing a current through the heating element according to the frequency of use, and the electrical control of the heating element can be simplified.

【0006】[0006]

【第1実施例】以下、図1および図2を参照して、この
発明の第1実施例を説明する。図1はこの発明の発熱素
子の発熱制御構造を示す要部拡大断面図である。この発
熱素子の発熱制御構造は、例えば感熱記録を行なうサー
マルヘッドに適用されるものであり、単結晶のn型シリ
コン基板(ウエハ)1上に多数の発熱構成体2およびこ
の発熱構成体2を駆動するトランジスタ素子3等の駆動
素子を一括して形成した構成となっている。発熱構成体
2はシリコン基板1上に多数配列形成されている。すな
わち、シリコン基板1の上面にはSiO2の絶縁膜4が熱酸
化処理により形成されているとともに、この絶縁膜4上
にはリンシリケードガラス(PSG)よりなる絶縁性の
高い絶縁保護膜5がCVD(Chemical Vapor Depositio
n)法により形成されている。この絶縁保護膜5の上面に
はCu、Ti、Mo等の低抵抗金属よりなる配線パターン(活電
側導電体)6が形成されており、この配線パターン6の
上面には支持金属体7が形成されているとともに、この
支持金属体7を除いて配線パターン6上にはSiO2、SiN等
よりなる絶縁膜8が上述した絶縁保護膜5上に亘って形
成されている。この場合、支持金属体7は熱膨張係数の
大なるPb等の金属よりなり、筒状に複数配列形成されて
おり、その上面は常温状態で絶縁膜8の上面と同一面と
なり、常温以上になると熱膨張により絶縁膜8の上面よ
りも上方へ突出するように構成されている。また、絶縁
膜8には支持金属体7の領域内から外部に亘って凹溝9
がハーフエッチングにより形成され、この凹溝9内にC
u、Ti、Mo等よりなる接地ライン(接地側導電体)10が
形成されている。この接地ライン10は上述した配線パ
ターン6および支持金属体7と導通しないように絶縁膜
8で保護され、温度変化の影響をほとんど受けることが
なく、その上面は絶縁膜8の上面と同一面に形成されて
いる。そして、この接地ライン10を含む支持金属体7
上には発熱抵抗素子(発熱素子)11が常温状態で接地
ライン10と密着可能に設けられている。すなわち、こ
の発熱抵抗素子11は電気抵抗が高く、熱膨張係数の小
さい材料、例えば多結晶シリコンよりなり、この多結晶
シリコンに不純物としてリン(P)イオンをドープする
ことにより、所定のシート抵抗(数十Ω/□)を有す
る。すなわち、この発熱抵抗素子11の全抵抗値はPイ
オンの濃度およびその面積によって決定され、最終的に
は数十〜数百Ω程度に調整されている。この発熱抵抗素
子11および上述した絶縁膜8上にはSiO2、SiN等よりな
る保護膜12が形成されている。
[First Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an enlarged sectional view of an essential part showing a heat generation control structure of a heat generating element according to the present invention. The heat generation control structure of this heat generating element is applied to, for example, a thermal head for performing thermal recording, and a large number of heat generating components 2 and this heat generating component 2 are formed on a single crystal n-type silicon substrate (wafer) 1. It has a configuration in which driving elements such as the transistor element 3 for driving are collectively formed. A large number of heating components 2 are arranged on the silicon substrate 1. That is, the SiO 2 insulating film 4 is formed on the upper surface of the silicon substrate 1 by thermal oxidation, and the insulating protective film 5 made of phosphosilicate glass (PSG) and having a high insulating property is formed on the insulating film 4. CVD (Chemical Vapor Depositio)
n) is formed by the method. On the upper surface of the insulating protective film 5, a wiring pattern (live-side conductor) 6 made of a low resistance metal such as Cu, Ti, or Mo is formed. On the upper surface of the wiring pattern 6, a supporting metal body 7 is formed. An insulating film 8 made of SiO 2 , SiN or the like is formed over the insulating protective film 5 on the wiring pattern 6 except the supporting metal body 7. In this case, the supporting metal body 7 is made of a metal such as Pb having a large coefficient of thermal expansion, and is formed in a plurality of cylindrical arrangements. Then, it is configured so as to project upward from the upper surface of the insulating film 8 due to thermal expansion. Further, the insulating film 8 has a groove 9 extending from the inside of the supporting metal body 7 to the outside.
Is formed by half etching, and C is placed in the groove 9.
A ground line (ground-side conductor) 10 made of u, Ti, Mo, etc. is formed. The ground line 10 is protected by the insulating film 8 so as not to be electrically connected to the wiring pattern 6 and the supporting metal body 7 described above, is hardly affected by the temperature change, and its upper surface is flush with the upper surface of the insulating film 8. Has been formed. Then, the supporting metal body 7 including the ground line 10
A heat generating resistance element (heat generating element) 11 is provided on the upper side so as to be in close contact with the ground line 10 at room temperature. That is, the heating resistance element 11 is made of a material having a high electric resistance and a small coefficient of thermal expansion, for example, polycrystalline silicon. By doping the polycrystalline silicon with phosphorus (P) ions as impurities, a predetermined sheet resistance ( Tens of Ω / □). That is, the total resistance value of the heating resistance element 11 is determined by the concentration of P ions and the area thereof, and is finally adjusted to about several tens to several hundreds Ω. A protective film 12 made of SiO 2 , SiN or the like is formed on the heating resistor element 11 and the insulating film 8 described above.

