JPH0524119B2 - - Google Patents
Info
- Publication number
- JPH0524119B2 JPH0524119B2 JP21372987A JP21372987A JPH0524119B2 JP H0524119 B2 JPH0524119 B2 JP H0524119B2 JP 21372987 A JP21372987 A JP 21372987A JP 21372987 A JP21372987 A JP 21372987A JP H0524119 B2 JPH0524119 B2 JP H0524119B2
- Authority
- JP
- Japan
- Prior art keywords
- biopolymer
- partition wall
- opening
- container
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 claims description 127
- 229920001222 biopolymer Polymers 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 75
- 238000005192 partition Methods 0.000 claims description 74
- 238000002425 crystallisation Methods 0.000 claims description 33
- 238000009792 diffusion process Methods 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 238000007789 sealing Methods 0.000 claims description 22
- 238000000502 dialysis Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000012528 membrane Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 8
- 239000012780 transparent material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims 2
- 239000000696 magnetic material Substances 0.000 claims 2
- 238000005286 illumination Methods 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 description 46
- 108090000623 proteins and genes Proteins 0.000 description 46
- 239000000243 solution Substances 0.000 description 44
- 239000007788 liquid Substances 0.000 description 17
- 230000008025 crystallization Effects 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 13
- 239000012460 protein solution Substances 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000011049 filling Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 239000007853 buffer solution Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010353 genetic engineering Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005486 microgravity Effects 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 102000036675 Myoglobin Human genes 0.000 description 2
- 108010062374 Myoglobin Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- ACOQOLIJGGKILA-UHFFFAOYSA-N 2-methylpentane-1,1-diol Chemical compound CCCC(C)C(O)O ACOQOLIJGGKILA-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- SAMYCKUDTNLASP-UHFFFAOYSA-N hexane-2,2-diol Chemical compound CCCCC(C)(O)O SAMYCKUDTNLASP-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Peptides Or Proteins (AREA)
Description
〔概要〕
本発明はタンパク質や核酸などの生体高分子の
結晶を、あらかじめ設定した手順に従つて自動的
に作製する装置に関し、特に多種類(静置バツチ
法、蒸気拡散法、自由界面拡散法、透析法等)の
結晶化方法を実現でき、単結晶を効率よく、再現
性よく作製する装置に関する。
〔産業上の利用分野〕
本発明はタンパク質や核酸などの生体高分子の
結晶製造装置に関する。
タンパク質の単結晶のX線解析による原子レベ
ルの構造解明が分子生物学、タンパク工学等に関
連し行われている。
酵素作用に関係するアミノ酸の主鎖の立体的な
配置、作用との関係を知る為には結晶構造解明を
行うことにより、合理的な実験をなし得る。
タンパク質の結晶構造解析を行う場合、
(1) 小量のタンパク質試料を用いて最適のタンパ
ク質の結晶作成条件を探すことが必要とされ
る。
(2) X線回折にはある程度の大きさ(数百ミクロ
ン程度)を持つ結晶であることが必要とされ
る。
(1)の結晶化に影響を与える要因として、タンパ
ク質濃度、沈澱剤としての中性塩または有機溶媒
の種類と濃度、PH、温度、共存する微量物質等が
ある。
(2)に関連し、良質の結晶育成に宇宙空間の無重
力状態下での結晶化の試みもある。
高等動物の体内に微量に存在する生理活性物質
を、微生物を使つて大量に生産する遺伝子工学的
手法は、量的制約の壁を破るだけでなく、安定性
の壁を破り、生物活性が同じでありながら、天然
のものよりずつと安定なものが得られたりする。
任意のアミノ酸(残基)を置換したタンパク質
についてのあらゆるデータが、そのタンパク質の
構造・物性・機能を理解するのに役立つ。
遺伝子工学を使つた場合には、任意のアミノ酸
を、ある目的意識を持つて置換でき、その反応速
度を上げること、反応の特異性を変えること、熱
やPHや他の酵素によるポリペプチド鎖の切断に対
する抵抗力を高めることなど実験をデザインする
にあたつて、そのタンパク質の立体構造が既知で
あれば、これをかなり合理的に実行することがで
きる。回析データの収集の為の機器装置開発がな
されている。
タンパク質の結晶化に影響を及ぼす因子は実に
沢山あつて、本質的に試行錯誤の連続した作業に
なる結晶化プロセスの開発が望まれ、結晶化スケ
ールのミクロ化が計られると共に、結晶化条件を
系統的に観察調査する自動機械の開発が望まれて
いる。
(理学電機ジヤーナル161985,P2〜5等)
現在、宇宙環境の利用、無重力、無対流、高真
空、重粒子放射線等の利用が現在注目されてい
る。
しかし、宇宙環境利用はその端緒についたばか
りであり、実測されたデータは乏しく、宇宙環境
がどの程度利用価値のあるものかを、これから検
証していく段階にある。
近年遺伝子工学の進展に伴い、酵素の基質特異
性の改変や耐熱性の向上などの成功例が報告され
るなどタンパク質の改変が比較的容易に行えるよ
うになり、タンパク質工学(プロテインエンジニ
アリング)が注目を集めるようになつてきた。こ
れまでの主なアプローチは突然変異の導入により
ランダムに改変を行い、所期の機能を獲得したも
のを選択する方法であつたが、遺伝子工学的に狙
つた位置に改変を導入することが可能となつたの
である。この特質を充分生かすためには、対象と
なるタンパク質の立体構造が重要となる。
ところで、現在タンパク質の立体構造解明手段
は、結晶X線回析によらざるを得ない。このよう
な意味から、タンパク質結晶の作製に重大な関心
が寄せられている。宇宙環境では、対流と沈降の
消失がおこり、大きな単結晶が得られるとの期待
がある。また既に行われた宇宙実験では結晶核の
早期生成が起こり、地上にくらべ10倍の結晶が得
られたと報告されている。
(Science,225,P203〜204,1984)
これまでに実施され、あるいは実施準備が進め
られているタンパク質結晶成長実験装置は、基本
的に第4図にまとめた三種類であり、構造等につ
いては森田のレビユーがある。
(日本結晶学会誌 28,P47〜49,1986)
W.Littkeは、無重力空間で自由界面拡散法に
よる蛋白質単結晶の成長を、17th AEROSPACE
SCIENCE MEETING,New Orleans,La./
January 15−17,1979,AIAA Paper 79−
0311,“THE GROWTH OF SINGLE
CRYSTALS FROM PROTEINS IN
GRAVITY−FREE SPACE”に記載し、第3頁
右欄に「その詳細は此処では取り上げないが、第
1に有効なシーリングと同時に比較的僅かな突き
出しローデイングが対面した主な技術的難しさで
あつた。」と記載し、シーリングの重要性を指摘
している。また、W.LittkeはZ.Flugwiss.
