[go: up one dir, main page]

JPH0524358B2 - - Google Patents

Info

Publication number
JPH0524358B2
JPH0524358B2 JP22258784A JP22258784A JPH0524358B2 JP H0524358 B2 JPH0524358 B2 JP H0524358B2 JP 22258784 A JP22258784 A JP 22258784A JP 22258784 A JP22258784 A JP 22258784A JP H0524358 B2 JPH0524358 B2 JP H0524358B2
Authority
JP
Japan
Prior art keywords
water
vacuum pump
circulating water
pipe
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22258784A
Other languages
Japanese (ja)
Other versions
JPS61101689A (en
Inventor
Hidenori Takechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22258784A priority Critical patent/JPS61101689A/en
Publication of JPS61101689A publication Critical patent/JPS61101689A/en
Publication of JPH0524358B2 publication Critical patent/JPH0524358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/004Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は放射性排ガス処理装置用真空ポンプ設
備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to vacuum pump equipment for radioactive exhaust gas treatment equipment.

[発明の技術的背景] 一般に水封式真空ポンプを使用した放射性排ガ
ス処理装置用真空ポンプ設備は、封水を循環させ
て連続使用しており、このため水封式真空ポンプ
の他に気水分離機能を備えた循環水タンクと、循
環水の温度上昇を抑えるための循環水クーラーを
備えている。さらに水封式真空ポンプに封水を注
入するため、循環水ポンプを設置し、この駆動力
を利用する場合が多い。しかし水封式真空ポンプ
はポンプの型、圧力条件等によつては循環水を自
己循環させて使える事がわかつて来ている。本発
明は放射性排ガス処理装置用真空ポンプ設備に於
て、特に水封式真空ポンプで封水を自己循環させ
る例を改良したものである。
[Technical Background of the Invention] Vacuum pump equipment for radioactive exhaust gas treatment equipment that generally uses a water ring vacuum pump is used continuously by circulating sealed water. It is equipped with a circulating water tank with a separation function and a circulating water cooler to suppress the temperature rise of the circulating water. Furthermore, in order to inject seal water into the water ring type vacuum pump, a circulating water pump is often installed and the driving force of this pump is utilized. However, it has become clear that water-ring vacuum pumps can be used by self-circulating water depending on the type of pump, pressure conditions, etc. The present invention improves vacuum pump equipment for radioactive exhaust gas processing equipment, particularly an example in which water is self-circulated using a water ring type vacuum pump.

従来例を第3図により説明し、本発明の技術的
背景とその問題点を述べる。
A conventional example will be explained with reference to FIG. 3, and the technical background of the present invention and its problems will be described.