【0007】なお、トランジスタ素子3は電界効果(E
FT)型のnーMOSであり、発熱構成体2の近傍にお
けるシリコン基板1に形成されている。すなわち、この
部分のシリコン基板1の内部にはBイオンをドープして
なるp型領域13が形成されており、このp型領域13
内にはPイオンをドープしてなる一対のn型領域14、
14が形成されている。そして、このp型領域13にお
けるn型領域14、14の間に位置する箇所には、SiO2
よりなるゲート絶縁膜15を介してゲート電極16が形
成されている。このゲート電極16は発熱抵抗素子11
と同様に多結晶シリコンにPイオンをドープすることに
より低抵抗に形成されており、その表面は上述した絶縁
保護膜5で覆われている。また、一対のn型領域14、
14と対応する箇所には、ドレイン、ソースの配線パタ
ーン6、17がそれぞれn型領域14、14と導通して
形成されている。この場合、ドレインの配線パターン6
は上述したように発熱構成体2に延設されている。そし
て、これらの上面には上述した絶縁膜8および保護膜1
2が順に積層形成されている。
The transistor element 3 has a field effect (E
It is an FT) type n-MOS and is formed on the silicon substrate 1 in the vicinity of the heat generating component 2. That is, the p-type region 13 doped with B ions is formed inside the silicon substrate 1 at this portion, and the p-type region 13 is formed.
Inside, a pair of n-type regions 14 doped with P ions,
14 is formed. Then, in the p-type region 13 located between the n-type regions 14, 14, SiO 2
A gate electrode 16 is formed via a gate insulating film 15 made of. The gate electrode 16 serves as the heating resistance element 11
Similarly to, the polycrystalline silicon is doped with P ions to have a low resistance, and the surface thereof is covered with the insulating protective film 5 described above. In addition, a pair of n-type regions 14,
Drain and source wiring patterns 6 and 17 are formed at locations corresponding to 14 so as to be electrically connected to the n-type regions 14 and 14, respectively. In this case, the drain wiring pattern 6
Are extended to the heat generating structure 2 as described above. Then, the insulating film 8 and the protective film 1 described above are formed on the upper surfaces thereof.
2 are sequentially stacked.

【0008】次に、図2を参照して、上述したようなサ
ーマルヘッドの発熱構成体2を製造する場合について説
明する。この場合、サーマルヘッドは、1枚のシリコン
基板(ウエハ)1を多数のブロックに区分し、各ブロッ
クごとに所要の素子を同時に形成した上、最後に各ブロ
ックごとに切断して得られるものであり、以下の説明は
シリコン基板1の1ブロックについてのみ説明する。
Next, with reference to FIG. 2, description will be made on the case of manufacturing the heat generating component 2 of the thermal head as described above. In this case, the thermal head is obtained by dividing one silicon substrate (wafer) 1 into a large number of blocks, simultaneously forming the required elements in each block, and finally cutting each block. Therefore, in the following description, only one block of the silicon substrate 1 will be described.