Weltraumforsch.6(1982),Heft5,325−333
“Protein−Einkristallzuchtung in
Microgravitationsfeld”[微小重力下における蛋
白質単結晶成長」で第5図A,B,Cに示される
宇宙実験用蛋白質結晶化装置を開示する。第5図
Aは自由界面拡散法により蛋白質結晶成長を行う
セルの断面を含む体系図、第5図Bは蛋白質水溶
液と緩衝水溶液と沈澱剤水溶液を用いて自由界面
拡散法により蛋白質結晶成長を行わせるセル部構
成及びスライダの効果的なシール機構を示す正面
図と側面図、第5図Cは分離スライダを示す平面
図と断面図である。Littkeは第5図Bに示される
ように水溶液のシーリングを分離スライダをサン
ドイツチして16個の充填リング(16
Dichtungsrige)で行つている。分離スライダの
突き出しローデイング距離(ストローク)は15mm
である。水溶液のシーリングは各セル一組の蛋白
質水溶液又は沈澱剤水溶液の開口部をシーリング
するO形充填リングとO形充填リング及び緩衝水
溶液開口部をシーリングする卵形充填リングで行
われる。第5図Bでは分離スライダの一方の面に
接する4個のO形充填リング及び4個の卵形充填
リング、分離スライダの他方の面に接する4個の
O形充填リング及び4個の卵形充填リングの計16
個の充填リングで水溶液のシーリングが行われ
る。第5図Cのように分離スライダの寸法は厚さ
2mm、幅27.9mm、長さ167mmであり、直径3mm及
び直径10mmの貫通孔が各々2個設けられている如
き構成を開示する。
Walter Littkeはスライド板として貫通孔を有
する厚板を用い、貫通孔内に緩衝溶液を保持さ
せ、厚板を移動させて蛋白質溶液/緩衝溶液/沈
澱剤溶液で自由界面拡散法により結晶成長行うこ
とを開示するが、本発明の複数の異なるタイプの
セル郡を用い複数の異なる結晶化法を同時に行う
装置については開示しない。又、本発明者である
藤田は特開昭62−106000で複数の結晶作製箱(セ
ルユニツト)がドーナツ状に配置され、ドーナツ
の中心軸に光路切換用ミラーを配置し、結晶成長
過程を画像記録する生体高分子結晶自動作製装置
を開示する。しかしながら特開昭62−106000の装
置は蛋白質(ミオグロビン)液、沈澱剤(硫酸ア
ンモニウム)液、緩衝液、洗浄用水が各々貯蔵さ
れる4個の容器から、適宜所望液をパイプライン
を用い、各々の結晶化法に適合するように溶液を
調整し、各々の結晶作製箱に輸送し、生体高分子
の結晶成長を行うものである。
結晶作製箱は断面が略逆凹形状で、溶液を,重
力を利用する堰を介して仕切られる2小室に適宜
結晶化法に合わせて振分収容する構成であり、2
小室間は隔壁で仕切られたものでなかつた。又、
宇宙空間での無重力状態下、液体の表面張力を利
用した液滴法(自由界面拡散法、蒸気拡散法)も
記載するが、共に逐次目的とする結晶化法に従
い、生体高分子の結晶成長を成す逐次方式であり
本発明のように異なる複数タイプの結晶化法を同
時に行うことは出来なかつた。
〔発明が解決しようとする問題点〕
そこで、本発明では複数の結晶成長法を同時に
実行し、結晶化法の違いによる成長過程の差異を
検討することにより、宇宙環境がタンパク質結晶
成長に及ぼす影響を明らかにし得る、生体高分子
結晶装置を提供することを目的とする。宇宙での
生体高分子結晶作製には種々の制約があり、また
完全自動化が必要とされるため、確実な実施を図
るためには、装置を単純化することが必要であ
り、条件設定も可能な限り単純化することが求め
られる。
実験・拘束条件
(装置の制約)
宇宙搭載機器として固有の多くの制約がある中
で、高度の作動信頼性を確保しなければならな
い。
それらの中でも、装置設計に特に影響するもの
を以下にあげる。
・ 装置サイズ・重量に限りがあること。
・ 使用エネルギーが限られていること。
・ 打ち上げ時の激しい振動に耐えること。
・ 誤動作、故障時に他の搭載物に悪影響を及ぼ
さないこと。
・ これらの制限条件を全て満たしながら最適な
実験条件を考え、装置・方式の検討に反映させ
ること。
(実験条件)
(1) 時間:
宇宙における生体高分子結晶作製にとつて最も
大きな制約となるのは、打ち上げ前比較的長期間
の待機期間が必要となる。よつて結晶化試料溶液
がその間の保存に堪えるような設計が必要とな
る。
また、結晶成長時間は出来るだけ長いことが望
ましい。タンパク質の結晶成長は、少なくとも地
上では数日、場合によつては数か月以上かかるか
らである。
(2) 温度:
地上でのタンパク質結晶化条件は非常にデリケ
ートである。これは僅かの温度変化が結晶の成長
速度に影響を及ぼし、単結晶の晶癖を変えるから
であり、常温で結晶作製を行う場合、通常温度変
化を±1℃以内とすべきである。
しかし一般に宇宙では使用電力が限られている
ので、地上ほどの温度調節は期待できない。
(3) 実験方法
タンパク質結晶化の方法は数多くあるが、原理
的にはタンパク質水溶液を僅かに過飽和にして結
晶を成長させる。このうち本発明は結晶化方法と
して、タンパク質水溶液とタンパク質不溶化剤水
溶液の二液を使用して行うことが出来るという点
から、以下に述べる3種類の方法を行うことが可
能な結晶成長容器(セル)構造とする。
静置バツチ法
二液を十分混合して一様にし、その状態で静置
する。結晶成長に必要な核形成過程と、結晶成長
時のタンパク質供給に対する無重力環境の優位性
を純粋に評価できると予想される。
自由界面拡散法
タンパク質水溶液と不溶化剤溶液との界面を保
つた状態で二液を接触させ、不溶化剤が拡散によ
りゆつくりとタンパク質溶液内に浸透すること
で、タンパク質溶液を飽過和状態にする。無重
力・無振動状態では対流現象が起こらないので、
一度形成された自由界面は地上より安定なはずで
あり、拡散のみによる不溶化剤の濃度増加によつ
て生じる結晶化現象を観察出来ると期待される。
蒸気拡散法
タンパク質水溶液(不溶化剤を含む)と不溶化
剤とを空気(または窒素ガス)で隔てて、タンパ
ク質溶液内の水をゆつくりと除去し、タンパク質
を過飽和状態にする。熱対流のない状態での気相
中の水分拡散と、不溶化剤の溶液中拡散の両方の
影響が考えられる。
平衡透析法
タンパク質水溶液と不溶化剤溶液を、不溶化剤
分子と溶媒の水分子は通過するが大きなタンパク
質分子は通過しない膜(硝酸セルロース等)であ
る、透析膜で隔てて静置する。不溶化剤がゆつく
りタンパク質水溶液中へ透析膜を介して拡散し、
タンパク質が析出し、結晶化する。地上では透析
膜面付近に結晶核ができるが、微小重力下では対
流に影響されずより穏やかな結晶化プロセスが期
待される。
従つてセル構造の決定にあたつては、以上の方
法を無理なく実施できるよう配慮しなければなら
ない。
(セルの必要機能)
前述の各種制限条件の下でセルに要求される機
能として以下のことがあげられる。
(1) 待機期間中の試料溶液の収納、保存
前述のように試料溶液は、装置中で比較的長期
間待機する。そのため水の蒸発により溶液が濃縮
されないようシール部分は出来るだけ少なくし、
液漏れの起こらないようにする必要がある。ま
た、試料タンパク質は元来デリケートなものであ
る上、通常の条件(乾燥粉末、低温)より不安定
な状態(溶液、常温)で待機させざるを得ない。
よつて少なくとも容器との物理、科学的親和性の
ため溶液組織が変化したり、タンパク質が変性し
たりしてはならない。
(2) 結晶成長の開始
本発明のような無人・完全自動化された装置で
作動信頼性を確保するには、開始機構をシンプル
にするのが一番の方法である。
(3) 結晶成長の進行・観察、記録
開始機構は以後の結晶成長進行に支障をもたら
してはならない(例えば熱の発生)。また、結晶
成長中の観察・記録が可能な構造であることが望
ましい。
(結晶作製方式)
結晶作製方法には数多くの方法があり、基本的
にはタンパク質水溶液とタンパク質不溶化剤液
(硝酸アンモニウム、メチルペンタンジオールな
ど)とを混合してタンパク質をわずかに不溶性に
し、静置して結晶の成長を行わせる。本発明では
類似性の少ない4種類の方法(静置バツチ法、蒸
気拡散法、自由界面拡散法、平衡透析法)を同時
実施できることを目的としており、これが可能と
なるように装置の詳細検討を行う。
(観察・記録部)
タンパク質結晶成長の記録は動画である必要が
ない。また途中経過で得られる情報は画像と温度
のみであり、質の高い画像を記録することが好ま
しい。
〔問題点を解決する手段〕
本発明者らは、上記問題点を解決するための手
段として、
生体高分子溶液を収容する透明材料よりなる第
1の容器と、沈澱剤溶液を収容する透明材料より
なる第2の容器と、互いにその開口部が対向配置
される該第1の容器の第1の開口部と該第2の容
器の第2の開口部間を分離するスライド移動可能
な貫通孔を有さないもしくは貫通孔を有する隔壁
と、該第1の容器に収容される該生体高分子溶液
及び該第2の容器に収容される該沈澱剤溶液をシ
ールする該第1の開口部と該隔壁の一面間及び該
第2の開口部と該隔壁の他面間もしくは該隔壁除
去の際には更に該第1の開口部と該第2の開口部
間もシールするシール手段とを備え、該隔壁を除
去し、もしくは該貫通孔を有する隔壁をスライド
移動させ該貫通孔を介し、該生体高分子溶液と該
沈澱剤溶液とを接触させ生体高分子の結晶成長を
なす結晶成長容器(セル)をユニツトとし、複数
個の該セルを、セル各々の該隔壁が円筒の各接平
面となり該接平面の各法線は該円筒の中心軸で交
差するように、円筒状、且つ、該中心軸に対し放
射状に配置した生体高分子結晶作製部と、該生体
高分子結晶作製部における複数個のセルの隔壁を
同期して中心軸に平行に引張して除去もしくはス
ライド移動させる駆動機構部と、該駆動機構部を
制御する制御部を備えたことを特徴とする生体高
分子結晶作製装置;
生体高分子溶液を収容する透明材料よりなる第
1の容器と、沈澱剤溶液を収容する透明材料より
なる第2の容器と、互いにその開口部が対向配置
される該第1の容器の第1の開口部と該第2の容
器の第2の開口部間を分離するスライド移動可能
な隔壁と、該第1の容器に収容される該生体高分
子溶液及び該第2の容器に収容される該沈澱剤溶
液をシールする該第1の開口部と該隔壁の一面間
及び該第2の開口部と該隔壁の他面間もしくは該
隔壁除去の際には更に該第1の開口部と該第2の
開口部間もシールするシール手段とを備え、該隔
壁を除去し、もしくは該貫通孔を有する隔壁をス
ライド移動させ該貫通孔を介し、該生体高分子溶
液と該沈澱剤溶液とを接触させ生体高分子の結晶
成長をなす生体高分子結晶成長容器であつて、上
記隔壁が貫通孔を有さないもしくは貫通孔を有す
る薄板よりなり、上記シール手段が該第1の開口
部と該隔壁の一面間をシールする第1のOリング
及び該第2の開口部と該隔壁の他面間をシールす
る第2のOリングであり、該隔壁が除去された際
には該第1のOリングと該第2のOリングは更に
該第1の開口部と該第2の開口部間をシールする
ことを特徴とする生体高分子結晶成長容器;
を見出した。
〔作用〕
宇宙における生体高分子結晶の作製のために、
複数の結晶化方法を結晶成長容器のみを積み替え
ることにより自由に結晶化方法、条件を選び、再
現性、信頼性良く結晶を作製することができる。
〔実施例〕
以下本発明について、図面を参照して説明す
る。
(観察・記録系とセル配置)
セルの配置は、生体高分子結晶作製の観察・記
録方式に大きく依存する。原理的には
対象(セル)を固定し、光学系を走査移動す
る(光学系走査方式)、
光学系を固定し、セルを観察域まで走査移動
する(セル走査方式)、
光路を導き、複数のセルを同時に分割画像に
記録する(分割記録方式)、
および、
これらの方式の組み合わせ
が、考えられる。表1にこれらの方式(〜)
の検討結果を示す。
[Summary] The present invention relates to an apparatus that automatically produces crystals of biopolymers such as proteins and nucleic acids according to preset procedures, and particularly relates to a device that automatically produces crystals of biopolymers such as proteins and nucleic acids according to preset procedures. The present invention relates to an apparatus that can realize a crystallization method (such as dialysis, dialysis, etc.) and can efficiently and reproducibly produce single crystals. [Industrial Application Field] The present invention relates to an apparatus for producing crystals of biopolymers such as proteins and nucleic acids. Atomic level structure elucidation by X-ray analysis of protein single crystals is being carried out in connection with molecular biology, protein engineering, etc. In order to understand the three-dimensional arrangement of the amino acid main chain involved in enzyme action and its relationship with action, rational experiments can be carried out by elucidating the crystal structure. When performing protein crystal structure analysis, (1) it is necessary to find the optimal protein crystal formation conditions using a small amount of protein sample; (2) X-ray diffraction requires crystals of a certain size (about several hundred microns). Factors that affect crystallization in (1) include protein concentration, type and concentration of neutral salt or organic solvent as a precipitant, pH, temperature, coexisting trace substances, etc. Related to (2), there is also an attempt to grow high-quality crystals under the weightless conditions of outer space. Genetic engineering methods, which use microorganisms to produce large amounts of physiologically active substances that exist in trace amounts in the bodies of higher animals, not only break the wall of quantitative constraints, but also break the wall of stability, and produce substances with the same biological activity. However, it can be made more stable than natural products. Any data on proteins in which arbitrary amino acids (residues) have been substituted is useful for understanding the structure, physical properties, and function of that protein. Genetic engineering allows for the purposeful substitution of arbitrary amino acids, increasing the reaction rate, changing the specificity of the reaction, and altering the polypeptide chain by heat, pH, or other enzymes. When designing an experiment to increase resistance to cleavage, if the three-dimensional structure of the protein is known, this can be carried out fairly rationally. Instruments and devices for collecting diffraction data are being developed. There are many factors that affect protein crystallization, and it is desirable to develop a crystallization process that essentially involves a series of trial and error processes. It is desired to develop an automatic machine for systematic observation and investigation. (Rigaku Denki Journal 161985, P2-5, etc.) Currently, the use of the space environment, zero gravity, no convection, high vacuum, heavy particle radiation, etc. is currently attracting attention. However, the use of the space environment has only just begun, and actual measured data is scarce, so we are still at the stage of verifying the extent to which the space environment is useful. In recent years, with the progress of genetic engineering, it has become relatively easy to modify proteins, with success stories such as modifying the substrate specificity of enzymes and improving heat resistance reported, and protein engineering is attracting attention. I've started collecting. The main approach up until now has been to randomly make changes by introducing mutations and select those that have acquired the desired function, but it is now possible to introduce changes at targeted positions using genetic engineering. It became. In order to take full advantage of this characteristic, the three-dimensional structure of the target protein is important. By the way, the current means of elucidating the three-dimensional structure of proteins has no choice but to rely on crystal X-ray diffraction. In this sense, there is great interest in the production of protein crystals. In the space environment, convection and sedimentation dissipation occur, and it is expected that large single crystals will be obtained. In addition, it has been reported that in space experiments that have already been conducted, crystal nuclei are formed early, resulting in 10 times as many crystals as on the ground. (Science, 225, P203-204, 1984) There are basically three types of protein crystal growth experimental devices that have been implemented or are being prepared for implementation, as shown in Figure 4. There is a review of Morita. (Journal of the Japanese Society of Crystallography 28, P47-49, 1986) W. Littke reported on the growth of protein single crystals using the free interface diffusion method in weightless space at the 17th AEROSPACE.