第3図は放射性排ガス処理装置用真空ポンプ設
備の主要部を図示した配管系統図である。排ガス
は真空ポンプ設備の図示されていない上流側、機
器により放射性を十分に低減され真空ポンプ設備
の入口配管1を通し、水封式真空ポンプ2に吸引
される。水封式真空ポンプ2は封水として封水ノ
ズル3から循環水の供給を受けながら、排ガスを
封水と共に吐出配管4へ押し流し循環水タンク入
口ノズル5から循環水タンク6へ送り込む。循環
水タンク6は流入した排ガスと封水を気水分離
し、封水は下部に一定容量を確保するようにして
貯留され、排ガスはタンク6の上方に設けた循環
水タンク出口ノズル7から出口配管12を通じ図
示しない排気塔へ送られ大気中に放出されること
になる。循環水タンク出口ノズル7からの排ガス
の一部は排ガス再循環配管8により入口配管1へ
戻され、この排ガスの流量は流量制御弁13によ
つて調整される。すなわち真空ポンプ設備は放射
性排ガス処理装置の最下流部にあつて装置全体を
負圧に保ちつつ排ガスを流動させる機能を持つて
いる。循環水タンク6内の封水は図示しない水位
スイツチにより水位低になれば供給水ノズル9に
より水位高になるまで給水がなされ、常に水位低
と高の間の水位で運転が行なわれる。循環水タン
ク6の下方から取り出された封水は流出配管14
から循環水ポンプ10の駆動力により、循環水ク
ーラー11を通した後連通配管15を通つて封水
ノズル3から水封式真空ポンプ2内へ注入され
る。
FIG. 3 is a piping system diagram showing the main parts of the vacuum pump equipment for the radioactive exhaust gas treatment equipment. The exhaust gas is sufficiently reduced in radioactivity by equipment on the upstream side of the vacuum pump equipment (not shown), passes through the inlet piping 1 of the vacuum pump equipment, and is sucked into the water ring type vacuum pump 2. The water ring type vacuum pump 2 receives circulating water as a seal from a water seal nozzle 3 while pushing the exhaust gas together with the water seal into a discharge pipe 4 and sends it into a circulating water tank 6 from a circulating water tank inlet nozzle 5. The circulating water tank 6 separates the inflowing exhaust gas and sealed water, and the sealed water is stored at the bottom with a certain capacity secured, and the exhaust gas is discharged from the circulating water tank outlet nozzle 7 provided above the tank 6. It will be sent to an exhaust tower (not shown) through the pipe 12 and released into the atmosphere. A portion of the exhaust gas from the circulating water tank outlet nozzle 7 is returned to the inlet pipe 1 by an exhaust gas recirculation line 8, and the flow rate of this exhaust gas is regulated by a flow rate control valve 13. In other words, the vacuum pump equipment is located at the most downstream part of the radioactive exhaust gas treatment equipment and has the function of keeping the entire equipment at negative pressure while flowing the exhaust gas. When the water level in the circulating water tank 6 is lowered by a water level switch (not shown), water is supplied by the supply water nozzle 9 until the water level reaches a high level, and the system is always operated at a water level between low and high. The sealed water taken out from below the circulating water tank 6 is discharged from the outflow pipe 14.
By the driving force of the circulating water pump 10, the circulating water passes through the circulating water cooler 11 and then through the communication pipe 15, and is injected into the water seal vacuum pump 2 from the water seal nozzle 3.

さて、循環水タンク6に於ける気水分離である
が、気水分離の形式としては一般的に金網、ラシ
ヒリング等の充填物による濾過式、衝突式、流速
を落下させて分離する膨張式、遠心力を利用する
サイクロン式等が考えられる。放射性排ガス処理
装置用としてはフランジを含まない密閉構造が望
ましいため定期清掃が必要な濾過式を避け、小型
で分離効率の高いサイクロン式が循環水タンク6
に用いられている。
Now, regarding the steam/water separation in the circulating water tank 6, the types of steam/water separation are generally a filtration type using a filling such as a wire mesh or a Raschig ring, a collision type, an expansion type that separates by reducing the flow velocity, A cyclone type that uses centrifugal force can be considered. For radioactive exhaust gas treatment equipment, it is desirable to have a sealed structure that does not include flanges, so avoid using a filtration type that requires regular cleaning, and instead use a cyclone type that is small and has high separation efficiency.
It is used in

[背景技術の問題点] 第3図に於て、循環水タンク入口ノズル5から
循環水タンク6の胴体接線方向に流入した封水と
排ガスの混合物は、胴体に接触して流れるように
して衝突式の効果を持たせるとともに、流体を回
転運動させながら下方に流し、水を遠心力により
内壁に付着させて分離し、排ガスは中央部から上
方の出口ノズル7に逃す形式を採つている。この
ため機器の設計上旋回流を得る高さ寸法a、水滴
が中央部の上方流に混入しないための寸法bにつ
いては入口ノズル5の口径の2〜3倍程度が望ま
しくこれ以下の寸法では寸法減少とともに効率が
低下する。従つて、循環水タンク6の入口ノズル
5と制御液面間の高さa+bは必然的に一定以上
の制約が出来てしまう。
[Problems with the Background Art] In FIG. 3, the mixture of sealed water and exhaust gas flowing from the circulating water tank inlet nozzle 5 in the tangential direction to the body of the circulating water tank 6 comes into contact with the body and collides with the body. In addition to providing the same effect as the above, the fluid flows downward while being rotated, the water is attached to the inner wall by centrifugal force and separated, and the exhaust gas is released from the center to the upper outlet nozzle 7. Therefore, in the design of the equipment, the height dimension a to obtain a swirling flow, and the dimension b to prevent water droplets from entering the upward flow in the center, are preferably about 2 to 3 times the diameter of the inlet nozzle 5. Efficiency decreases with decrease. Therefore, the height a+b between the inlet nozzle 5 of the circulating water tank 6 and the control liquid level is inevitably restricted to a certain level or more.