【0009】まず、単結晶のn型シリコン基板1を用意
し、このシリコン基板1に、予め、トランジスタ素子3
等の駆動素子を形成する。そして、トランジスタ素子3
のドレイン、ソースの各配線パターン6、17が絶縁膜
4および絶縁保護膜5上に形成される際に、発熱構成体
2が形成される。すなわち、シリコン基板1上に絶縁膜
4を介して形成された絶縁保護膜5の上面にCu、Ti、Mo等
の低抵抗金属およびPb等の熱膨張係数の大きい金属を順
次蒸着またはスパッタリングにより積層形成し、この積
層された各金属層を上から順にエッチングして、図2
(A)に示すように、支持金属体7を配線パターン6上
にパターン形成する。そして、支持金属体7を除いて配
線パターン6上にSiO2、SiN等よりなる絶縁膜8を形成
し、この絶縁膜8をハーフエッチングして支持金属体7
の領域内から外部に亘って凹溝9を形成する。
First, a single crystal n-type silicon substrate 1 is prepared, and the transistor element 3 is previously formed on the silicon substrate 1.
Drive elements are formed. And the transistor element 3
When the drain and source wiring patterns 6 and 17 are formed on the insulating film 4 and the insulating protective film 5, the heat generating component 2 is formed. That is, a low resistance metal such as Cu, Ti and Mo and a metal having a large coefficient of thermal expansion such as Pb are sequentially deposited on the upper surface of the insulating protective film 5 formed on the silicon substrate 1 with the insulating film 4 by vapor deposition or sputtering. After being formed, the laminated metal layers are sequentially etched from the top to
As shown in (A), the supporting metal body 7 is patterned on the wiring pattern 6. Then, an insulating film 8 made of SiO 2 , SiN or the like is formed on the wiring pattern 6 except the supporting metal body 7, and the insulating film 8 is half-etched to form the supporting metal body 7.
The concave groove 9 is formed from the inside of the region to the outside.

【0010】この後、図2(B)に示すように、絶縁膜
8の凹溝9内にCu、Ti、Mo等の低抵抗金属を蒸着またはス
パッタリングにより形成する。これにより、凹溝9内に
接地ライン10が形成される。そして、シリコン基板1
を適宜の温度に加熱し、図2(C)に示すように支持金
属体7を熱膨張させ、支持金属体7の上端を絶縁膜8の
上方へ突出させる。この突出量は後述する発熱抵抗素子
11を接地ライン10から離間させ得る程度であり、発
熱抵抗素子11の剛性が高ければ突出量は小さく、剛性
が低ければ大きく設定されている。また、加熱温度は発
熱抵抗素子11の剛性および支持金属体7の熱膨張率等
によって決定される。
After that, as shown in FIG. 2B, a low resistance metal such as Cu, Ti and Mo is formed in the groove 9 of the insulating film 8 by vapor deposition or sputtering. As a result, the ground line 10 is formed in the groove 9. And the silicon substrate 1
Is heated to an appropriate temperature, the supporting metal body 7 is thermally expanded as shown in FIG. 2C, and the upper end of the supporting metal body 7 is projected above the insulating film 8. The amount of protrusion is such that the heating resistor element 11 described later can be separated from the ground line 10. The protrusion amount is set to be small if the rigidity of the heating resistor element 11 is high, and set to be large if the rigidity is low. The heating temperature is determined by the rigidity of the heat generating resistance element 11 and the coefficient of thermal expansion of the supporting metal body 7.