SCIENCE MEETING, New Orleans, La./
January 15−17, 1979, AIAA Paper 79−
0311, “THE GROWTH OF SINGLE
CRYSTALS FROM PROTEINS IN
GRAVITY-FREE SPACE" and the right column of page 3 states, "The details are not discussed here, but first, effective sealing and at the same time relatively slight protrusion loading were the main technical difficulties encountered. ”, pointing out the importance of sealing. Also, W.Littke is Z.Flugwiss.
Weltraumforsch.6 (1982), Heft5, 325-333
“Protein−Einkristallzuchtung in
"Microgravitationsfeld" [Protein single crystal growth under microgravity] discloses a protein crystallization apparatus for space experiments shown in FIGS. 5A, B, and C. Figure 5A is a system diagram including a cross section of a cell that grows protein crystals using the free interface diffusion method, and Figure 5B shows protein crystal growth using the free interface diffusion method using an aqueous protein solution, an aqueous buffer solution, and an aqueous precipitant solution. FIG. 5C is a front view and a side view showing the structure of the cell section and the effective sealing mechanism of the slider, and FIG. 5C is a plan view and a sectional view showing the separation slider. Littke sandwiched a separation slider to seal the aqueous solution, as shown in Figure 5B.
Dichtungsrige). Separation slider protrusion loading distance (stroke) is 15mm
It is. Sealing of the aqueous solution is performed using an O-shaped filling ring that seals the opening of the aqueous protein solution or the aqueous precipitant solution in each cell, and an oval-shaped filling ring that seals the opening of the aqueous buffer solution. In FIG. 5B, four O-shaped filling rings and four oval-shaped filling rings are in contact with one side of the separation slider, and four O-shaped filling rings and four oval-shaped filling rings are in contact with the other side of the separation slider. Total of 16 filling rings
The sealing of the aqueous solution is carried out with several filling rings. As shown in FIG. 5C, the separation slider has dimensions of 2 mm in thickness, 27.9 mm in width, and 167 mm in length, and is provided with two through holes each having a diameter of 3 mm and a diameter of 10 mm. Walter Littke used a thick plate with through-holes as a sliding plate, held a buffer solution in the through-holes, and moved the plate to perform crystal growth using the free interface diffusion method with protein solution/buffer solution/precipitant solution. However, it does not disclose an apparatus for simultaneously performing a plurality of different crystallization methods using a plurality of different types of cell groups according to the present invention. Fujita, the inventor of the present invention, also disclosed in Japanese Patent Application Laid-Open No. 62-106000 that a plurality of crystal production boxes (cell units) are arranged in a donut shape, and an optical path switching mirror is placed on the central axis of the donut to record images of the crystal growth process. Discloses an automatic biopolymer crystal production device. However, the apparatus disclosed in JP-A-62-106000 uses a pipeline to supply the desired liquid from four containers each containing a protein (myoglobin) solution, a precipitant (ammonium sulfate) solution, a buffer solution, and washing water. The solution is adjusted to suit the crystallization method and transported to each crystal production box to grow crystals of biopolymers. The crystal preparation box has an approximately inverted concave cross section, and is configured to distribute and store the solution into two small chambers separated by a weir that utilizes gravity according to the crystallization method.
The small rooms were not separated by bulkheads. or,
We will also describe the droplet method (free interface diffusion method, vapor diffusion method) that utilizes the surface tension of liquid under zero gravity conditions in space, but both of them will be used to grow biopolymer crystals according to the sequential crystallization method. This is a sequential method in which a plurality of different types of crystallization methods cannot be performed simultaneously as in the present invention. [Problems to be solved by the invention] Therefore, in the present invention, multiple crystal growth methods are executed simultaneously and differences in the growth process due to the different crystallization methods are investigated. The present invention aims to provide a biopolymer crystallization device that can clarify the following. Biopolymer crystal production in space has various constraints and requires complete automation, so in order to ensure reliable implementation, it is necessary to simplify the equipment and make it possible to set conditions. It is necessary to simplify it as much as possible. Experiment/Restraint Conditions (Equipment Constraints) A high degree of operational reliability must be ensured amidst the many constraints inherent to space-borne equipment. Among them, those that particularly affect device design are listed below. - There are limitations on device size and weight. - Energy usage is limited. - To withstand severe vibration during launch.・In the event of a malfunction or breakdown, other payloads should not be adversely affected. - Consider the optimal experimental conditions while satisfying all of these limiting conditions, and reflect them in the examination of equipment and methods. (Experimental conditions) (1) Time: The biggest constraint on producing biopolymer crystals in space is the need for a relatively long waiting period before launch. Therefore, it is necessary to design the crystallization sample solution so that it can withstand storage during that period. Further, it is desirable that the crystal growth time be as long as possible. This is because protein crystal growth takes several days, at least on earth, and in some cases several months or more. (2) Temperature: Conditions for protein crystallization on land are very delicate. This is because a slight temperature change affects the growth rate of the crystal and changes the crystal habit of the single crystal, and when crystals are produced at room temperature, the temperature change should normally be within ±1°C. However, since the amount of electricity used in space is generally limited, temperature control cannot be expected to be as good as on Earth. (3) Experimental methods There are many methods for protein crystallization, but in principle, a protein aqueous solution is slightly supersaturated to grow crystals. Among these methods, the present invention uses a crystal growth container (cell) that can carry out the three methods described below, since the crystallization method can be carried out using two liquids: a protein aqueous solution and a protein insolubilizer aqueous solution. ) structure. Stationary batch method: Mix the two liquids thoroughly to make a homogeneous mixture, and leave it in that state. It is expected that it will be possible to purely evaluate the nucleation process necessary for crystal growth and the superiority of a zero-gravity environment for protein supply during crystal growth. Free interface diffusion method: Bring the two solutions into contact while maintaining the interface between the aqueous protein solution and the insolubilizing agent solution, and the insolubilizing agent slowly permeates into the protein solution by diffusion, bringing the protein solution into a saturated state. . Since no convection phenomenon occurs in a zero gravity/vibration state,
Once formed, the free interface should be more stable than on the ground, and it is expected that we will be able to observe the crystallization phenomenon that occurs due to the increase in the concentration of the insolubilizing agent due to diffusion alone. Vapor diffusion method The aqueous protein solution (including the insolubilizing agent) and the insolubilizing agent are separated by air (or nitrogen gas), and the water in the protein solution is slowly removed to bring the protein into a supersaturated state. The influence of both moisture diffusion in the gas phase in the absence of thermal convection and diffusion of the insolubilizing agent in the solution can be considered. Equilibrium dialysis method An aqueous protein solution and an insolubilizing agent solution are separated by a dialysis membrane (such as cellulose nitrate) that allows insolubilizing agent molecules and solvent water molecules to pass through, but large protein molecules do not. The insolubilizing agent slowly diffuses into the protein aqueous solution through the dialysis membrane,
Protein precipitates and crystallizes. On the ground, crystal nuclei form near the dialysis membrane surface, but in microgravity, a gentler crystallization process is expected without being affected by convection. Therefore, when determining the cell structure, consideration must be given so that the above method can be carried out without difficulty. (Required Functions of the Cell) The following functions are required of the cell under the various restrictive conditions mentioned above. (1) Storing and preserving sample solutions during the standby period As mentioned above, sample solutions wait in the device for a relatively long period of time. Therefore, the sealing area should be as small as possible to prevent the solution from concentrating due to water evaporation.