ところで、真空ポンプ設備としては圧力条件と
して可能であれば、循環水ポンプ10による駆動
よりも、自己循環すなわち水封式真空ポンプの吐
出圧力と封水ノズル3部の圧力差で封水が循環す
るように構成する方がシステム構成が単純で安価
になる。特に放射性排ガス処理装置のように動的
機器ごとに故障を想定して二重化したり各種の制
御インターロツクを組んでいる場合は、配置スペ
ース、電気計装、放射能管理区域内の毎年の定期
点検等に関し、信頼性、コストの面で大きな開き
が生じる。従つて、自己循環式の真空ポンプ設備
が要望される。
By the way, as for the vacuum pump equipment, if possible under the pressure conditions, the sealed water is circulated by self-circulation, that is, by the pressure difference between the discharge pressure of the water ring type vacuum pump and the three parts of the water sealing nozzle, rather than being driven by the circulating water pump 10. The system configuration will be simpler and cheaper if configured in this way. In particular, when dynamic equipment such as radioactive exhaust gas treatment equipment is duplicated or has various control interlocks in anticipation of failure, annual periodic inspections of the installation space, electrical instrumentation, and radioactivity control areas are required. There is a big difference in terms of reliability and cost. Therefore, a self-circulation type vacuum pump equipment is desired.

しかしながら、前述した様に循環水タンク6の
入口ノズル5と制御液面間に必要な寸法a+b
が、配置上水封式真空ポンプ2と制御液面の水頭
差cを作り出し、封水を送る際に逆圧となるため
上記要望に対して実現が難しい。また、特に起動
時水封式ポンプの主軸レベルを水で満たすという
必要条件を達成することができない。
However, as mentioned above, the required dimension a+b between the inlet nozzle 5 of the circulating water tank 6 and the control liquid level is
However, due to the arrangement, a water head difference c between the water seal vacuum pump 2 and the control liquid level is created, resulting in a reverse pressure when sending seal water, making it difficult to realize the above request. Furthermore, it is not possible to achieve the necessary condition of filling the main shaft level of the water ring pump with water, especially at startup.

循環水タンク6の位置を高くして循環水タンク
6側の水位を真空ポンプ2の主軸レベルより高く
することも考えられるが、この場合循環水タンク
入口ノズル5へ吐出配管4を導くためにはガス配
管で立ち上げなければならず、このような配管構
造では真空ポンプ2の停止時に吐出配管4内に封
水が溜まつてしまい再起動時に気液混合物が形成
されずに水だけが循環水タンクに供給されてサイ
クロンの機能を阻害するという問題がある。一
方、起動条件を優先させた場合には循環水タンク
の方で設計上、気水分離効率、メンテナンス、循
環水タンクの寸法等で問題を生じる。例えば気水
分離効率を下げることは出口配管12へ飛散する
水分を多くして配管へのドレン溜まりや腐食の問
題点を生じるほか純水を使用する循環水の消耗が
多くなる問題点がある。
It is also possible to raise the position of the circulating water tank 6 so that the water level on the circulating water tank 6 side is higher than the main shaft level of the vacuum pump 2, but in this case, in order to guide the discharge pipe 4 to the circulating water tank inlet nozzle 5, It is necessary to start up with gas piping, and with this piping structure, seal water accumulates in the discharge piping 4 when the vacuum pump 2 is stopped, and when the vacuum pump 2 is restarted, a gas-liquid mixture is not formed and only water is circulated. There is a problem that it is supplied to the tank and obstructs the function of the cyclone. On the other hand, if priority is given to the startup conditions, problems will arise in the design of the circulating water tank, such as air-water separation efficiency, maintenance, and dimensions of the circulating water tank. For example, lowering the steam/water separation efficiency increases the amount of water that scatters to the outlet piping 12, causing problems such as condensate accumulation and corrosion in the piping, and also increases the consumption of circulating water using pure water.