【0011】このように支持金属体7を膨張させた状態
で、図2(D)に示すように、支持金属体7を除く絶縁
膜8および接地ライン10上にフォトレジスト18を被
着する。しかる後、このフォトレジスト18の表面にモ
ノシラン(SiH4)ガスを用いてCVD法により、図2
(E)に示すように、多結晶シリコン層19を生成し、
この多結晶シリコン層19にPイオンを打ち込んで抵抗
値を調節した後、多結晶シリコン19をプラズマエッチ
ングにより所定の抵抗値を有する大きさに形成する。こ
れにより、図2(F)に示すように、フォトレジスト1
8を介して接地ライン10を覆った状態で、支持金属体
7上に発熱抵抗素子11が形成される。
With the supporting metal body 7 expanded as described above, a photoresist 18 is deposited on the insulating film 8 and the ground line 10 excluding the supporting metal body 7 as shown in FIG. 2D. Then, the surface of the photoresist 18 is subjected to a CVD method using a monosilane (SiH 4 ) gas as shown in FIG.
As shown in (E), a polycrystalline silicon layer 19 is formed,
After implanting P ions into the polycrystalline silicon layer 19 to adjust its resistance value, the polycrystalline silicon layer 19 is formed into a size having a predetermined resistance value by plasma etching. As a result, as shown in FIG.
A heating resistance element 11 is formed on the supporting metal body 7 in a state where the ground line 10 is covered with the heating resistance element 11 interposed therebetween.

【0012】この後、フォトレジスト18をエッチング
により総て除去すると、図2(G)に示すように、発熱
抵抗素子11は支持金属体7により、接地ライン10の
上方に接触することなく支持される。そして、この状態
のまま、全体を常温に下げると、支持金属体7が図1に
示すように収縮し、発熱抵抗素子11はその下の接地ラ
イン10に密接する。この状態で、その全表面に保護膜
12を被着する。これにより、サーマルヘッドが形成さ
れる。
After that, when the photoresist 18 is completely removed by etching, the heating resistance element 11 is supported by the supporting metal body 7 without contacting above the ground line 10 as shown in FIG. It Then, if the whole is lowered to room temperature in this state, the supporting metal body 7 contracts as shown in FIG. 1, and the heating resistance element 11 comes into close contact with the ground line 10 therebelow. In this state, the protective film 12 is deposited on the entire surface. As a result, a thermal head is formed.

【0013】次に、このように構成されたサーマルヘッ
ドを使用する場合について説明する。まず、シリコン基
板1のトランジスタ素子3のゲート電極16に駆動信号
が与えられると、ソース側からドレイン側に電流が流
れ、この電流が発熱構成体2の配線パターン6から支持
金属体7を介して発熱抵抗素子11に流れる。そのた
め、発熱抵抗素子11が発熱し、この熱で感熱記録を行
なう。この場合、発熱抵抗素子11に流れた電流は接地
ライン10によりアースされる。このように発熱構成体
2の発熱抵抗素子11に電流が流れて発熱を頻繁に繰り
返すと、発熱抵抗素子11の温度が次第に上昇する。し
かも、この発熱抵抗素子11の熱により支持金属体7も
次第に熱膨張して発熱抵抗素子11を徐々に押し上げ
る。そして、一定以上の温度になると、発熱抵抗素子1
1は支持金属体7により押し上げられて接地ライン10
から離間し通電が断たれる。そのため、発熱抵抗素子1
1はそれ以上温度が上昇せず、逆に温度が下がるので、
これに伴って支持金属体7が収縮し、再び、発熱抵抗素
子11が接地ライン10に接触して導通し、通電可能な
状態になる。この結果、発熱抵抗素子11はその使用頻
度が高くても、一定温度以上にならないため、均一な印
字濃度の感熱記録を行なうことができ、しかも発熱抵抗
素子11に電流を流す時間やタイミング等をその使用頻
度に応じて電気的に制御する必要がないので、発熱抵抗
素子11の電気的な制御を簡略化することができる。
Next, the case of using the thermal head having such a structure will be described. First, when a drive signal is applied to the gate electrode 16 of the transistor element 3 of the silicon substrate 1, a current flows from the source side to the drain side, and this current flows from the wiring pattern 6 of the heat generating structure 2 through the supporting metal body 7. It flows into the heating resistance element 11. Therefore, the heat generating resistance element 11 generates heat, and this heat causes thermal recording. In this case, the current flowing through the heating resistance element 11 is grounded by the ground line 10. As described above, when the current flows through the heating resistor element 11 of the heating component 2 and heat generation is repeated frequently, the temperature of the heating resistor element 11 gradually rises. Moreover, the heat of the heat generating resistance element 11 also causes the supporting metal body 7 to gradually expand and gradually push up the heat generating resistance element 11. When the temperature rises above a certain level, the heating resistor element 1
1 is pushed up by the supporting metal body 7 and the ground line 10
The power supply is cut off. Therefore, the heating resistor element 1
In No. 1, the temperature does not rise anymore, but on the contrary, the temperature drops, so
Along with this, the supporting metal body 7 contracts, the heating resistance element 11 again contacts the ground line 10 and becomes conductive, and becomes a state capable of conducting electricity. As a result, even if the heating resistor element 11 is used frequently, it does not reach a certain temperature or higher, so that it is possible to perform heat-sensitive recording with a uniform print density, and moreover, the time, timing, etc. for flowing a current through the heating resistor element 11 are set. Since it is not necessary to electrically control the heating resistor element 11 according to the frequency of use, electrical control of the heating resistor element 11 can be simplified.