It is necessary to prevent liquid leakage. In addition, sample proteins are inherently delicate and must be kept in a more unstable state (solution, room temperature) than normal conditions (dry powder, low temperature).
Therefore, at least due to physical and scientific affinity with the container, the solution structure must not change or proteins must not be denatured. (2) Starting crystal growth The best way to ensure operational reliability in an unmanned and fully automated device like the present invention is to simplify the starting mechanism. (3) Progress, observation, and recording of crystal growth The initiation mechanism must not cause any hindrance to the subsequent progress of crystal growth (e.g., generation of heat). Further, it is desirable that the structure be such that observation and recording can be performed during crystal growth. (Crystal production method) There are many methods for producing crystals. Basically, the protein is made slightly insoluble by mixing an aqueous protein solution with a protein insolubilizing agent solution (ammonium nitrate, methylpentanediol, etc.), and then allowed to stand. crystal growth. The purpose of the present invention is to be able to simultaneously perform four types of methods (static batch method, vapor diffusion method, free interface diffusion method, and equilibrium dialysis method) that have little similarity, and in order to make this possible, a detailed study of the equipment has been carried out. conduct. (Observation/Recording Department) Recording of protein crystal growth does not need to be a video. Further, the information obtained during the process is only images and temperature, and it is preferable to record high-quality images. [Means for Solving the Problems] As a means for solving the above problems, the present inventors have proposed the following: a first container made of a transparent material for containing a biopolymer solution; and a transparent material for containing a precipitant solution. a second container, the openings of which are arranged opposite to each other, and a slide-movable through hole that separates a first opening of the first container and a second opening of the second container; a partition wall without or having a through hole; and a first opening that seals the biopolymer solution contained in the first container and the precipitant solution contained in the second container; Seal means for sealing between one surface of the partition wall, between the second opening and the other surface of the partition wall, or between the first opening and the second opening when the partition wall is removed. , a crystal growth container in which the biopolymer solution and the precipitant solution are brought into contact with each other through the through-holes by removing the partition wall or by sliding the partition wall having the through-holes to grow crystals of the biopolymer ( A cell) is a unit, and a plurality of cells are arranged in a cylindrical shape such that the partition walls of each cell are tangent planes of the cylinder, and normal lines of the tangent planes intersect at the central axis of the cylinder. A biopolymer crystal production unit arranged radially with respect to a central axis, and a drive mechanism unit that synchronously pulls and removes or slides the partition walls of a plurality of cells in the biopolymer crystal production unit parallel to the central axis. and a control section for controlling the drive mechanism section; a first container made of a transparent material that accommodates a biopolymer solution; and a transparent container that accommodates a precipitant solution. a second container made of a material; and a partition wall that is slidably movable to separate a first opening of the first container and a second opening of the second container, the openings of which are arranged opposite to each other. and between one side of the partition wall and the first opening that seals the biopolymer solution contained in the first container and the precipitant solution contained in the second container; Seal means for sealing between the opening and the other surface of the partition wall or between the first opening and the second opening when the partition wall is removed; A biopolymer crystal growth container in which a partition wall having holes is slid and the biopolymer solution and the precipitant solution are brought into contact with each other through the through hole to grow crystals of the biopolymer, wherein the partition wall is penetrated. The sealing means is made of a thin plate having no hole or a through hole, and the sealing means seals between the first opening and one surface of the partition, and the second opening and the partition. a second O-ring sealing between the surfaces, and when the partition wall is removed, the first O-ring and the second O-ring further close the first opening and the second opening; We have discovered a biopolymer crystal growth container characterized by a seal between the spaces. [Operation] For the production of biopolymer crystals in space,
By reloading only the crystal growth containers for multiple crystallization methods, it is possible to freely select the crystallization method and conditions and produce crystals with good reproducibility and reliability. [Example] The present invention will be described below with reference to the drawings. (Observation/Recording System and Cell Arrangement) The arrangement of the cell largely depends on the observation/recording method used to produce biopolymer crystals. In principle, the object (cell) is fixed and the optical system is scanned and moved (optical system scanning method), the optical system is fixed and the cell is scanned and moved to the observation area (cell scanning method), the optical path is guided, and multiple Possible methods include recording cells simultaneously in divided images (divided recording method), and a combination of these methods. Table 1 shows these methods (~)
The results of the study are shown below.
【表】【table】
【表】
一般に機械的強度(耐振動性)と計量化の両
立、作動信頼性の面から、大重量の部分を走査・
移動するのは問題がある。また、消費電力の点で
も不利である。従つて、少なくとも光学系全体を
走査することは不適当である。
またセルを走査すると、生体高分子結晶成長の
大前提である微小重量環境をスポイルすることに
なり、分割記録方式では、多くのセル観察のため
の光学設計の問題が解決したとしても、分割のた
め画像記録の画質、鮮明度が劣ることは避けられ
ない。
以上のことを考え合わせた結果、本発明は結晶
作製途中の観察を考慮に入れた場合第2図aのよ
うに円筒状配置をとることによつて観察に必要な
条件を満たしながら、宇宙機器としての制限を満
たすことができる。
一方観察を重視しなければ第2図bのようにセ
ルをブロツク状に集めてスライド板を共通し、よ
り省スペースな配置が可能となる。
もちろんこの配置でも横に観察記録機器(スチ
ールカメラ、VTR etc)を置くことにより、一
部のセルの観察、記録は可能である。
(セル構造と実験開始方式)
セルの基本構造は結晶化実験の開始方式に大き
く依存するので、可能な実験開始方式を案出し、
各々の方式が前述の要求特性を満たすかどうか等
について検討した。各方式の比較検討結果を表
2,3にまとめ、原理とセル構造について第3図
に示した。それぞれの特徴と問題点は以下に述べ
るとおりである。
(1) 膜破壊方式
二液間をゴムの薄膜で隔て、これを刃の往復駆
動によつて破壊し、ゴム弾性を利用して開口させ
ることにより実験を開始する方法である。機械部
分が小型で3方式が比較的簡単に実施可能だが、
ゴムの薄膜に必要特性(被破壊特性、試料タンパ
ク質への科学的影響、水分透過性など)を全て満
たしたものが得られるかが問題である。
(2) 厚板平行スライド方式
基本的にLittkeらの方法と同じであるが、スラ
イド板の引き抜き駆動をモータ等で行うため、機
械部分がやや大がかりになる。3方式が簡単に実
施可能であり、宇宙での実績がある。
(3) 薄板平行スライド方式
(2)の厚板の代わりに金属など(ステンレス等)
の薄板を引き抜く方式である。(2)よりシール部分
が減るのでその点信頼性が大巾に向上する。
(4) 中空筒スライド方式
中空の円筒内にタンパク質液を、不溶化剤溶液
を下部に入れる。実験開始は円筒を押し込んで行
う。セルのシール性は良いと思われるが現在の観
察方式、セル配置に合うように小型化することが
難しく、セルの工作精度も要求される。
(5) 活栓回転方式
スライド方式の変形で、直進でなく回転運動に
よつて二液を接触させる。これもセルの小型化が
困難である点が問題である。
(6) 溶液注入・充満方式
薬品用アンプルのように厚いゴムシートで封じ
たセル中に一方の液を入れる。ゴムシートに針を
差し込み、もう一方の液を注入する。無重力下で
の注入液の動きが予測出来ないことが難点であ
る。
(7) 溶液注入・水玉形成方式
液の入つていないセルの中に、ポンプ、注射器
などで二液をゆつくり注入して水玉を形成させ
る。自由界面の生成状態が予測出来ず、水玉の中
の結晶をうまく観察できない可能性がある。[Table] In general, from the viewpoint of achieving both mechanical strength (vibration resistance) and measurement, and operation reliability, scanning and
Moving is problematic. It is also disadvantageous in terms of power consumption. Therefore, it is inappropriate to scan at least the entire optical system. Furthermore, when scanning a cell, the microgravity environment, which is a major premise for biopolymer crystal growth, is spoiled. Therefore, it is inevitable that the image quality and clarity of image recording will be inferior. As a result of considering the above, the present invention provides space equipment that satisfies the conditions necessary for observation by adopting a cylindrical arrangement as shown in Figure 2a, taking into account observation during crystal preparation. can meet the restrictions as follows. On the other hand, if observation is not important, the cells can be grouped together in blocks as shown in FIG. 2b, and a common slide plate can be used, allowing for a more space-saving arrangement. Of course, even with this arrangement, it is possible to observe and record some cells by placing an observation recording device (still camera, VTR, etc.) next to the cell. (Cell structure and experiment starting method) Since the basic structure of the cell largely depends on the starting method of the crystallization experiment, we devised a possible experiment starting method,
We examined whether each method satisfies the above-mentioned required characteristics. The comparative study results of each method are summarized in Tables 2 and 3, and the principle and cell structure are shown in Figure 3. The characteristics and problems of each are described below. (1) Membrane destruction method This is a method in which the experiment begins by separating two liquids with a thin rubber film, destroying it by reciprocating the blade, and opening it using rubber elasticity. The mechanical part is small and the three methods can be implemented relatively easily, but
The problem is whether a thin rubber film can be obtained that satisfies all the required properties (destructibility, scientific influence on sample proteins, water permeability, etc.). (2) Thick plate parallel sliding method This method is basically the same as Littke et al.'s method, but since the slide plate is pulled out and driven by a motor, etc., the mechanical part is slightly larger. The three methods are easy to implement and have a proven track record in space. (3) Thin plate parallel sliding method Instead of the thick plate in (2), use metal (stainless steel, etc.)