[発明の目的] 本発明は上記問題点を解決するためになされた
もので、水封形真空ポンプの封水を自己循環させ
ると同時に気水分離効率も高く、また設備保守性
の面でも問題点を生じることがない信頼性の高い
放射性排ガス処理装置用真空ポンプ設備を提供す
ることを目的とする。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned problems, and it allows self-circulation of the water sealed in a water ring type vacuum pump, and at the same time has high steam/water separation efficiency, and also solves problems in terms of equipment maintainability. It is an object of the present invention to provide a highly reliable vacuum pump equipment for a radioactive exhaust gas treatment device that does not cause spots.

[発明の構成] 本発明は放射性排ガスを吸い込む入口配管、吐
出配管および封水ノズルを有する水封式真空ポン
プと、前記吐出配管の接続された上下方向へ分岐
される分岐部と、この分岐部の上方側からガス配
管を介して接続された循環水タンクと、この循環
水タンクの下方に接続された供給水ノズルおよび
流出配管と、この流出配管の下流側に接続された
循環水クーラーと、この循環水クーラーの下流側
と前記封水ノズルとを接続する連通配管と、前記
分岐部の下方側と前記流出配管との間に介在して
連通された前置バランス管と、前記循環水タンク
の上方に設けられた出口ノズルと、前記循環水タ
ンク内の水位を前記水封式真空ポンプの主軸レベ
ルと該水封式真空ポンプの吐出配管レベルとの間
にあるよう制御する水位スイツチとを具備したこ
とを特徴とする放射性排ガス処理装置用真空ポン
プ設備である。
[Structure of the Invention] The present invention provides a water-seal vacuum pump having an inlet pipe for sucking in radioactive exhaust gas, a discharge pipe, and a water-sealing nozzle, a vertically branched branch part to which the discharge pipe is connected, and this branch part. A circulating water tank connected from above via a gas pipe, a supply water nozzle and an outflow pipe connected below the circulating water tank, and a circulating water cooler connected to the downstream side of the outflow pipe. A communication pipe connecting the downstream side of the circulating water cooler and the water sealing nozzle, a prebalance pipe interposed and communicated between the lower side of the branch part and the outflow pipe, and the circulating water tank an outlet nozzle provided above, and a water level switch that controls the water level in the circulating water tank to be between the main shaft level of the water ring vacuum pump and the discharge piping level of the water ring vacuum pump. This is vacuum pump equipment for a radioactive exhaust gas treatment device, which is characterized by the following:

[発明の実施例] 以下本発明に係る真空ポンプ設備の一実施例を
第1図および第2図につき説明する。第1図にお
いて第3図と同一部材については同一符号を付し
て説明する。
[Embodiment of the Invention] An embodiment of the vacuum pump equipment according to the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, the same members as those in FIG. 3 will be described with the same reference numerals.

本発明に係る真空ポンプ設備は第3図に示した
例と同様に水封式真空ポンプ2、循環水タンク
6、循環水クーラー11を主な機器としている
が、従来例と異なる点は第1図に示したように吐
出配管4に分岐部16を設けるとともに、この分
岐部16にガス配管17および前置バランス管1
8を接続して構成されている。第1図において、
水封式真空ポンプ2には入口配管1、封水ノズル
3および吐出配管4が接続されており、吐出配管
4の下流側には前記ガス配管17および前置バラ
ンス管18を接続する分岐部16が設けられてい
る。分岐部16から上方へ折り曲げられて形成し
たガス配管17は入口ノズル5を介して循環水タ
ンク6に接続されている。循環水タンク6には出
口ノズル7が接続されており、出口ノズル7の下
流側には出口配管12が接続されている。
The vacuum pump equipment according to the present invention mainly includes a water ring vacuum pump 2, a circulating water tank 6, and a circulating water cooler 11, as in the example shown in FIG. As shown in the figure, a branch part 16 is provided in the discharge pipe 4, and a gas pipe 17 and a prebalance pipe 1 are connected to this branch part 16.
It consists of 8 connected. In Figure 1,
An inlet pipe 1, a water seal nozzle 3, and a discharge pipe 4 are connected to the water ring type vacuum pump 2, and on the downstream side of the discharge pipe 4, a branch part 16 is connected to the gas pipe 17 and the prebalance pipe 18. is provided. A gas pipe 17 formed by bending upward from the branch portion 16 is connected to a circulating water tank 6 via an inlet nozzle 5. An outlet nozzle 7 is connected to the circulating water tank 6, and an outlet pipe 12 is connected downstream of the outlet nozzle 7.