【0014】[0014]

【第2実施例】次に、図3を参照して、この発明の第2
実施例を説明する。この場合、前述した第1実施例と同
一部分には同一符号を付し、その説明は省略する。この
第2実施例の発熱構成体20は、発熱抵抗素子11の下
面中央に対応する箇所に支持金属体7を設け、発熱抵抗
素子11の下面両側に接地ライン10を設けた構成とな
っている。すなわち、支持金属体7は前述した実施例と
同じ熱膨張係数の大なるPb等の金属よりなり、配線パタ
ーン6上に柱状に導通して形成されている。この支持金
属体7は前述した実施例と同様に、常温状態では図3
(A)に示すように、その上面が配線パターン6上に形
成された絶縁膜8および接地ライン10の上面と同一面
をなし、発熱抵抗素子11により加熱されて一定温度以
上になると、図3(B)に示すように、その上面が接地
ライン10の上方へ突出して発熱抵抗素子11を押し上
げる。また、接地ライン10は配線パターン6上に形成
された絶縁膜8を前述した実施例と同様にハーフエッチ
ングして凹溝9、9を形成し、この凹溝9、9内にCu、T
i、Mo等の低抵抗金属を蒸着またはスパッタリングにより
被着することにより形成されている。この接地ライン1
0も前述した実施例と同様に、温度変化の影響をほとん
ど受けず、絶縁膜8の凹溝9、9内から上方へ突出する
ことがなく、絶縁膜8の上面と同一面を保って形成され
ている。なお、発熱抵抗素子11を覆って絶縁膜8上に
形成される保護膜12は、支持金属体7を熱膨張させた
状態で被着することにより、図3(A)に実線で示す如
く、発熱抵抗素子11との間に隙間sを有する。しか
し、この隙間sは印字時の際にサーマルヘッドに加わる
圧力により点線で示す如く保護膜12が押されて発熱抵
抗素子11に接触する。そのため、第1実施例と同様
に、最初から点線の如く保護膜12を形成しておいても
よい。
Second Embodiment Next, referring to FIG. 3, the second embodiment of the present invention will be described.
An example will be described. In this case, the same parts as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted. The heat generating structure 20 of the second embodiment has a structure in which a supporting metal body 7 is provided at a position corresponding to the center of the lower surface of the heat generating resistance element 11, and ground lines 10 are provided on both sides of the lower surface of the heat generating resistance element 11. .. That is, the supporting metal body 7 is made of a metal such as Pb having the same large thermal expansion coefficient as that of the above-mentioned embodiment, and is formed on the wiring pattern 6 so as to be conductive in a columnar shape. This supporting metal body 7 is similar to that of the above-described embodiment in that it is at room temperature.
As shown in FIG. 3A, the upper surface thereof is flush with the upper surfaces of the insulating film 8 and the ground line 10 formed on the wiring pattern 6, and when heated by the heating resistance element 11 to reach a certain temperature or higher, FIG. As shown in (B), the upper surface thereof protrudes above the ground line 10 and pushes up the heating resistance element 11. Further, the ground line 10 is formed by recessing the insulating film 8 formed on the wiring pattern 6 by half-etching in the same manner as in the above-described embodiment to form grooves 9 and 9, and Cu and T are formed in the grooves 9 and 9.
It is formed by depositing a low resistance metal such as i and Mo by vapor deposition or sputtering. This ground line 1
Similarly to the above-described embodiment, 0 is not affected by the temperature change, does not protrude upward from the concave grooves 9 of the insulating film 8, and is formed so as to maintain the same surface as the upper surface of the insulating film 8. Has been done. The protective film 12 formed on the insulating film 8 so as to cover the heat generating resistance element 11 is adhered in a state where the supporting metal body 7 is thermally expanded, as shown by a solid line in FIG. There is a gap s between the heating resistor element 11. However, the protective film 12 is pushed into the gap s by the pressure applied to the thermal head during printing as shown by the dotted line, and comes into contact with the heating resistance element 11. Therefore, as in the first embodiment, the protective film 12 may be formed from the beginning as indicated by the dotted line.