This method involves pulling out a thin plate. (2) Since there are fewer sealing parts, reliability is greatly improved. (4) Hollow cylinder slide method Pour the protein solution into the hollow cylinder and the insolubilizer solution at the bottom. The experiment begins by pushing in the cylinder. Although the cell seems to have good sealing properties, it is difficult to miniaturize it to suit the current observation method and cell arrangement, and the precision of cell manufacturing is also required. (5) Rotating stopcock method This is a variation of the slide method, allowing two liquids to come into contact with each other through rotational movement rather than straight movement. This also poses a problem in that it is difficult to miniaturize the cell. (6) Solution injection/filling method One liquid is poured into a cell sealed with a thick rubber sheet like a chemical ampoule. Insert the needle into the rubber sheet and inject the other liquid. The difficulty is that the movement of the injectate in zero gravity is unpredictable. (7) Solution injection/water bead formation method Slowly inject the two liquids into a cell with no liquid using a pump or syringe to form water beads. The formation state of the free interface cannot be predicted, and the crystals inside the water droplets may not be observed properly.
【表】【table】
【表】【table】
【表】【table】
【表】
以上の各方式の中で、宇宙における生体高分子
結晶作製装置として好適であるのは厚板平行ス
ライド法、薄板平行スライド法の2方式である
ことが判つた。
(セルの材質)
セルの材質は、長期間の待機期間中、試料タン
パク質溶液に対して不活性なものとする必要があ
り、観察とシール性を考え合わせると透明樹脂に
よる観察窓との一体加工が妥当と考えられる。
多種類の結晶化方法を実現できる結晶成長容器
(セル)ユニツトは同じ大きさであるが、結晶化
方法により第1図に示すように異なる構造を有す
る。
第1図は自由界面拡散法a、静置バツチ法b、
蒸気拡散法c、平衡透析法dの異なる結晶化方法
を説明する、概念図、一般的方法、本発明方法を
示す。
(1) 溶液を2種類に限定し結晶作製容器の沈澱剤
側部分、および隔壁の形状を変更することによ
り通常地上で行う4種類の結晶化方法を外形の
同じセルで実現しうる。
(2) 第1図に示した各方法について述べる。
(a) 自由界面拡散法 Littkeらの方法と同じだ
が二液のみを使用し緩衝溶液を使用しない点
が異なる。
(b) 静置バツチ法中に攪拌用磁石(テフロン、
ポリプロピレン等でコーテイングし、溶液と
直接触れぬようにする)を入れ、これを外か
らの磁界で往復運動させることにより二液を
攪拌、混合する。
(c) 蒸気拡散法 孔のあいた隔壁を用い、沈澱
剤溶液はガーゼ、脱脂綿等に含浸させる、気
相を通して二液が接触し、沈澱剤を含んだ生
体高分子溶液の沈澱剤濃度がゆつくり高まつ
て結晶が析出する。
(d) 平衡透析法 半透膜(水や低分子は通す
が、生体高分子は通さない)を介して二液を
接触させる。
それぞれ隔壁をゆつくり引抜く(静置バツチ法
のみその後攪拌する)という極めて簡単な操作で
再現性良く結晶を作製できる。
静置バツチ法と自由界面拡散法に用いられる結
晶成長容器ユニツトは、静置バツチ法に用いられ
る結晶成長容器ユニツトが、初期段階に生体高分
子溶液と沈澱剤溶液とを混合するのに使用される
小さな磁性攪拌子を有することを除き、ほぼ同じ
である。
蒸気拡散法に用いられる結晶成長容器ユニツト
は、生体高分子溶液の保持室と沈澱剤溶液の保持
室との間に気相のすき間を形成する為に、厚いア
クリル板をスライド板として用いることが好まし
いが、沈澱剤溶液をカーゼ、脱脂綿等の吸収材に
に含浸させれば、打上げ時の振動による液の移動
を防ぐことができ、作製時に二液が直接でなく気
相を介して接するように保ことができる。
第2図aは回転ミラーの回転軸を中心として放
射状に配置された多種類の結晶化方法を実現する
為の、該回転軸に垂直な平面でのセル断面模式図
である。
セル内の生体高分子結晶観察の為セル部分以外
からの散乱反射光を遮光するために、第2図aに
示したように円形孔を有し、セル部分以外を遮蔽
するマスクを結晶成長容器ユニツトのミラー側に
設け、又結晶成長容器ユニツトの背面は光吸収用
遮光板を設けることがより好ましい。
生体高分子結晶は周期的に250コマ撮影用フイ
ルムホルダを付けたスチルカメラで写真にとられ
る。
結晶成長容器ユニツトの真下に位置する環状フ
ラツシユ発光体(接写用リングストロボ)がカメ
ラシヤツターの動作と同期して閃光を発する。
レンズは装置モジユールのカバー板に取付けら
れる。
生体高分子結晶の溶解度及び結晶成長速度は一
般に温度に依存し、出来るだけ厳密に温度制御を
することが望ましい。
例えば、生体高分子としてマツコウクジラミオ
グロビン(米国;シグマ社製品)1%水溶液を、
不溶化剤沈澱剤溶液として硫酸アンモニウム飽和
水溶液を使用する。
この後、結晶の成長に必要な期間、結晶作製箱
の温度を温度調節部によつて調節し、画像記録部
により結晶の成長過程を観察記録する。
結晶作製法毎の結晶作製条件の1例を下表に示
す。[Table] Among the above methods, two methods were found to be suitable for biopolymer crystal production equipment in space: the thick plate parallel slide method and the thin plate parallel slide method. (Cell material) The cell material needs to be inert to the sample protein solution during the long waiting period, and considering observation and sealing properties, it is recommended that the cell material be made of transparent resin and integrated with the observation window. is considered reasonable. A crystal growth container (cell) unit capable of realizing many types of crystallization methods has the same size, but has different structures depending on the crystallization method, as shown in FIG. Figure 1 shows free interface diffusion method a, stationary batch method b,
A conceptual diagram, a general method, and a method of the present invention are shown to explain different crystallization methods of vapor diffusion method (c) and equilibrium dialysis method (d). (1) By limiting the number of solutions to two and changing the shape of the precipitant side of the crystal preparation container and the partition wall, four types of crystallization methods that are normally carried out on the ground can be realized in a cell with the same external shape. (2) Each method shown in Figure 1 will be described. (a) Free interface diffusion method This method is the same as Littke et al.'s method, except that only two liquids are used and no buffer solution is used. (b) Stirring magnet (Teflon,
(coated with polypropylene, etc. to prevent direct contact with the solution) and stirred and mixed the two liquids by moving it back and forth using an external magnetic field. (c) Vapor diffusion method Using a perforated partition wall, the precipitant solution is impregnated with gauze, absorbent cotton, etc. The two liquids come into contact through the gas phase, and the precipitant concentration in the biopolymer solution containing the precipitant gradually increases. The temperature increases and crystals precipitate. (d) Equilibrium dialysis method Two liquids are brought into contact through a semipermeable membrane (which allows water and small molecules to pass through, but not biopolymers). Crystals can be produced with good reproducibility by an extremely simple operation of slowly pulling out the partition walls (stirring is performed only in the stationary batch method). The crystal growth container unit used in the static batch method and the free interface diffusion method is different from the crystal growth container unit used in the static batch method, which is used to mix the biopolymer solution and the precipitant solution in the initial stage. It is almost the same except that it has a small magnetic stirrer. The crystal growth container unit used in the vapor diffusion method can use a thick acrylic plate as a sliding plate to form a gas phase gap between the biopolymer solution holding chamber and the precipitant solution holding chamber. It is preferable to impregnate an absorbent material such as case or absorbent cotton with the precipitant solution to prevent movement of the liquid due to vibrations during launch, and to ensure that the two liquids come into contact through the gas phase rather than directly during production. can be maintained. FIG. 2a is a schematic cross-sectional view of a cell in a plane perpendicular to the rotation axis of a rotating mirror for realizing various crystallization methods arranged radially around the rotation axis of the rotating mirror. To observe the biopolymer crystal inside the cell, in order to block the scattered and reflected light from areas other than the cell part, a mask with circular holes that shields areas other than the cell part is installed in the crystal growth container as shown in Figure 2a. It is more preferable to provide a light-absorbing light-shielding plate on the mirror side of the unit, and on the back side of the crystal growth container unit. The biopolymer crystals are periodically photographed using a still camera equipped with a 250-frame film holder. An annular flash light emitter (ring strobe for close-up photography) located directly below the crystal growth container unit emits flash light in synchronization with the operation of the camera shutter. The lens is mounted on the cover plate of the device module. The solubility and crystal growth rate of biopolymer crystals generally depend on temperature, and it is desirable to control temperature as strictly as possible. For example, a 1% aqueous solution of Spine whale myoglobin (USA; Sigma product) was used as a biopolymer.