また出口配管12と入口配管1との間には流量
制御弁13を含む排ガス再循環配管8で連結され
ている。一方、封水用配管としては循環水タンク
6の下方から取り出され、循環水クーラ11に到
る流出配管14と、この配管14に合流され、前
記吐出配管4から分岐していてかつ吐出配管4か
らの分岐部16から下方に配置される前置バラン
ス管13と、循環水クーラー11から、水封式真
空ポンプ2の封水ノズル3へ到る連通配管15と
からなつている。循環水タンク6には図示しない
水位スイツチが取り付けられ、運転中は高及び低
の設定レベルに水位を調整する。循環水タンクの
気水分離部や水位制御は従来例とほぼ同様な構成
をしている。
Further, the outlet pipe 12 and the inlet pipe 1 are connected by an exhaust gas recirculation pipe 8 including a flow rate control valve 13. On the other hand, the water sealing piping includes an outflow piping 14 that is taken out from below the circulating water tank 6 and reaches the circulating water cooler 11, and an outflow piping 14 that is joined to this piping 14 and is branched from the discharge piping 4. It consists of a prebalance pipe 13 disposed downward from a branching part 16 from the circulating water cooler 11 and a communication pipe 15 leading from the circulating water cooler 11 to the water sealing nozzle 3 of the water ring vacuum pump 2. A water level switch (not shown) is attached to the circulating water tank 6 and adjusts the water level to high and low set levels during operation. The air/water separation section and water level control of the circulating water tank have almost the same configuration as the conventional example.

すなわち、循環水タンク6内の水位が主軸レベ
ル付近に設定された水位低のレベルまで下がると
水位スイツチが作動して供給水ノズル9から給水
され、水位低のレベルより高い吐出配管4の内面
下部を越えないレベルに設定された水位高のレベ
ルに達すると再び水位スイツチが作動して給水が
停止される。
That is, when the water level in the circulating water tank 6 falls to the water level low level set near the main shaft level, the water level switch is activated and water is supplied from the supply water nozzle 9 to the inner lower part of the discharge pipe 4 which is higher than the water level low level. When the water level reaches the set level, the water level switch is activated again and the water supply is stopped.

第2図a,b,cは本発明の実施例において吐
出配管4から分岐される分岐部16に使用される
配管継手16a,16b,16cの例を具体的に
拡大した断面図である。第2図aはテイー19と
レジユーサ20、同bは異径テイー21とレジユ
ーサ22,23、同cは異径テイー21とレジユ
ーサ22,23、キヤツプ24、ハーフカツプリ
ング25を組み合わせた他に、異径テイー21の
内部にエルボの外側半分を衝突板26として取り
つけたものである。この分岐部16に使用する配
管継手16a,16b,16cは吐出配管1の内
面下方を流れたり大粒の液滴となつているものを
一部取り出すものであり、c,b,aの順に水は
分離されやすい。これらの継手a,b,cは流れ
条件等に応じ変形構造を採用することができる。
FIGS. 2a, 2b, and 2c are specifically enlarged sectional views of examples of pipe joints 16a, 16b, and 16c used in the branch portion 16 branching from the discharge pipe 4 in the embodiment of the present invention. Figure 2a shows a combination of a tee 19 and a reducer 20, Figure 2b shows a combination of a different-diameter tee 21 and reducers 22, 23, and Figure 2c shows a combination of a different-diameter tee 21, a reducer 22, 23, a cap 24, and a half coupling 25. The outer half of the elbow is attached as a collision plate 26 inside a tee 21 of different diameter. The pipe joints 16a, 16b, and 16c used in this branch part 16 are used to take out part of the liquid flowing below the inner surface of the discharge pipe 1 and forming large droplets, and the water is removed in the order of c, b, and a. Easy to separate. These joints a, b, and c can have deformable structures depending on flow conditions and the like.

つぎに上記真空ポンプ設備の作用を説明する。 Next, the operation of the vacuum pump equipment described above will be explained.