【0015】したがって、このような発熱構成体20も
第1実施例と同様の効果があるほか、特に支持金属体7
を熱膨張させた状態で保護膜8を形成することにより、
発熱抵抗素子11との間に隙間sを形成すれば、使用時
に支持金属体7が熱膨張した際、発熱抵抗素子11を滑
らかに押し上げることができ、確実かつ良好に発熱抵抗
素子11への通電を断つことができる。
Therefore, such a heat generating structure 20 has the same effect as that of the first embodiment, and particularly the supporting metal member 7
By forming the protective film 8 in the state of being thermally expanded,
If the space s is formed between the heating resistor element 11 and the supporting metal body 7 thermally expands during use, the heating resistor element 11 can be smoothly pushed up, and the heating resistor element 11 can be energized reliably and satisfactorily. Can be cut off.

【0016】[0016]

【第3実施例】次に、図4を参照して、この発明の第3
実施例を説明する。この場合にも、上述した第1実施例
と同一部分には同一符号を付し、その説明は省略する。
この第3実施例の発熱構成体30は、発熱抵抗素子11
の下面中央と対応する箇所に支持金属体31が形成さ
れ、下面の右端側に配線パターン(活電側導電体)32
が形成され、左端側に接地ライン(接地側導電体)33
が形成されている。すなわち、支持金属体31、配線パ
ターン32および接地ライン33はそれぞれシリコン基
板1上の絶縁膜4上に並列に形成されている。換言すれ
ば、配線パターン32と接地ライン33との間に支持金
属体31が設けられ、これらの間に絶縁膜8が形成され
ている。この場合においても、支持金属体31は第1実
施例と同じ熱膨張係数の大きいPb等の金属よりなり、常
温状態では図4(A)に示すように、その上面は配線パ
ターン32および接地ライン33の上面と同一面をな
し、発熱抵抗素子11により加熱されると、図4(B)
に示すように、その上面が配線パターン32および接地
ライン33の上面よりも上方へ突出して発熱抵抗素子1
1を押し上げる。また、配線パターン32および接地ラ
イン33はそれぞれ温度変化の影響を受けないCu、Ti、Mo
等の金属よりなり、配線パターン32は図1に示すトラ
ンジスタ素子3のドレイン用の配線パターン6と兼用さ
れている。なお、保護膜12は前述した第2実施例と同
様に、支持金属体31を熱膨張させた状態で被着され、
図4(A)に示すように発熱抵抗素子11との間に隙間
sを形成している。
Third Embodiment Next, referring to FIG. 4, a third embodiment of the present invention will be described.
An example will be described. Also in this case, the same parts as those in the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
The heat generating component 30 of the third embodiment is similar to the heat generating resistor element 11 in FIG.
A supporting metal body 31 is formed at a position corresponding to the center of the lower surface of the wiring pattern, and a wiring pattern (live side conductor) 32 is formed on the right end side of the lower surface.
Is formed, and the ground line (ground side conductor) 33 is formed on the left end side.
Are formed. That is, the supporting metal body 31, the wiring pattern 32, and the ground line 33 are formed in parallel on the insulating film 4 on the silicon substrate 1. In other words, the supporting metal body 31 is provided between the wiring pattern 32 and the ground line 33, and the insulating film 8 is formed between them. Also in this case, the supporting metal body 31 is made of a metal such as Pb having a large coefficient of thermal expansion as in the first embodiment, and the upper surface thereof has the wiring pattern 32 and the ground line as shown in FIG. When it is formed by the heating resistor element 11 and has the same surface as the upper surface of 33, FIG.
As shown in FIG. 3, the upper surface of the heating resistor element 1 projects upward from the upper surfaces of the wiring pattern 32 and the ground line 33.
Push up 1. Further, the wiring pattern 32 and the ground line 33 are not affected by temperature changes, respectively, such as Cu, Ti, and Mo.
The wiring pattern 32 is also used as the drain wiring pattern 6 of the transistor element 3 shown in FIG. The protective film 12 is deposited in the state where the supporting metal body 31 is thermally expanded, as in the second embodiment described above.
As shown in FIG. 4 (A), a gap s is formed between the heating resistor element 11.

【0017】このような発熱構成体30においても、前
述した第2実施例と全く同様の作用効果がある。
Even such a heat generating structure 30 has the same effects as the second embodiment described above.

【0018】なお、この発明は上述した各実施例に限定
されず、種々応用変形が可能である。例えば、発熱構成
体を搭載する基板はシリコン基板である必要はなく、ガ
ラス、石英等の絶縁基板であってもよい。また、発熱構
成体はライン型、シリアル型のほか、マトリクス型に配
列形成してもよい。さらに、接地側の導電体はダイオー
ドで構成してもよい。
The present invention is not limited to the above-mentioned embodiments, and various application modifications are possible. For example, the substrate on which the heat generating component is mounted does not have to be a silicon substrate, but may be an insulating substrate such as glass or quartz. Further, the heat generating components may be arranged in a matrix type in addition to the line type and the serial type. Further, the ground-side conductor may be composed of a diode.

【0019】[0019]

【発明の効果】以上詳細に説明したように、この発明の
発熱素子の発熱制御構造によれば、活電側導電体と接地
側導電体とに接触する発熱素子を熱膨張係数の大なる金
属体で支持し、前記発熱素子の発熱により前記金属体が
膨張することにより、前記発熱素子が一定温度以上にな
ると前記導電体との接触を断つようにしたので、発熱素
子の温度上昇を制限することができ、しかも、発熱素子
の電気的な制御回路を簡略化することができる。
As described above in detail, according to the heat generation control structure of the heat generating element of the present invention, the heat generating element in contact with the live conductor and the ground conductor is made of a metal having a large coefficient of thermal expansion. Since the metal body is supported by the body and expands due to the heat generated by the heating element, the contact with the conductor is cut off when the heating element reaches a certain temperature or higher, so that the temperature rise of the heating element is limited. In addition, the electric control circuit of the heating element can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の発熱素子の発熱制御構造をサーマル
ヘッドに適用した場合の第1実施例の要部拡大断面図。
FIG. 1 is an enlarged cross-sectional view of a main part of a first embodiment when a heat generation control structure for a heat generating element according to the present invention is applied to a thermal head.

【図2】(A)〜(G)は図1に示す発熱構成体の製造
過程を示す各断面図。
2A to 2G are cross-sectional views showing a manufacturing process of the heat generating component shown in FIG.

【図3】(A)(B)は発熱構成体の第2実施例を示す
要部拡大断面図。
3A and 3B are enlarged cross-sectional views of a main part showing a second embodiment of the heat generating component.

【図4】(A)(B)は発熱構成体の第3実施例を示す
要部拡大断面図。
FIG. 4A and FIG. 4B are enlarged cross-sectional views of essential parts showing a third embodiment of the heat generating component.

【符号の説明】[Explanation of symbols]

2、20、30 発熱構成体 6、32 配線パターン(活電側導電体) 7、31 支持金属体 10、33 接地ライン(接地側導電体) 11 発熱抵抗素子 2, 20, 30 Heat generating component 6, 32 Wiring pattern (live side conductor) 7, 31 Supporting metal body 10, 33 Ground line (ground side conductor) 11 Heat resistance element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活電側導電体と接地側導電体とに接触す
る発熱素子を熱膨張係数の大なる金属体で支持し、前記
発熱素子の発熱により前記金属体が膨張することによ
り、前記発熱素子が一定温度以上になると前記導電体と
の接触を断つことを特徴とする発熱素子の発熱制御構
造。
1. A heat generating element in contact with a live conductor and a grounding conductor is supported by a metal body having a large coefficient of thermal expansion, and the heat generated by the heat generating element causes the metal body to expand, A heating control structure for a heating element, characterized in that the contact with the conductor is cut off when the heating element reaches a certain temperature or higher.
JP29397892A 1992-10-08 1992-10-08 Heat generation control structure of heating element Expired - Lifetime JPH0813548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29397892A JPH0813548B2 (en) 1992-10-08 1992-10-08 Heat generation control structure of heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29397892A JPH0813548B2 (en) 1992-10-08 1992-10-08 Heat generation control structure of heating element

Publications (2)

Publication Number Publication Date
JPH05246065A true JPH05246065A (en) 1993-09-24
JPH0813548B2 JPH0813548B2 (en) 1996-02-14

Family

ID=17801664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29397892A Expired - Lifetime JPH0813548B2 (en) 1992-10-08 1992-10-08 Heat generation control structure of heating element

Country Status (1)

Country Link
JP (1) JPH0813548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392509B1 (en) * 1989-04-13 1995-01-04 Shin-Etsu Chemical Co., Ltd. 3-(2-Oxo-1-pyrrolidinyl)-propyl-silanes and method for preparing the silane compounds
WO2009096127A1 (en) * 2008-01-31 2009-08-06 Kyocera Corporation Recording head and recording device comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392509B1 (en) * 1989-04-13 1995-01-04 Shin-Etsu Chemical Co., Ltd. 3-(2-Oxo-1-pyrrolidinyl)-propyl-silanes and method for preparing the silane compounds
WO2009096127A1 (en) * 2008-01-31 2009-08-06 Kyocera Corporation Recording head and recording device comprising the same
JP4684352B2 (en) * 2008-01-31 2011-05-18 京セラ株式会社 RECORDING HEAD AND RECORDING DEVICE HAVING THE SAME
US8319809B2 (en) 2008-01-31 2012-11-27 Kyocera Corporation Recording head and recording device

Also Published As

Publication number Publication date
JPH0813548B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP0494076B1 (en) Monolithic integrated circuit chip for a thermal ink jet printhead
US20080268584A1 (en) Electronic devices and methods for forming the same
JP3476568B2 (en) Linear laser array
JPS59224372A (en) Manufacture of printing head
US5055859A (en) Integrated thermal printhead and driving circuit
KR0146284B1 (en) Method for manufacturing fusible link on semiconductor substrate
JPH05206468A (en) Thin film transistor and its manufacture
US3961155A (en) Thermal printing element arrays
JPH05246065A (en) Heating control structure of heating element
JP3571129B2 (en) Plasma CVD method and method for manufacturing thin film transistor
US4232212A (en) Thermal printers
US5416341A (en) Substrate for a semiconductor device and method for manufacturing a semiconductor device from the substrate
US10923505B2 (en) Method for fabricating a display substrate by generating heat with a light shielding layer for crystallization of a semiconductor layer
JP2008526561A (en) Inkjet print head
EP0369347B1 (en) Thermal print head
US6067104A (en) Thermal print head, method of manufacturing the same and method of adjusting heat generation thereof
KR930010459B1 (en) Thermal print head
JPH09129890A (en) Polycrystalline semiconductor tft, its manufacture, and tft substrate
JP2504144B2 (en) Thermal head and manufacturing method thereof
JP3121944B2 (en) Electronic circuit fabrication method
JP3229751B2 (en) Thin film semiconductor device
CN109003941B (en) Display substrate, preparation method thereof and display device
JP3417482B2 (en) Method for manufacturing semiconductor device
CA1095581A (en) Thermal printers
JPH09232516A (en) Semiconductor device and manufacturing method thereof