A saturated aqueous ammonium sulfate solution is used as the insolubilizer precipitant solution. Thereafter, the temperature of the crystal production box is adjusted by the temperature control section for a period necessary for crystal growth, and the crystal growth process is observed and recorded by the image recording section. An example of crystal production conditions for each crystal production method is shown in the table below.
【表】
本発明の装置に用いることのできる沈澱材、硫
酸アンモニウム、リン酸塩、硫酸マグネシウム、
塩化ナトリユウム、塩化セシユウム等の無機中性
塩または2−メチルペンタンジオール(MPD)、
アセトン、アルコール等の水と混じる有機溶媒を
用いることができる。
試作と結晶化実験により以下の材質、条件で行
なうと効果的である。
隔壁……ステンレス板(0.01〜0.1mmt)、た
だし蒸気拡散法はアクリル、ポリカーボネー
ト、ポリメチルペンテン等の透明なプラスチツ
クの厚板が観察に有利で良いが、タンパクや沈
澱剤と反応したり、溶けたりしないものなら用
いることができる。
容器材質……アクリル、ポリカーボネート、
ポリメチルペンテン、各種ガラス等、透明材料
が良い。
使用Oリング……吸水、透水性が小さく、溶
液中に溶出する物質を含まないもの、バイト
ン、フロロシリコンまたは表面にテフロンをコ
ートしたもの。
隔壁、スライド速度……0.05〜10cm/minが
好適。
本発明をより明確にする為の装置全体構成図、
制御システムのブロツク図、結晶化セル内での成
長結晶を示す図を参照し、以下説明する。
第6図Aは本発明の蛋白質結晶成長装置の全体
構成を示す部分切欠斜視図である。順次連続して
各セルユニツトを観察する為ステツピングモータ
により回転されるミラーの回りに、スライド板を
有する16個の結晶化セルユニツトを円筒状・放射
状に設置した実験モジユールを示す。複数の各ス
ライド板は各セルの丁度真上で、1個の三角板に
連接されており、三角板は別のステツピングモー
タにより駆動され同期して回転する3個のボール
ネジにより上下に移動されるので、複数のスライ
ド板を同時に引き出すことができる。
本発明の円筒状配置構成によれば、隔壁を除去
する機構が比較的コンパクトで、軽量であるにも
拘らず、振動に対しても丈夫な構造となる。
第6図Aを180°回転した左右逆配置となつてい
るが、第6図Bはその該当平面図、第6図Cはそ
の該当正面図である。第6図Dは制御システムの
ブロツク図である、第1図の自由界面拡散法セ
ル、静置バツチ法用セル、蒸気拡散法用セルの構
造を明確に示す拡大断面図を第6図E,a,b,
cに示す。
結晶成長過程を撮影する、スチルカメラは第6
図Aには図示されないが、実験モジユールのカバ
ー板に取付けられるレンズの光軸上(ミラーの回
転軸上)に設置される。
結晶の溶解度及び結晶成長速度は温度に依存す
るので、出来るかぎり、正確に温度を制御するこ
とが望ましい。電源の制限から、フオーム断熱材
及び無機水和物の相転移に基づく吸熱及び発熱反
応を利用する蓄熱コンポーネントからなる受動的
な温度制御を利用する。この温度制御装置は実験
環境下での熱揺らぎ及びバツテリー放電に伴う発
熱から結晶を保護する。下表は無機水和物組成物
の例を示す。転移温度は無機水和物の組成を変え
ることにより調節できる。[Table] Precipitating materials that can be used in the device of the present invention, ammonium sulfate, phosphate, magnesium sulfate,
Inorganic neutral salts such as sodium chloride and cesium chloride or 2-methylpentanediol (MPD),
Organic solvents that are miscible with water, such as acetone and alcohol, can be used. It is effective to use the following materials and conditions through trial production and crystallization experiments. Partition wall: Stainless steel plate (0.01 to 0.1 mm). However, for the vapor diffusion method, thick plates of transparent plastic such as acrylic, polycarbonate, and polymethylpentene are advantageous for observation, but they may react with proteins or precipitants, or dissolve. You can use anything that doesn't cause any damage. Container material: acrylic, polycarbonate,
Transparent materials such as polymethylpentene and various types of glass are good. O-rings to be used: O-rings with low water absorption and permeability, and containing no substances that can be eluted into the solution, Viton, fluorosilicone, or those coated with Teflon on the surface. Partition wall, sliding speed...0.05~10cm/min is suitable. An overall configuration diagram of the device to further clarify the present invention,
The control system will now be described with reference to a block diagram showing a growing crystal in a crystallization cell. FIG. 6A is a partially cutaway perspective view showing the overall configuration of the protein crystal growth apparatus of the present invention. This shows an experimental module in which 16 crystallization cell units each having a sliding plate are installed in a cylindrical and radial manner around a mirror rotated by a stepping motor in order to observe each cell unit in sequence. Each of the plurality of slide plates is connected to one triangular plate just above each cell, and the triangular plate is moved up and down by three ball screws that are driven by another stepping motor and rotated synchronously. , multiple slide plates can be pulled out at the same time. The cylindrical arrangement of the present invention provides a structure in which the partition removal mechanism is relatively compact and lightweight, yet resistant to vibrations. The left and right sides of FIG. 6A are rotated by 180°, and FIG. 6B is a plan view thereof, and FIG. 6C is a front view thereof. FIG. 6D is a block diagram of the control system. a, b,
Shown in c. The sixth still camera photographs the crystal growth process.
Although not shown in Figure A, it is installed on the optical axis of the lens (on the rotation axis of the mirror) attached to the cover plate of the experimental module. Since crystal solubility and crystal growth rate depend on temperature, it is desirable to control temperature as accurately as possible. Due to power supply limitations, passive temperature control is utilized consisting of foam insulation and heat storage components that utilize endothermic and exothermic reactions based on phase transitions of inorganic hydrates. This temperature control device protects the crystal from thermal fluctuations in the experimental environment and heat generation associated with battery discharge. The table below shows examples of inorganic hydrate compositions. The transition temperature can be adjusted by changing the composition of the inorganic hydrate.
極めて簡単な動作で結晶を作製できる、また容
器の設計を容易に互換化できるので、同じ操作機
に容器を載せ換えるだけで多種類の結晶化方法を
行なうことができる。
またこの装置は省エネルギー、省スペースの設
計が可能であり、宇宙での結晶作成に利用でき
る。
なお上記実施例においては、宇宙における生体
高分子結晶作製に適用する例を上げて説明した
が、地球上に於いては、電源容量等の制限は除か
れ、温度制御系、記録光学系等は種々のバリエー
シヨンによつて、より精密な条件設定による結晶
作製が可能である。
Crystals can be produced with extremely simple operations, and container designs can be easily made interchangeable, so many types of crystallization methods can be performed simply by changing the container to the same operating machine. Additionally, this device can be designed to save energy and space, and can be used to create crystals in space. In the above example, an example of application to biopolymer crystal production in space was explained, but on earth, limitations such as power supply capacity are removed, and temperature control systems, recording optical systems, etc. Through various variations, it is possible to produce crystals by setting more precise conditions.
第1図は本発明に適用される自由界面拡散法
a、静置バツチ法b、蒸気拡散法c、平衡透析法
dの異なる結晶化方法を説明する図、第2図は本
発明の放射状もしくはブロツク状に配列された多
種類の結晶化方法を実現するためのセル断面図、
第3図は生体高分子結晶作製の為の実験開始方式
とセル構造の説明図、第4図は公表されたタンパ
ク質結晶成長実験装置の説明図、第5図A,B,
Cは従来装置の説明図、第6図A,B,C,D,
Eは本発明の説明図である。
Figure 1 is a diagram illustrating different crystallization methods of the free interface diffusion method a, stationary batch method b, vapor diffusion method c, and equilibrium dialysis method d applied to the present invention. A cross-sectional view of cells arranged in a block shape to realize various types of crystallization methods,
Figure 3 is an explanatory diagram of the experiment starting method and cell structure for biopolymer crystal production, Figure 4 is an explanatory diagram of the published protein crystal growth experimental apparatus, and Figure 5 A, B,
C is an explanatory diagram of the conventional device; Fig. 6 A, B, C, D,
E is an explanatory diagram of the present invention.