放射性排ガス処理装置の排ガスは入口配管1か
ら水封式真空ポンプ2へ抽出され装置全体を負圧
に保ちながら排ガスを流動させることができる。
水封式真空ポンプ2は入口配管1からの排ガスと
封水ノズル3からの封水を内部に引き込み、吐出
配管4へ気液混合物として排出する。この際封水
はシールと摩擦熱除去の働きをする。気液混合物
は吐出配管4では配管内面に液膜となつて流れる
様な部分の水を分岐部16で下方へ分離して前置
バランス管18へ流し、混合物の液比率を減らし
て循環水タンク入口ノズル5へ到る。循環水タン
ク6において、排ガスは循環水タンク入口ノズル
5と制御水位間に無理のない寸法を取つて設計さ
れた気水分離機構で効率良く封水分を分離除去さ
れ、循環水タンク出口ノズル7から出口配管12
を通じて図示しない排気塔へ送られる。また排ガ
スの一部は流量制御弁14を含む排ガス再循環配
管8により入口配管1側に戻されることで放射性
排ガス処理装置内の圧力および流量が制御され
る。
Exhaust gas from the radioactive exhaust gas treatment device is extracted from an inlet pipe 1 to a water ring vacuum pump 2, and the exhaust gas can be made to flow while maintaining the entire device at a negative pressure.
The water ring type vacuum pump 2 draws exhaust gas from the inlet pipe 1 and seal water from the water seal nozzle 3 into the interior thereof, and discharges them to the discharge pipe 4 as a gas-liquid mixture. At this time, the water seal acts as a seal and removes frictional heat. In the discharge piping 4, the gas-liquid mixture is separated downward at the branching part 16 from the part of the water that flows as a liquid film on the inner surface of the piping and flows into the pre-balance pipe 18, reducing the liquid ratio of the mixture and transferring it to the circulating water tank. It reaches the inlet nozzle 5. In the circulating water tank 6, the exhaust gas is efficiently separated and removed from sealed water by a steam/water separation mechanism designed with reasonable dimensions between the circulating water tank inlet nozzle 5 and the control water level, and is then discharged from the circulating water tank outlet nozzle 7. Outlet piping 12
It is sent to an exhaust tower (not shown) through the air. In addition, a part of the exhaust gas is returned to the inlet pipe 1 side by the exhaust gas recirculation pipe 8 including the flow rate control valve 14, thereby controlling the pressure and flow rate within the radioactive exhaust gas processing apparatus.

循環水タンク6内に溜まつた封水と前置バラン
ス管18に上方から供給される封水は循環水クー
ラ11で冷却された後、封水ノズル3から水封式
真空ポンプ2へ供給されるという循環を続ける。
The sealed water accumulated in the circulating water tank 6 and the sealed water supplied from above to the prebalance pipe 18 are cooled by the circulating water cooler 11 and then supplied from the sealed water nozzle 3 to the water ring type vacuum pump 2. This cycle continues.

なお、前置バランス管18の水位は循環水タン
ク6の水位とは流動圧損だけ差が出るが、下部で
連通しているためほぼ一定でわずかな差を保つた
状態でバランスして運転される。前置バランス管
18と循環水タンク6へ各々上方から供給される
水量の差は、本実施例の場合、水頭と流れの圧損
を受けて循環水クーラー11へ流れてゆく水量で
自動的に調整を受ける。
Note that the water level in the prebalance pipe 18 differs from the water level in the circulating water tank 6 by the flow pressure loss, but since it is connected at the bottom, it is operated in a balanced manner with an almost constant and slight difference. . In this embodiment, the difference in the amount of water supplied from above to the front balance pipe 18 and the circulating water tank 6 is automatically adjusted by the amount of water flowing to the circulating water cooler 11 in response to the head and flow pressure loss. receive.

しかして、上記実施例においては真空ポンプ設
備の停止中でも制御水位はほぼ水封式真空ポンプ
の主軸レベルであり、封水が水封式真空ポンプを
浸していいるため、何ら事前注水作業をすること
なく起動できる。
However, in the above embodiment, even when the vacuum pump equipment is stopped, the control water level is almost at the main shaft level of the water ring vacuum pump, and the water seal is submerging the water ring vacuum pump, so there is no need to perform any preliminary water injection work. It can be started without any problem.

また、水封式真空ポンプと循環水ポンプの2台
で封水と循環させる場合に比べ騒音、振動の少な
い運転状況が得られる。
Furthermore, compared to the case where water is sealed and circulated using two units, a water ring type vacuum pump and a circulating water pump, an operating condition with less noise and vibration can be obtained.

[発明の効果] 以上述べた様に本発明によればつぎに述べる効
果がある。
[Effects of the Invention] As described above, the present invention has the following effects.

制御系を複雑にする循環水ポンプを除去でき、
信頼性が向上し、運転操作がわかりやすく、保守
点検が容易である。
Eliminates the need for circulating water pumps that complicate the control system.
Reliability is improved, operation is easy to understand, and maintenance and inspection are easy.

また、吐出配管に上下方向へ分岐される分岐部
を設け、その下方側と循環水タンクの流出配管と
の間にバランス管を設けたので、配管内面を液膜
となつて流れるような水はバランス管へ流れて気
液混合物の液比率が減らされる。そして、循環水
タンクにサイクロンのような他の気液分離装置を
併設した場合には、その負荷を軽減することがで
きる。
In addition, we have installed a branch section in the discharge pipe that branches vertically, and a balance pipe between the lower side of the branch section and the outflow pipe of the circulating water tank, so that water that flows as a liquid film on the inner surface of the pipe can be prevented. It flows into the balance tube to reduce the liquid ratio of the gas-liquid mixture. If another gas-liquid separation device such as a cyclone is attached to the circulating water tank, the load can be reduced.

したがつて、循環水タンクを小型化して設置ス
ペースを小さくでき、しかも経済的である。
Therefore, the circulating water tank can be made smaller and the installation space can be reduced, which is also economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る放射性排ガス処理装置用
真空ポンプ設備の一実施例を示す構成図、第2図
は第1図における吐出配管の分岐部に使用される
配管継手を拡大して示す縦断面図、第3図は従来
例の真空ポンプ設備を示す構成図である。 1……入口配管、2……水封式真空ポンプ、3
……封水ノズル、4……吐出配管、5……入口ノ
ズル、6……循環水タンク、7……出口ノズル、
8……排ガス再循環配管、9……供給水ノズル、
10……循環水ポンプ、11……循環水クーラ、
12……出口配管、14……流出配管、15……
連通配管、16……分岐部、16a,16b,1
6c……配管継手、17……ガス配管、18……
前置バランス管。
FIG. 1 is a configuration diagram showing an embodiment of the vacuum pump equipment for radioactive exhaust gas treatment equipment according to the present invention, and FIG. 2 is a vertical cross-sectional view showing an enlarged view of a piping joint used in a branch part of the discharge piping in FIG. 1. The top view and FIG. 3 are configuration diagrams showing conventional vacuum pump equipment. 1...Inlet piping, 2...Water ring vacuum pump, 3
... Water sealing nozzle, 4 ... Discharge piping, 5 ... Inlet nozzle, 6 ... Circulating water tank, 7 ... Outlet nozzle,
8... Exhaust gas recirculation piping, 9... Supply water nozzle,
10... Circulating water pump, 11... Circulating water cooler,
12... Outlet piping, 14... Outflow piping, 15...
Communication piping, 16...branch section, 16a, 16b, 1
6c...Piping joint, 17...Gas piping, 18...
Front balance tube.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性排ガスを吸い込む入口配管、吐出配管
および封水ノズルを有する水封式真空ポンプと、
前記吐出配管に接続された上下方向へ分岐される
分岐部と、この分岐部の上方側からガス配管を介
して接続された循環水タンクと、この循環水タン
クの下方に接続された供給水ノズルおよび流出配
管と、この流出配管の下流側に接続された循環水
クーラーと、この循環水クーラーの下流側と前記
封水ノズルとを接続する連通配管と、前記分岐部
の下方側と前記流出配管との間に介在して連通さ
れた前置バランス管と、前記循環水タンクの上方
に設けられた出口ノズルと、前記循環水タンク内
の水位を前記水封式真空ポンプの主軸レベルと該
水封式真空ポンプの吐出配管レベルとの間にある
よう制御する水位スイツチとを具備したことを特
徴とする放射性排ガス処理装置用真空ポンプ設
備。
1. A water ring vacuum pump having an inlet pipe for sucking in radioactive exhaust gas, a discharge pipe, and a water seal nozzle;
A vertically branching branch connected to the discharge pipe, a circulating water tank connected from above the branch via a gas pipe, and a supply water nozzle connected below the circulating water tank. and an outflow pipe, a circulating water cooler connected to the downstream side of the outflow pipe, a communication pipe connecting the downstream side of the circulating water cooler and the water sealing nozzle, and a lower side of the branch part and the outflow pipe. and an outlet nozzle provided above the circulating water tank, and the water level in the circulating water tank is adjusted to the main shaft level of the water ring vacuum pump and the water ring type vacuum pump. Vacuum pump equipment for radioactive exhaust gas processing equipment, characterized in that it is equipped with a water level switch that controls the water level to be between the discharge piping level of a sealed vacuum pump.
JP22258784A 1984-10-23 1984-10-23 Vacuum pump equipment for radioactive waste gas processing device Granted JPS61101689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22258784A JPS61101689A (en) 1984-10-23 1984-10-23 Vacuum pump equipment for radioactive waste gas processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22258784A JPS61101689A (en) 1984-10-23 1984-10-23 Vacuum pump equipment for radioactive waste gas processing device