Claims (1)
第1の容器と、沈澱剤溶液を収容する透明材料よ
りなる第2の容器と、互いにその開口部が対向配
置される該第1の容器の第1の開口部と該第2の
容器の第2の開口部間を分離するスライド移動可
能な貫通孔を有さないもしくは貫通孔を有する隔
壁と、該第1の容器に収容される該生体高分子溶
液及び該第2の容器に収容される該沈澱剤溶液を
シールする該第1の開口部と該隔壁の一面間及び
該第2の開口部と該隔壁の他面間もしくは該隔壁
除去の際には更に該第1の開口部と該第2の開口
部間もシールするシール手段とを備え、該隔壁を
除去し、もしくは該貫通孔を有する隔壁をスライ
ド移動させ該貫通孔を介し、該生体高分子溶液と
該沈澱剤溶液とを接触させ生体高分子の結晶成長
をなす結晶成長容器(セル)をユニツトとし、複
数個の該セルを、セル各々の該隔壁が円筒の各接
平面となり該接平面の各法線は該円筒の中心軸で
交差するように、円筒状、且つ、該中心軸に対
し、放射状に配置した生体高分子結晶作製部と、 該生体高分子結晶作製部における複数個のセル
の隔壁を同期して中心軸に平行に引張して除去も
しくはスライド移動させる駆動機構部と、 該駆動機構部を制御する制御部を備えたことを
特徴とする生体高分子結晶作製装置。 2 上記生体高分子結晶作製部における複数のセ
ルを照明する環状光源と、 該光源からの照明孔で照明される該セル内を観
察する該生体高分子結晶作製部の中央に位置し、
鏡面が上記中心軸を軸とする回転軸に45度の角度
をなして配置された光路切換え用回転ミラーと、 該回転ミラーの回転軸上に配置された画像記録
部と、 該回転ミラーと該画像記録部を制御する制御部
を備えた特許請求の範囲第1項記載の生体高分子
結晶作製装置。 3 上記セルの形状が、上記隔壁の移動方向に垂
直な平面での断面外形は等脚台形であり、該隔壁
の移動方向に所定長さを有しその上底面及び下底
面が上記隔壁に平行な台形柱であり、上記第1の
開口部及び上記第2の開口部近傍は円柱状であ
り、上記生体高分子結晶作製部は該セルの該上底
面が上記中心軸に対向し、上記法線が該セルの該
第1の開口部と該第2の開口部の中央を通過する
ように円筒状・放射状に配置されている特許請求
の範囲第1項記載の生体高分子結晶作製装置。 4 上記セルの上記回転ミラー側に観察に必要な
部分以外を遮光する円形孔を有するマスクを設け
た特許請求の範囲第2項記載の生体高分子結晶作
製装置。 5 温度制御をなす温度調節部を備えた特許請求
の範囲第1項記載の生体高分子結晶作製装置。 6 上記隔壁として薄板もしは貫通孔を有する薄
板からなる第1の隔壁を用い、該第1の隔壁を除
去し、もしくは、該第1の隔壁を移動し該貫通孔
を介して上記生体高分子溶液と上記沈澱剤溶液を
接触させ自由界拡散法により生体高分子の結晶成
長をなす第1のセルと、 上記第1の容器内もしくは上記第2の容器内の
いずれかに攪拌子を備え、上記隔壁として薄板も
しくは貫通孔を有する薄板からなる第2の隔壁を
用い、該第2の隔壁を除去し、もしくは、該第2
の隔壁を移動し該貫通孔を介して上記生体高分子
溶液と上記沈澱剤溶液を接触させた後、該攪拌子
で溶液の混合攪拌をなし、静置バツチ法により生
体高分子の結晶成長をなす第2のセルと、 上記隔壁として貫通孔を有する厚板からなる第
3の隔壁を用い、該第3の隔壁を移動し該貫通孔
に保持された気体を介して、上記生体高分子溶液
と上記沈澱剤溶液を接触させ蒸気拡散法により生
体高分子の結晶成長をなす、もしくは、上記隔壁
として薄板もしくは貫通孔を有する薄板からなる
第4の隔壁を用い上記第2の容器内に上記沈澱剤
溶液を吸水剤に含浸させると共に上記吸水剤に含
浸された該沈澱剤溶液を気相部を介して該第4の
隔壁と接触するように収容し、該第4の隔壁を除
去し該気相部を介し、もしくは、該第4の隔壁を
移動し該貫通孔及び該気相部を介し、上記生体高
分子溶液と上記沈澱剤溶液を接触させ蒸気拡散法
により生体高分子の結晶成長をなす第3のセル
と、 上記隔壁として貫通孔を有し該貫通孔に透析膜
が設けられた薄板からなる第5の隔壁を用い、該
第5の隔壁を移動し該透析膜を介して上記生体高
分子溶液と上記沈澱剤溶液を接触させ平衡透析法
により生体高分子の結晶成長をなす第4のセルか
ら選択される複数の異なるタイプのセル群を備
え、上記自由界面拡散法、上記静置バツチ法、上
記蒸気拡散法、上記平衡透析法から選択される複
数の異なる結晶化方法を用いて同時に生体高分子
の結晶成長をなす特許請求の範囲第1項記載の生
体高分子結晶作製装置。 7 上記第1の容器内もしくは上記第2の容器内
のいずれかに樹脂被覆された磁性材料よりなる攪
拌子を備え、外部磁界制御手段により制御される
外部磁界により該攪拌子を動かし溶液を混合攪拌
し、静置バツチ法により生体高分子の結晶成長を
なす特許請求の範囲第6項記載の生体高分子結晶
作製装置。 8 上記シール手段が上記第1の開口部と上記隔
壁の一面間をシールする第1のOリング及び上記
第2の開口部と該隔壁の他面間をシールする第2
のOリングを有する特許請求の範囲第1項記載の
生体高分子結晶作製装置。 9 上記隔壁が薄板よりなり、上記シール手段が
該隔壁の除去後上記第1の開口部と上記第2の開
口部間を更にシールする上記第1のOリング及び
上記第2のOリングである特許請求の範囲第8項
記載の生体高分子結晶作製装置。 10 生体高分子溶液を収容する透明材料よりな
る第1の容器と、沈澱剤溶液を収容する透明材料
よりなる第2の容器と、互いにその開口部が対向
配置される該第1の容器の第1の開口部と該第2
の容器の第2の開口部間を分離するスライド移動
可能な隔壁と、該第1の容器に収容される該生体
高分子溶液及び該第2の容器に収容される該沈澱
剤溶液をシールする該第1の開口部と該隔壁の一
面間及び該第2の開口部と該隔壁の他面間もしく
は該隔壁除去の際には更に該第1の開口部と該第
2の開口部間もシールするシール手段とを備え、
該隔壁を除去し、もしくは該貫通孔を有する隔壁
をスライド移動させ該貫通孔を介し、該生体高分
子溶液と該沈澱剤溶液とを接触させ生体高分子の
結晶成長をなす生体高分子結晶成長容器であつ
て、 上記隔壁が貫通孔を有さないもしくは貫通孔を
有する薄板よりなり、上記シール手段が該第1の
開口部と該隔壁の一面間をシールする第1のOリ
ング及び該第2の開口部と該隔壁の他面間をシー
ルする第2のOリングであり、該隔壁が除去され
た際には該第1のOリングと第2のOリングは更
に該第1の開口部と該第2の開口部間をシールす
ることを特徴とする生体高分子結晶成長容器。 11 上記第1の容器内もしくは上記第2の容器
内のいずかに樹脂被覆された磁性材料よりなる攪
拌子を備え上記生体高分子溶液と上記沈澱剤溶液
を接触させた後、外部磁界により該攪拌子を動か
し溶液を混合攪拌し、静置バツチ法により生体高
分子の結晶成長をなす特許請求の範囲第10項記
載の生体高分子結晶成長容器。 12 上記隔壁が貫通孔を有し該貫通孔に透析膜
が設けられた薄板からなり、該透析膜を介して上
記生体高分子溶液と上記沈澱剤溶液を接触させ平
衡透析透析法により生体高分子の結晶成長をなす
特許請求の範囲第10項記載の生体高分子結晶成
長容器。 13 上記セルの形状が、上記隔壁の移動方向に
垂直な平面での断面外径は等脚台形であり、該隔
壁の移動方向に所定長さを有してその上底面およ
び下祖面が該隔壁に平行な台形柱であり、上記第
1の開口部及び上記第2の開口部近傍は円柱状で
ある特許請求の範囲第10項記載の生体高分子結
晶成長容器。[Scope of Claims] 1. A first container made of a transparent material containing a biopolymer solution and a second container made of a transparent material containing a precipitant solution, the openings of which are arranged opposite to each other. a partition wall without or with a through hole that is slidable and capable of separating a first opening of the first container and a second opening of the second container; between the first opening that seals the biopolymer solution contained therein and the precipitant solution contained in the second container and one surface of the partition wall, and between the second opening and the other surface of the partition wall; and a sealing means for sealing between the first opening and the second opening when the partition wall is removed or the partition wall is removed, and the partition wall having the through hole is removed or the partition wall having the through hole is slid. A crystal growth container (cell) in which the biopolymer solution and the precipitant solution are brought into contact with each other through the through-hole to cause crystal growth of the biopolymer is used as a unit, and a plurality of cells are connected to the partition wall of each cell. are each tangential plane of the cylinder, and each normal line of the tangential plane intersects with the central axis of the cylinder. A drive mechanism unit that synchronizes and pulls the partition walls of a plurality of cells in the biopolymer crystal production unit in parallel to the central axis to remove or slide them, and a control unit that controls the drive mechanism unit. A device for producing biopolymer crystals. 2 an annular light source that illuminates a plurality of cells in the biopolymer crystal production unit; and a ring-shaped light source located at the center of the biopolymer crystal production unit that observes the inside of the cell illuminated by the illumination hole from the light source;
a rotating mirror for optical path switching, the mirror surface of which is arranged at an angle of 45 degrees to a rotation axis about the central axis; an image recording unit, which is arranged on the rotation axis of the rotating mirror; The biopolymer crystal production apparatus according to claim 1, comprising a control section for controlling an image recording section. 3. The shape of the cell is an isosceles trapezoid in cross-sectional shape in a plane perpendicular to the direction of movement of the partition, has a predetermined length in the direction of movement of the partition, and has its upper and lower surfaces parallel to the partition. It is a trapezoidal column, and the vicinity of the first opening and the second opening are cylindrical, and the biopolymer crystal producing section has the upper bottom surface of the cell facing the central axis, and 2. The biopolymer crystal production apparatus according to claim 1, wherein the wires are arranged cylindrically and radially so as to pass through the center of the first opening and the second opening of the cell. 4. The biopolymer crystal production apparatus according to claim 2, further comprising a mask having a circular hole that blocks light from areas other than those necessary for observation on the rotating mirror side of the cell. 5. The biopolymer crystal production apparatus according to claim 1, comprising a temperature adjustment section for temperature control. 6. Using a first partition wall made of a thin plate or a thin plate having through holes as the partition wall, remove the first partition wall, or move the first partition wall and pass the biopolymer through the through holes. a first cell in which a solution and the precipitant solution are brought into contact with each other to grow biopolymer crystals by a free-field diffusion method; and a stirrer provided in either the first container or the second container; A second partition wall made of a thin plate or a thin plate having a through hole is used as the partition wall, and the second partition wall is removed, or the second partition wall is
After the biopolymer solution and the precipitant solution are brought into contact with each other through the through-hole by moving the partition wall, the solution is mixed and stirred using the stirrer, and the crystal growth of the biopolymer is caused by a stationary batch method. and a third partition wall made of a thick plate having through holes as the partition wall, the biopolymer solution is moved through the third partition wall and passed through the gas held in the through holes. and the above-mentioned precipitant solution to cause crystal growth of the biopolymer by a vapor diffusion method, or the above-mentioned precipitation is carried out in the above-mentioned second container using a fourth partition consisting of a thin plate or a thin plate having through holes as the partition. At the same time, the precipitant solution impregnated with the water absorbing agent is accommodated so as to be in contact with the fourth partition wall through the gas phase, and the fourth partition wall is removed and the precipitant solution is impregnated into the water absorbing agent. The biopolymer solution and the precipitant solution are brought into contact with each other through the phase portion or through the through hole and the gas phase portion by moving the fourth partition, and crystal growth of the biopolymer is caused by a vapor diffusion method. using a fifth partition wall made of a thin plate having a through hole and a dialysis membrane provided in the through hole as the partition wall, move the fifth partition wall and pass the above through the dialysis membrane. A plurality of cell groups of different types selected from a fourth cell, which brings the biopolymer solution into contact with the precipitant solution and causes biopolymer crystal growth by an equilibrium dialysis method, is provided, The apparatus for producing biopolymer crystals according to claim 1, which simultaneously grows biopolymer crystals using a plurality of different crystallization methods selected from the batch method, the vapor diffusion method, and the equilibrium dialysis method. . 