Publications (2)

Publication Number Publication Date
JPS61101689A JPS61101689A (en) 1986-05-20
JPH0524358B2 true JPH0524358B2 (en) 1993-04-07

Family

ID=16784802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22258784A Granted JPS61101689A (en) 1984-10-23 1984-10-23 Vacuum pump equipment for radioactive waste gas processing device

Country Status (1)

Country Link
JP (1) JPS61101689A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248983A (en) * 1987-04-06 1988-10-17 Kubota Ltd Cavitation prevention device for liquid ring vacuum pump
JPS63248982A (en) * 1987-04-06 1988-10-17 Kubota Ltd Cavitation prevention device for liquid ring vacuum pump
JPH0755341Y2 (en) * 1987-05-18 1995-12-20 三菱重工業株式会社 Drainage duct for vacuum pump
ATE156894T1 (en) * 1994-12-06 1997-08-15 Siemens Ag COMPRESSOR UNIT
JP2007127024A (en) * 2005-11-02 2007-05-24 Mitsui Seiki Kogyo Co Ltd Drain water purification and closed loop method in water circulation compressor

Also Published As

Publication number Publication date
JPS61101689A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
US5011520A (en) Hydrodynamic fume scrubber
KR100301564B1 (en) Cleaning tower for desulfurization of flue gas
RU2113635C1 (en) Method of operation of liquid-gas ejector
JPS59139903A (en) Whirl stream type gas-liquid separating and removing apparatus
JPH0524358B2 (en)
US3962093A (en) Apparatus for removing contaminants from the surface of a fluid
CN109779974A (en) A kind of vehicle-mounted fire water monitor water supply pump
US3294380A (en) Solid dome diffuser with trap
KR0157042B1 (en) Improved system for the path of pre-separator drain
US4629591A (en) Gas diffuser and accompanying piping system
US3432992A (en) Method and apparatus for removing dispersed liquids from the ground
US3651620A (en) Gas scrubber
JP2529998Y2 (en) Drain discharge device
US3028817A (en) Adjustable airlift pump
US3058726A (en) Water recirculating device for evaporative coolers
JP2005246185A (en) Water treatment air diffuser and operation management method
CN110666680A (en) Vacuum adsorption device
US3431708A (en) Vacuum line closure method and device for separation chambers in ground-water pumping systems
CN218853742U (en) High-efficient dust collector of nickel converter environmental protection flue gas
CN216170678U (en) Double-row water pipe type rotational flow dehydrator convenient for cleaning
CN220258500U (en) Atomizer for producing mesoporous silica
CN218579690U (en) Wastewater treatment system
JP3672609B2 (en) Vacuum pump device
JPH0226602A (en) Accumulator
JPS60110307A (en) Operation of moving bed type continuous filter