7. A stirrer made of a resin-coated magnetic material is provided in either the first container or the second container, and the stirrer is moved by an external magnetic field controlled by an external magnetic field control means to mix the solution. 7. The apparatus for producing biopolymer crystals according to claim 6, which grows biopolymer crystals by stirring and a stationary batch method. 8 The sealing means includes a first O-ring that seals between the first opening and one surface of the partition wall, and a second O-ring that seals between the second opening and the other surface of the partition wall.
The biopolymer crystal production device according to claim 1, having an O-ring. 9 The partition wall is made of a thin plate, and the sealing means is the first O-ring and the second O-ring that further seal between the first opening and the second opening after the partition wall is removed. A biopolymer crystal production device according to claim 8. 10 A first container made of a transparent material containing a biopolymer solution, a second container made of a transparent material containing a precipitant solution, and a first container of the first container whose openings are arranged opposite to each other. 1 opening and the second opening
a slidingly movable partition separating a second opening of the container and sealing the biopolymer solution contained in the first container and the precipitant solution contained in the second container; Between the first opening and one surface of the partition wall, between the second opening and the other surface of the partition wall, or further between the first opening and the second opening when removing the partition wall. and a sealing means for sealing,
Biopolymer crystal growth in which the biopolymer solution is brought into contact with the precipitant solution by removing the partition wall or by sliding the partition wall having the through hole to cause crystal growth of the biopolymer. In the container, the partition wall is made of a thin plate without or with a through hole, and the sealing means includes a first O-ring that seals between the first opening and one surface of the partition wall, and the first O-ring and the second O-ring. A second O-ring seals between the opening of No. 2 and the other surface of the partition wall, and when the partition wall is removed, the first O-ring and the second O-ring further seal between the opening of No. 2 and the other surface of the partition wall. A biopolymer crystal growth container characterized in that a seal is formed between the first opening and the second opening. 11 A stirrer made of a resin-coated magnetic material is provided in either the first container or the second container, and after the biopolymer solution and the precipitant solution are brought into contact, the mixture is stirred by an external magnetic field. 11. The biopolymer crystal growth container according to claim 10, wherein the stirrer is moved to mix and stir the solution to grow biopolymer crystals by a stationary batch method. 12 The partition wall is composed of a thin plate having a through hole and a dialysis membrane provided in the through hole, and the biopolymer solution and the precipitant solution are brought into contact with each other through the dialysis membrane, and the biopolymer is removed by an equilibrium dialysis method. 11. The biopolymer crystal growth container according to claim 10, wherein the biopolymer crystal growth container is used for crystal growth. 13 The shape of the cell is an isosceles trapezoid in cross-sectional outer diameter in a plane perpendicular to the direction of movement of the partition, has a predetermined length in the direction of movement of the partition, and has an upper and lower surface that corresponds to 11. The biopolymer crystal growth container according to claim 10, wherein the container is a trapezoidal column parallel to the partition wall, and the vicinity of the first opening and the second opening are cylindrical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21372987A JPS6456400A (en) | 1987-08-27 | 1987-08-27 | Biopolymer crystal growth vessel and its production device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21372987A JPS6456400A (en) | 1987-08-27 | 1987-08-27 | Biopolymer crystal growth vessel and its production device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6456400A JPS6456400A (en) | 1989-03-03 |
JPH0524119B2 true JPH0524119B2 (en) | 1993-04-06 |
Family
ID=16644034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21372987A Granted JPS6456400A (en) | 1987-08-27 | 1987-08-27 | Biopolymer crystal growth vessel and its production device and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6456400A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004019008A1 (en) * | 2002-07-11 | 2004-03-04 | Riken | Methods of searching for crystallization conditions of biopolymer and searching apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2740375B2 (en) * | 1990-10-25 | 1998-04-15 | 富士通株式会社 | Biopolymer crystallization equipment |
JP2003070464A (en) | 2001-09-04 | 2003-03-11 | Mitsubishi Heavy Ind Ltd | Method for culturing cell, method for producing artificial organ and the resultant artificial organ |
JP5896550B2 (en) * | 2011-09-21 | 2016-03-30 | 株式会社 清原光学 | Crystallization plate |
JP5943409B2 (en) * | 2011-09-21 | 2016-07-05 | 株式会社 清原光学 | Crystallization plate |
JP2013067528A (en) * | 2011-09-21 | 2013-04-18 | Kiyohara Optics Inc | Observation device for crystallization plate |
-
1987
- 1987-08-27 JP JP21372987A patent/JPS6456400A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004019008A1 (en) * | 2002-07-11 | 2004-03-04 | Riken | Methods of searching for crystallization conditions of biopolymer and searching apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6456400A (en) | 1989-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4755363A (en) | Automated biopolymer crystal preparation apparatus | |
Bergfors | Protein crystallization | |
Kim et al. | Single crystals of transfer RNA: an X-ray diffraction study | |
Doak et al. | Crystallography on a chip–without the chip: sheet-on-sheet sandwich | |
JP4466991B2 (en) | Crystal growth apparatus and method | |
Stephens et al. | Early stages of crystallization of calcium carbonate revealed in picoliter droplets | |
DE69032888T2 (en) | Method and device for examining polynucleotides or amino acid sequences | |
Wolff et al. | Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals | |
EP0607262A1 (en) | Crystal forming device and automated crystallization system | |
WO2002057520A1 (en) | System and method for screening of nucleation tendency of a molecule in a levitated droplet | |
US7504071B2 (en) | Sealing system with flow channels | |
JPH0524119B2 (en) | ||
Moreno | Advanced methods of protein crystallization | |
Cuttitta et al. | Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening | |
US20070281359A1 (en) | Method for preparation of microarrays for screening of crystal growth conditions | |
Watanabe et al. | Semi-automatic protein crystallization system that allows in situ observation of X-ray diffraction from crystals in the drop | |
Adachi et al. | Solution stirring initiates nucleation and improves the quality of adenosine deaminase crystals | |
EP1309851B1 (en) | Screening crystallisation conditions of polymorphs | |
Nishigaki et al. | Microflow system promotes acetaminophen crystal nucleation | |
DeLucas et al. | Microgravity protein crystal growth; results and hardware development | |
CN111732580A (en) | Preparation method of engagliflozin single crystal | |
JP3958610B2 (en) | Polymer crystallization vessel | |
Kwan et al. | High-throughput protein crystallization via microdialysis | |
KR102797400B1 (en) | Protein Crystallization Device in Microgravity Environment and Method of Crystallizing Protein Using the Same | |
JPH04182398A (en) | Production of crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |