JPH05237853A - Composite material molding method and molding apparatus - Google Patents
Composite material molding method and molding apparatusInfo
- Publication number
- JPH05237853A JPH05237853A JP3942092A JP3942092A JPH05237853A JP H05237853 A JPH05237853 A JP H05237853A JP 3942092 A JP3942092 A JP 3942092A JP 3942092 A JP3942092 A JP 3942092A JP H05237853 A JPH05237853 A JP H05237853A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- mold
- preform
- resin
- matrix material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title abstract description 16
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 8
- 239000012783 reinforcing fiber Substances 0.000 claims description 8
- 239000003733 fiber-reinforced composite Substances 0.000 claims description 7
- 238000013007 heat curing Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 239000011347 resin Substances 0.000 abstract description 101
- 229920005989 resin Polymers 0.000 abstract description 101
- 239000000835 fiber Substances 0.000 abstract description 3
- 210000002445 nipple Anatomy 0.000 description 18
- 238000007872 degassing Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009756 wet lay-up Methods 0.000 description 1
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化複合材料の成
形方法及び成形装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for molding a fiber-reinforced composite material.
【0002】[0002]
【従来の技術】従来、高強度繊維強化複合材料は、予め
強化繊維に未硬化(通常はB−ステージと云う半硬化状
態)の樹脂を含浸させたプリプレグ(pre-impregnated
の略が一般化した用語となっている)を積層して、これ
を所定の圧力で押えつけて加熱硬化する方法で作られて
きた。この他、ウエットレイアップ成形法、あるいはフ
ィラメントワインディング成形法等、成形段階で樹脂溶
液を含浸させる方法もあるが、一般に高強度が得られ難
い。Conventionally, high strength fiber-reinforced composite material, previously uncured (usually B- stage and refers semi-cured state) reinforcing fibers resin impregnated prepreg (pre -im, preg NATed
Has been made by a method of laminating and heat-curing this with a predetermined pressure. There are other methods such as a wet lay-up molding method and a filament winding molding method in which the resin solution is impregnated in the molding step, but it is generally difficult to obtain high strength.
【0003】ところが、近年、繊維強化型複合材料の強
度、剛性設計を最適化する解析技術が進展して来るに従
って、3次元的に強化繊維を自由に配向させる必要が生
れてきた。又、複合材料を用いて構造物の最適化設計を
進めると、プリプレグによる成形方法では大きな制約を
受け、充分な成形ができない部品があることが判ってき
た。However, in recent years, with the progress of analysis techniques for optimizing the strength and rigidity design of fiber-reinforced composite materials, it has become necessary to orient the reinforcing fibers three-dimensionally. Further, when the optimization design of the structure using the composite material is advanced, it has become clear that the molding method using the prepreg is greatly restricted and some parts cannot be molded sufficiently.
【0004】この点を解決する高強度の複合材料の成形
方法として、強化繊維材料だけで、予め繊維を任意に配
向させ、かつ製織あるいは製品の形状にある程度合致さ
せ、あるいは正確に付形したもの(通常プリフォームと
呼ばれている)を作っておき、これに樹脂を含浸させて
から硬化させ、成形する方法が知られている。As a method for molding a high-strength composite material that solves this problem, the fiber is preliminarily arbitrarily oriented and woven or conformed to the shape of the product to some extent or accurately shaped with only the reinforcing fiber material. A method is known in which a (usually called preform) is made, impregnated with a resin, then cured, and molded.
【0005】この成形方法については、原理的には日本
国特許 No.966879(CIBAGEIGY社、加圧
ゲル化法)等で述べられているとおり、古くから知られ
ているが、これ迄のところ、具体的な利用分野がなかっ
たこと、含浸樹脂として優れたものがなかったこと等に
より、この成形方法は高強度構造用分野で未だ実用化の
域に達しておらず、このタイプの複合材料で高強度を目
指すもの、あるいは低コストを目指すものは現在研究段
階にあるのが実情である。This molding method has been known for a long time, as described in Japanese Patent No. 966879 (CIBAGEIGY, pressure gelation method), etc., but it has been known so far. Due to the lack of specific fields of application and the lack of superior impregnating resins, this molding method has not yet reached the level of practical application in the field of high-strength structural applications. What is aimed at high strength or at low cost is currently in the research stage.
【0006】上述の成形方法で、樹脂をプリフォームに
含浸させる方法としては、樹脂を加圧して含浸させる方
法が有効であることが判っている。As a method of impregnating a preform with a resin by the above-mentioned molding method, it has been found that a method of pressurizing and impregnating a resin is effective.
【0007】目下、検討されているその代表的な方法
は、Resin Transfer Molding (RTM)あるいは Reac
tion Injection Molding (RIM)と呼ばれる方法で
ある。これは、液化した樹脂、あるいは液状樹脂をホー
ス又はチューブ等でプリフォームに送り込み加圧により
含浸させた後、加熱等により硬化させて成形する方法で
ある。[0007] The typical method currently being studied is Resin Transfer Molding (RTM) or Reac.
This is a method called tion Injection Molding (RIM). This is a method in which a liquefied resin or a liquid resin is sent to a preform by a hose, a tube or the like, impregnated by pressurization, and then cured by heating or the like to be molded.
【0008】図6は、そのための成形装置の一例を図式
的に示す図である。炭素繊維、ガラス繊維、アルミナ繊
維等の強化繊維により予め3次元の所定の形状に形成さ
れたプリフォーム1は2つ割りの金型2内の型空間内に
セットされ、1対の金型は周囲をボルト、ナットにより
締結される。金型には樹脂を加熱硬化させるためヒータ
3が配設されている。型空間の最上部には、樹脂注入時
の空気抜き孔が設けられ、メクラ栓4により閉塞可能と
なっている。FIG. 6 is a diagram schematically showing an example of a molding apparatus therefor. A preform 1 formed in advance into a three-dimensional predetermined shape by reinforcing fibers such as carbon fiber, glass fiber, and alumina fiber is set in a mold space in a mold 2 which is divided into two, and a pair of molds are The circumference is fastened with bolts and nuts. A heater 3 is arranged in the mold to heat and cure the resin. An air vent hole for resin injection is provided at the top of the mold space and can be closed by the blind plug 4.
【0009】樹脂は主剤5と硬化剤6とより成り、夫々
タンク7、8に収容されている。タンク7、8の下端に
夫々接続された管には流量調節弁9、開閉弁10が設け
られ、主剤5と硬化剤6とは所定の比率で混合タンク1
1に供給される。混合タンク11内にはミキサ12が設
けられ、撹拌して均一にされる。材料供給と撹拌により
液中に生じた気泡は混合タンク11の頂部に設けた真空
及び加圧管13を通して、タンク内を真空吸引すること
により脱泡される。十分に脱泡した後、弁10′を開
け、真空及び加圧管13を加圧ラインに接続しなおし、
圧縮空気を供給してタンク11内の樹脂を加圧する。加
圧された液はホース14を介して金型2内の型空間に注
入され、その内部にセットされたプリフォーム1に加圧
含浸される。The resin is composed of a main agent 5 and a curing agent 6, which are contained in tanks 7 and 8, respectively. The pipes connected to the lower ends of the tanks 7 and 8 are provided with a flow rate control valve 9 and an on-off valve 10, respectively, and the main agent 5 and the curing agent 6 are mixed at a predetermined ratio.
1 is supplied. A mixer 12 is provided in the mixing tank 11 and agitated to make it uniform. Bubbles generated in the liquid due to material supply and stirring are degassed by vacuum suction inside the tank through a vacuum and pressurizing tube 13 provided at the top of the mixing tank 11. After sufficient defoaming, open the valve 10 'and reconnect the vacuum and pressure tube 13 to the pressure line,
Compressed air is supplied to pressurize the resin in the tank 11. The pressurized liquid is injected into the mold space in the mold 2 via the hose 14, and the preform 1 set therein is pressure-impregnated.
【0010】この場合、プリフォームは金型の型空間の
中に正確に密閉、固定されなければならないが、プリフ
ォームに樹脂を加圧含浸させる時の金型の内圧(樹脂圧
力)によって1対の金型が離反し、圧力が漏洩すること
のないように強く保持しなければならない。従来は「内
圧×成形面積」の力を金型の周囲部に設けた多数のボル
ト/ナットの締付力で保持していた。In this case, the preform must be accurately sealed and fixed in the mold space of the mold, but a pair of the preform is formed by the internal pressure (resin pressure) of the mold when the preform is impregnated with resin under pressure. The mold must be held firmly so that the mold does not separate and pressure does not leak. Conventionally, the force of “internal pressure × molding area” was held by the tightening force of a large number of bolts / nuts provided around the periphery of the mold.
【0011】ところが、このような従来の方法では、次
のような問題点を持っている。 (1)内圧による成形型(金型)の膨み方向の変形、歪
を回避するため成形型は充分な剛性を持たせる必要があ
り、結果的に厚肉の重量物になる。 (2)そのため、成形面積の大きい部品の成形が困難で
ある。 (3)樹脂の漏洩防止、圧力低下防止のため、1対の成
形型どうしの圧力シールが必要であり、このため成形型
の製作精度、シール部の加工、シール材等のコスト上昇
を招いている。 (4)成形型が部品毎に専用となり、流用性がなくコス
ト上昇を招く。 (5)成形型が厚肉重量物となるため、成形型の熱容量
が増加し、その対策上熱風加熱では効果的な加熱が困難
になるところから、埋込み型あるいは挿入型の加熱ヒー
タが必要となり、一層コストアップとなる。 (6)成形面積が増大するにしたがって成形型周囲を締
結するボルト、ナットの単位長さ当りの数が増加し、締
付作業が増加しコストが上昇するとともにボルト、ナッ
トの配置が困難になる。However, such a conventional method has the following problems. (1) In order to avoid deformation and distortion of the molding die (mold) in the bulging direction due to internal pressure, the molding die needs to have sufficient rigidity, resulting in a thick and heavy product. (2) Therefore, it is difficult to mold a component having a large molding area. (3) In order to prevent resin leakage and pressure drop, it is necessary to perform pressure sealing between a pair of molding dies, which leads to an increase in manufacturing precision of the molding dies, processing of the sealing portion, and cost increase of the sealing material and the like. There is. (4) The molding die is dedicated to each part, which has no applicability and causes an increase in cost. (5) Since the molding die becomes a thick and heavy object, the heat capacity of the molding die increases, and effective heating is difficult with hot air heating as a countermeasure, so an embedded or insertion type heater is required. The cost will be further increased. (6) As the molding area increases, the number of bolts and nuts for fastening around the molding die per unit length increases, tightening work increases, cost increases, and it becomes difficult to arrange bolts and nuts. ..
【0012】[0012]
【発明が解決しようとする課題】本発明は、プリフォー
ムを金型内に密閉、固定し、液状マトリックス材料を加
圧含浸させ、硬化させる複合材料成形方法及び成形装置
の従来のものの上述の問題点にかんがみ、大面積の複合
材料部品の成形が容易、可能であり、成形型の軽量化、
コストダウン、複雑な形状の部品の成形が容易な複合材
料の成形方法及び成形装置を提供することを課題とす
る。DISCLOSURE OF THE INVENTION The present invention has the above-mentioned problems of a conventional composite material molding method and molding apparatus in which a preform is hermetically sealed and fixed in a mold, and a liquid matrix material is pressure-impregnated and cured. Considering the points, it is possible and easy to mold large-area composite material parts, and the weight of the mold is reduced.
An object of the present invention is to provide a molding method and a molding device for a composite material, which can reduce the cost and facilitate the molding of a component having a complicated shape.
【0013】[0013]
【課題を解決するための手段】上記の課題を解決するた
めの本発明による成形方法は、強化繊維を予め所定の3
次元形状に形成したプリフォームを金型の型空間内に設
置して密閉し、該空間に液状マトリックス材料を圧送し
てプリフォームに加圧含浸させ、硬化させて成形する繊
維強化複合材料の成形方法において、液状マトリックス
材料のプリフォームへの加圧含浸工程は金型を加圧缶内
に収納し、加圧缶内の圧力を金型の型空間内の圧力より
も高くして行なうことを特徴とする。In the molding method according to the present invention for solving the above-mentioned problems, a reinforcing fiber is preliminarily prepared in a predetermined amount.
A preform formed into a three-dimensional shape is placed in a mold space and sealed, and a liquid matrix material is pressure-fed into the space to impregnate the preform under pressure, followed by curing to mold a fiber-reinforced composite material. In the method, the step of pressure impregnation of the liquid matrix material into the preform is performed by placing the mold in a pressure can and making the pressure in the pressure can higher than the pressure in the mold space. Characterize.
【0014】この成形方法を実施するための本発明によ
る成形装置は、上記金型を収容可能で、内部圧力を液状
マトリックス材料の加圧含浸時の上記金型の型空間内圧
力よりも高い圧力に加圧可能な加圧缶と、該加圧缶内の
圧力を上記圧力に加圧可能な加圧手段とを有することを
特徴とする。The molding apparatus according to the present invention for carrying out this molding method can accommodate the mold and has an internal pressure higher than the pressure in the mold space of the mold during pressure impregnation of the liquid matrix material. And a pressurizing means capable of pressurizing the pressure in the pressurizing can to the above-mentioned pressure.
【0015】[0015]
【作用】本発明の複合材料成形方法及び成形装置は、上
記の如く構成されているので、プリフォームを金型内に
設置し、密閉された金型を加圧缶内に収納し、加圧缶を
閉鎖し、加圧缶内の圧力を金型内の型空間内の圧力より
も高くなるように調整しつつ、樹脂等の液状マトリック
ス材料を金型内に注入し、プリフォームに加圧含浸させ
ることにより、加圧缶内の圧力の方が金型内圧力より高
いので、金型を膨らませようとする力、一対の金型を離
反させようとする力は働らかず、逆に一対の合せ目を閉
じようとする力が作用するので、簡単なシール手段で確
実にシールすることができる。又金型を締結するボル
ト、ナットの数量及び寸法を小さくすることができるの
で、材料費、締結作業工数が減少しコストダウンを図る
ことができる。又、加圧缶内の圧力と金型内圧力との差
を少なくすることにより金型に作用する力は適度に小さ
くなり、大面積の部品の成形も可能となり、又金型の肉
厚を薄くすることができるので金型を軽量とすることが
でき、加熱硬化のためのヒータの容量を小さくすること
ができる。又、複雑な形状の金型を容易に作ることがで
きる。Since the composite material molding method and molding apparatus of the present invention are configured as described above, the preform is installed in the mold, and the sealed mold is housed in the pressurizing can. While closing the can and adjusting the pressure in the pressurizing can to be higher than the pressure in the mold space inside the mold, inject a liquid matrix material such as resin into the mold and pressurize the preform. Since the pressure inside the pressure can is higher than the pressure inside the mold due to the impregnation, the force to inflate the mold and the force to separate the pair of molds do not work. Since a force to close the joint is applied, it is possible to reliably seal with a simple sealing means. Further, the number and size of the bolts and nuts for fastening the mold can be reduced, so that the material cost and the number of fastening work steps can be reduced, and the cost can be reduced. Also, by reducing the difference between the pressure inside the pressurizing can and the pressure inside the mold, the force acting on the mold is moderately reduced, making it possible to mold large-area parts and reduce the wall thickness of the mold. Since the mold can be made thin, the mold can be made lightweight, and the capacity of the heater for heat curing can be reduced. Further, a mold having a complicated shape can be easily made.
【0016】本発明の成形方法によれば、液状マトリッ
クス材料の加圧含浸工程で金型内の圧力の方が加圧缶内
圧力より小さいので、シール手段として加圧バッグを使
用すれば、加圧バッグは金型全体及び或いは金型の合せ
目を覆ってしまうことができるので、容易かつ確実に密
閉することができる。According to the molding method of the present invention, since the pressure inside the mold is lower than the pressure inside the pressure can during the pressure impregnation step of the liquid matrix material, if a pressure bag is used as the sealing means, the pressure will increase. Since the pressure bag can cover the entire mold and / or the seam of the mold, the pressure bag can be easily and surely sealed.
【0017】又、上記のプリフォームに液状マトリック
ス材料を加圧含浸させるための金型への注入管及び金型
からの真空吸引管、含浸された液状マトリックス材料の
加熱硬化のため金型に設けられたヒータへの電力供給線
及び金型温度検知信号取出し線を上記加圧缶の壁を貫通
して配管又は配線可能とするため、上記加圧缶の壁に上
記各管、線を内外より接続可能なポートを設けたならば
配管、配線が容易になる。Further, an injection pipe into a mold for impregnating the above-mentioned preform with a liquid matrix material under pressure, a vacuum suction pipe from the mold, and a mold for heat-curing the impregnated liquid matrix material are provided in the mold. The power supply line to the heater and the mold temperature detection signal take-out line that penetrate the wall of the pressure can to enable piping or wiring. If a connectable port is provided, piping and wiring will be easy.
【0018】[0018]
【実施例】以下に、本発明の実施例を図面に基づいて詳
細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0019】図1は本発明による複合材料成形方法を実
施するための本発明による成形装置の一実施例を示す図
である。以下の説明では複合材料のマトリックスとして
樹脂を用いた例を示すが、マトリックス含浸段階で液体
であれば樹脂に限らない。FIG. 1 is a view showing an embodiment of a molding apparatus according to the present invention for carrying out the composite material molding method according to the present invention. In the following description, an example in which a resin is used as the matrix of the composite material is shown, but it is not limited to the resin as long as it is a liquid at the matrix impregnation stage.
【0020】この実施例の成形装置は、プリフォーム1
を型空間にセットする金型2を内部に収容することがで
き、開閉可能で、閉鎖時内部の圧力P1をプリフォーム
1に樹脂を加圧含浸させる場合の金型2内の圧力よりも
若干高くすることが可能な加圧缶15、加圧缶15内に
収容された金型1の型空間内に樹脂を注入するための樹
脂注入タンク16、プリフォームに樹脂が十分に注入さ
れたか否かを確認するため、および過剰樹脂が配管系統
へ流れ込まないようにするための樹脂止めタンク17、
上記樹脂注入タンク16内の樹脂を圧力調整弁18aを
介して加圧し、バルブ35a、圧力調節弁18bを介し
て加圧管15内を加圧する加圧ポンプ19、上記樹脂止
めタンク17内を真空吸引すると共に、注入開始前の樹
脂をタンク16内で脱泡するためタンク16内を真空吸
引する真空ポンプ20、金型の各部温度を計測する熱電
対による検出温度に基き金型1に設けられた複数のヒー
タ3に供給する電力を調整するマルチチャンネル温度調
節器21を主要な構成要素としている。The molding apparatus according to this embodiment has a preform 1
Can be housed inside, can be opened and closed, and the pressure P 1 inside when closed can be lower than the pressure inside the mold 2 when the preform 1 is pressure-impregnated with resin. Pressure can 15 which can be slightly raised, resin injection tank 16 for injecting the resin into the mold space of the mold 1 housed in the pressure can 15, and whether the resin has been sufficiently injected into the preform A resin stop tank 17 for checking whether or not excess resin does not flow into the piping system,
A pressure pump 19 for pressurizing the resin in the resin injection tank 16 via a pressure adjusting valve 18a and pressurizing the inside of the pressurizing pipe 15 via a valve 35a and a pressure adjusting valve 18b, and a vacuum suction inside the resin stop tank 17. In addition, the vacuum pump 20 vacuum-sucks the inside of the tank 16 to defoam the resin before starting the injection, and the mold 1 is provided based on the temperature detected by a thermocouple that measures the temperature of each part of the mold. The multi-channel temperature controller 21 that adjusts the power supplied to the plurality of heaters 3 is a main component.
【0021】樹脂注入タンク16内の樹脂を加圧缶15
内の金型1内に注入するための配管、金型1内空間を樹
脂止めタンク17に吸引するための配管を加圧缶15の
内外より気密を保持して接続する樹脂注入ポート22、
真空吸引及び樹脂流出ポート23、加圧ポンプ19より
バルブ35a、圧力調節弁18bを介して加圧缶15に
加圧空気を供給する管を接続する加圧ポート24、金型
1のシール手段としての加圧バッグ25内の局部的残留
空気を脱気する脱気チューブ26を加圧缶の内側から接
続する脱気ポート27、金型の各部の温度を検出する熱
電対の検出温度をマルチチャンネル温度調節器に送る配
線及び該温度調節器から金型に設けられた複数のヒータ
3に電力を供給する配線を、加圧缶15の内外より接続
する熱電対ポート28、電力端子ポート29が夫々1個
ずつ加圧缶15の壁に溶接等により気密に取付けられて
いる。ここで、脱気ポート27は、脱気チューブ26を
ニップル30Dの中に導くことにより必ずしも必要では
ないが、装備することが好ましい。The resin in the resin injection tank 16 is pressurized with the pressure can 15
A resin injection port 22 for connecting a pipe for injecting into the mold 1 inside, and a pipe for sucking the space inside the mold 1 to the resin stop tank 17 while maintaining airtightness inside and outside the pressure can 15.
Vacuum suction and resin outflow port 23, pressurization port 24 for connecting a pipe that supplies pressurized air to pressurization can 15 from pressurization pump 19 through valve 35a and pressure control valve 18b, and as a sealing means for mold 1. The degassing tube 27 for degassing the local residual air in the pressure bag 25 of FIG. 2 is connected to the degassing port 27 from the inside of the pressure can, and the temperature detected by the thermocouple for detecting the temperature of each part of the mold is multi-channel. A thermocouple port 28 and a power terminal port 29 are provided to connect a wire sent to the temperature controller and a wire for supplying electric power from the temperature controller to the plurality of heaters 3 provided in the mold from inside and outside the pressurizing can 15, respectively. Each one is airtightly attached to the wall of the pressure can 15 by welding or the like. Here, the degassing port 27 is not necessarily required by guiding the degassing tube 26 into the nipple 30D, but is preferably equipped.
【0022】樹脂注入ポート22、真空吸引及び樹脂流
出ポート23は缶内外ともニップル30B、30C、3
0D、30Eの各1端が螺着される雌ねじが切られてい
る。この部分は圧力シールされるため管用テーパねじと
するのが実用的であるが、取外し容易で圧力シールさえ
できれば、Oリングを用いた締結法や、スェージロック
型締結法など任意のものを使用することができる。The resin injection port 22, the vacuum suction and resin outflow port 23 are provided inside and outside the can with the nipples 30B, 30C, 3 and 3.
Female threads are screwed into which one end of each of 0D and 30E is screwed. Since this part is pressure-sealed, it is practical to use a taper screw for pipes. However, if it is easy to remove and only pressure-sealing is possible, use any method such as the O-ring fastening method or the Swagelok fastening method. You can
【0023】熱電対ポート28、電力端子ポート29の
内外両面には、内外互いに導通した複数の差込み口が設
けられており、熱電対用導線及びヒータへの給電線の端
子を差込むことができるようになっている。On both inner and outer surfaces of the thermocouple port 28 and the power terminal port 29, there are provided a plurality of insertion ports which are electrically connected to each other, so that terminals of the thermocouple lead wire and the feeder wire to the heater can be inserted. It is like this.
【0024】加圧缶15の壁にはこの他安全弁31を備
えた排気弁32が設けられている。An exhaust valve 32 having a safety valve 31 is provided on the wall of the pressurizing can 15.
【0025】又、樹脂注入タンク16及び樹脂止めタン
ク17は夫々密閉可能な蓋を有し夫々の蓋には1乃至2
個の覗き窓33が設けられている。The resin injecting tank 16 and the resin stopping tank 17 each have a lid capable of being sealed, and each lid has 1 to 2 pieces.
Individual viewing windows 33 are provided.
【0026】樹脂止めタンク17内の圧力P2は圧力切
換弁34aにより真空ポンプ、大気及び圧力調整弁を介
して加圧ポンプ19に夫々切換えて接続することがで
き、又圧力切換弁34bにより樹脂注入タンク16内の
圧力P3と連通させることも可能となっている。圧力切
換弁34bをメクラ側に倒せば圧力P3は大気と連通す
るようになっている。The pressure P 2 in the resin stop tank 17 can be switched to and connected to the pressurizing pump 19 through the vacuum pump, the atmosphere and the pressure adjusting valve by the pressure switching valve 34a, and the resin by the pressure switching valve 34b. It is also possible to communicate with the pressure P 3 in the injection tank 16. When the pressure switching valve 34b is tilted to the blind side, the pressure P 3 communicates with the atmosphere.
【0027】樹脂注入タンク16はニップル30F、バ
ルブ35b、ニップル30A、エルボ、ニップル30B
を経て樹脂注入ポート22に接続されている。The resin injection tank 16 includes a nipple 30F, a valve 35b, a nipple 30A, an elbow and a nipple 30B.
And is connected to the resin injection port 22 via.
【0028】又、脱気ポート27の外側開口にはメクラ
栓36が設けられている。A blind plug 36 is provided at the outer opening of the deaeration port 27.
【0029】上記の各圧力ラインは、圧力もれのないよ
うに完全にシールされる。Each of the above pressure lines is completely sealed so that there is no pressure leak.
【0030】少くともニップル30C、30D、場合に
よってはニップル30A、30B、30Eは使い捨て型
の安価なもの、例えばガス配管用鋼管等が実用的であ
る。それというのも、これらの配管内では一般に管内で
樹脂が硬化してしまうので、これを除去するよりも管を
使い捨てにした方が安くつくからである。At least the nipples 30C, 30D and, in some cases, the nipples 30A, 30B, 30E are disposable, inexpensive ones, for example, steel pipes for gas piping. This is because, in these pipes, the resin generally hardens in the pipes, and therefore it is cheaper to dispose the pipes than to remove them.
【0031】樹脂注入タンク16には適当な加熱手段を
設けることが望ましい。その理由は、液状の樹脂の脱
泡、脱気は、樹脂を加熱して粘度を下げて行なうことが
効果的で能率が向上し、又、適用できる樹脂の種類も広
がる故である。したがって、室温で低粘度の液状樹脂を
使用する場合は加熱は必要がない。It is desirable that the resin injection tank 16 be provided with an appropriate heating means. The reason is that the defoaming and degassing of the liquid resin are effectively performed by heating the resin to reduce its viscosity, and the efficiency is improved, and the types of applicable resins are expanded. Therefore, heating is not necessary when using a low-viscosity liquid resin at room temperature.
【0032】同じ理由から、樹脂止めタンク17にも加
熱手段を設けておくことが望ましい。For the same reason, it is desirable to provide a heating means also in the resin stop tank 17.
【0033】又、同様の理由からニップル30A、30
B、……、30F、バルブ35bも保温可能としておけ
ば脱泡、脱気の能率が良くなり、適用樹脂の種類が広が
る。Further, for the same reason, the nipples 30A, 30
If B, ..., 30F, and the valve 35b can also be kept warm, the efficiency of defoaming and degassing will improve, and the types of applicable resins will expand.
【0034】各タンク16、17内の樹脂の脱泡状態、
流動・流出状態は夫々のタンクに設けられた覗き窓33
から観察することができる。The defoaming state of the resin in each of the tanks 16 and 17,
The flow and outflow state is the viewing window 33 provided in each tank.
Can be observed from.
【0035】脱気チューブ26は、樹脂及び熱により溶
融しない材料で作られ樹脂は流出させないが気体は通気
可能な細い管が使用可能である。又図2に示す如くガラ
ス繊維束26aを間に挟んで粘着テープ26bの両縁部
を互いに粘着させることによりガラス繊維束26aの部
分を通気エリアとした導管を簡単に作ることができる。
なお、このチューブに樹脂が滲み込むと脱気性がなくな
るので、脱気チューブは複数本設けておく必要がある。The degassing tube 26 is made of a resin and a material that is not melted by heat, and a thin tube that does not allow the resin to flow out but allows gas to pass can be used. Further, as shown in FIG. 2, a glass fiber bundle 26a is sandwiched between the adhesive tapes 26b so that both edges of the tape are adhered to each other, whereby a conduit having the glass fiber bundle 26a as a ventilation area can be easily formed.
It is necessary to provide a plurality of degassing tubes because the degassing property disappears when the resin permeates into this tube.
【0036】上記の構成の成形装置を使用して複合材料
を成形する方法を以下に説明する。A method of molding a composite material using the molding apparatus having the above structure will be described below.
【0037】(1)初期状態設定 加圧缶15→開放 バルブ35a→閉 バルブ35b→閉 圧力切換弁34a→大気 圧力調整弁18a→最低側迄ゆるめておく。 排気弁32→閉 樹脂止めタンク17→密閉 加圧缶15の外の配管系は図1のとおり配管する。こゝ
で、樹脂注入タンク16に樹脂を入れておいても、後述
する(13)の工程で入れても、いずれでもよいが、樹
脂が室温で反応し、増粘しない時間範囲内でプリフォー
ムに含浸が完了しうることが必要である。(1) Initial state setting Pressurizing can 15 → open valve 35a → close valve 35b → close pressure switching valve 34a → atmospheric pressure adjusting valve 18a → loose to the lowest side. Exhaust valve 32 → close Resin stop tank 17 → close The piping system outside the pressure can 15 is connected as shown in FIG. The resin may be added to the resin injection tank 16 or may be added in the step (13) described below, but the preform is reacted within a range of room temperature and does not thicken. It is necessary that the impregnation can be completed.
【0038】(2)金型2にプリフォーム1をセットす
る。これは加圧缶15内で行なってもよいし、缶外で行
なってもよい。(2) The preform 1 is set in the mold 2. This may be done inside the pressure can 15 or outside the can.
【0039】(3)金型2の樹脂注入口に口金40aを
取付ける。この取付けは、粘着テープで止める程度でも
よいが、ボルト、ナット等の機械的な締結方法で取付け
れば金型の安定性が向上し、作業性が良好となる。たゞ
し、この部分は成形時に樹脂で固ってしまうので、成形
後、容易に取外し出来るように離型処理などの工夫して
おく必要がある。(3) Attach the die 40a to the resin injection port of the die 2. This attachment may be performed by fastening with an adhesive tape, but if it is attached by a mechanical fastening method such as bolts and nuts, the stability of the mold is improved and the workability is improved. However, since this part is hardened by resin during molding, it is necessary to devise a mold release process so that it can be easily removed after molding.
【0040】(4)この口金40aはニップル30Cを
介して樹脂注入ポート22の缶内側に連結される。な
お、これは(3)の工程より前に行なってもよい。(4) The base 40a is connected to the inside of the can of the resin injection port 22 via the nipple 30C. Note that this may be performed before the step (3).
【0041】(5)上記(3)、(4)と同様、金型2
に口金40bを取付け、ニップル30Dを介して、真空
吸引及び樹脂流出ポート23の缶内側に連結する。(5) Mold 2 as in (3) and (4) above.
To the inside of the can of the vacuum suction and resin outflow port 23 via the nipple 30D.
【0042】(6)金型2の各所、プリフォーム1の端
部、中央部表面など気泡が残留し易いと考えられる各所
に、脱気チューブ26を粘着テープなどで取付け、各チ
ューブの他端を脱気ポート27に挿入する。(6) Deaeration tubes 26 are attached with adhesive tape or the like to various places on the mold 2, the ends of the preform 1, the surface of the central portion where bubbles are likely to remain, and the other end of each tube is attached. Is inserted into the degassing port 27.
【0043】(7)すべての脱気チューブ26を脱気ポ
ート27に取付けた後、脱気ポート27の管内側はこゝ
から内圧ガスが漏れないようにゴム粘土と加圧バックの
併用等によりシールする。(7) After all the deaeration tubes 26 are attached to the deaeration port 27, the inside of the deaeration port 27 is made of rubber clay and a pressure bag so that internal pressure gas does not leak from the inside. Seal it.
【0044】(8)口金40a、40bを含み、プリフ
ォーム1がセットされた金型2全体を加圧バックフィル
ム25で包囲し、全体を完全にシールする。(8) The die 2 including the die 40a and 40b, on which the preform 1 is set, is surrounded by the pressure back film 25 to completely seal the whole.
【0045】このバック25の掛け方及びシール方法
は、従来から実施されている公知のオートクレーブ成形
技術に倣って実施することができる。The method of hanging the bag 25 and the sealing method can be carried out in accordance with a known autoclave molding technique which has been conventionally practiced.
【0046】(9)この場合、脱気チューブ26、ヒー
タへの給電線、熱電対線がバック25を貫通する部分も
ゴム粘土あるいは圧力シールタイプの貫通端子を用いて
完全にシールする。(9) In this case, the degassing tube 26, the power supply line to the heater, and the portion where the thermocouple line penetrates the bag 25 are also completely sealed by using rubber clay or a pressure seal type through terminal.
【0047】(10)この状態で圧力切換弁34aを真空
ポンプ20側に切換え、樹脂止めタンク17内の圧力P
2を真空にすると、加圧バック25はプリフォーム1を
セットした金型2全体を大気圧で締めつける。(10) In this state, the pressure switching valve 34a is switched to the vacuum pump 20 side, and the pressure P in the resin stop tank 17 is changed.
When 2 is evacuated, the pressure bag 25 clamps the entire mold 2 in which the preform 1 is set at atmospheric pressure.
【0048】この時、圧力漏れ部(シール不良部)があ
れば、ゴム粘土、加圧バックフィルムなどで完全にシー
ル補強する。At this time, if there is a pressure leakage part (sealing defect part), the seal is completely reinforced with rubber clay, a pressure back film or the like.
【0049】(11)金型2に設けられた各ヒータへの電
力供給線及び各熱電対への配線をすべて、電力端子ポー
ト29の差込み口、、、、……、COMMON及び熱
電対ポート28の差込み口´、´、´、……、に
接続する。(11) All the power supply lines to the heaters and the wires to the thermocouples provided in the mold 2 are connected to the insertion port of the power terminal port 29, ..., COMMON and the thermocouple port 28. Connect to the outlets', ',' ,.
【0050】(12)加圧缶15の蓋を閉じて加圧缶15
を密閉し、バルブ35aを開き、圧力調節弁18bを調
節して、缶内圧P1を所定の圧力、例えば7Kgf/cm2ま
で上げる。(12) Close the lid of the pressure can 15 to close the pressure can 15.
Is closed, the valve 35a is opened, and the pressure control valve 18b is adjusted to raise the internal pressure P 1 of the can to a predetermined pressure, for example, 7 kgf / cm 2 .
【0051】(13)樹脂注入タンク16に所定の薬剤を
(主剤と硬化剤)をブレンドした樹脂を入れ、密閉した
後、圧力切換弁34bを樹脂注入タンク16側に移し、
樹脂の脱気、脱泡を行なう。なお、樹脂注入タンク16
への樹脂の注入、脱気、脱泡は、この段階より以前の工
程から行っておいてもよい。(13) A resin blended with a predetermined chemical agent (main agent and curing agent) is put in the resin injection tank 16 and sealed, and then the pressure switching valve 34b is moved to the resin injection tank 16 side.
Degass and defoams the resin. The resin injection tank 16
The resin injection, deaeration, and defoaming into the resin may be performed from the steps prior to this stage.
【0052】(14)上記の脱気・脱泡終了後、圧力切換
弁34bを「メクラ」側に倒し、樹脂注入タンク16内
の圧力P3の真空を大気に解放する。なお、この段階で
は、樹脂止めタンク17内の圧力P2は真空である。(14) After the above degassing and defoaming is completed, the pressure switching valve 34b is tilted to the "blind" side to release the vacuum of the pressure P 3 in the resin injection tank 16 to the atmosphere. At this stage, the pressure P 2 inside the resin stopper tank 17 is a vacuum.
【0053】(15)こゝでバルブ35bを開くと、樹脂
注入タンク16内の樹脂は、ニップル30F、30A、
30B、30Cを通って、金型2内に流入し、プリフォ
ーム1に樹脂が含浸される。ある程度含浸が進むと、ニ
ップル30D、30Eを通って樹脂が樹脂止めタンクに
流出して来る。(15) When the valve 35b is opened at this point, the resin in the resin injection tank 16 becomes nipples 30F, 30A,
The resin passes through 30B and 30C, flows into the mold 2, and the preform 1 is impregnated with the resin. When the impregnation progresses to some extent, the resin flows out to the resin stopper tank through the nipples 30D and 30E.
【0054】(16)この流出を覗き窓33から確認した
後、圧力切換弁34aを大気側に切換え、次いで圧力切
換弁34bを樹脂注入タンク16側に切換え、圧力切換
弁34aを加圧ポンプ19側に倒し、樹脂注入タンク1
6内圧力P3と樹脂止めタンク17内圧力P2とを、同時
に(12)の工程で加圧した加圧缶15内の圧力P1よ
りも充分低い同一圧力で加圧する。例えば、P1=7Kgf
/cm2とセットされた場合、P2=P3=5Kgf/cm2とす
る。この差2Kgf/cm2は加圧バック25のシール圧力及
び金型2を締め付ける圧力となる。(16) After confirming this outflow through the viewing window 33, the pressure switching valve 34a is switched to the atmosphere side, then the pressure switching valve 34b is switched to the resin injection tank 16 side, and the pressure switching valve 34a is switched to the pressurizing pump 19. Tilt to the side and fill the resin injection tank 1
And 6 in the pressure P 3 and the resin stopper tank 17 internal pressure P 2, pressurized with sufficiently low the same pressure than pressure P 1 at the same time (12) Step pressurized pressurized can in 15 of. For example, P 1 = 7Kgf
If set to / cm 2 , then P 2 = P 3 = 5 Kgf / cm 2 . This difference of 2 Kgf / cm 2 becomes the sealing pressure of the pressure bag 25 and the pressure for tightening the mold 2.
【0055】(17)以上の操作を行なった上で、金型に
設けられたヒータ3をマルチチャンネル温度調節器21
により調節して、樹脂に金型を通して最適の温度サイク
ルを掛け、樹脂の含浸を完全に行なうとともに、ゲル化
及び硬化をさせる。(17) After performing the above operation, the heater 3 provided in the mold is attached to the multi-channel temperature controller 21.
The resin is subjected to an optimum temperature cycle through the mold so that the resin is completely impregnated and gelled and cured.
【0056】(18)硬化時間終了後、充分な冷却を行な
ってから、圧力切換弁34aを大気側に切換え、樹脂止
めタンク17及び樹脂注入タンク16内の圧力P2、P3
を開放し、次いで排気弁32を開いて、加圧缶15内の
圧力P1を大気に戻す。(18) After the completion of the curing time, after sufficient cooling, the pressure switching valve 34a is switched to the atmosphere side, and the pressures P 2 and P 3 in the resin stop tank 17 and the resin injection tank 16 are changed.
Is opened, and then the exhaust valve 32 is opened to return the pressure P 1 in the pressure can 15 to the atmosphere.
【0057】(19)加圧缶15を開き、加圧バック25
を破り、金型2を取外し、中の成形品を取出す。この
時、電力線、熱電対線、脱気チューブ26も取外してお
く。(19) Open the pressure can 15 and press the pressure bag 25.
Break the mold, remove the mold 2, and take out the molded product inside. At this time, the power line, thermocouple line, and degassing tube 26 are also removed.
【0058】(20)ニップル30Cを樹脂注入ポート2
2より外し、ニップル30Dを真空吸引及び樹脂流出ポ
ートから外す。(20) Insert the nipple 30C into the resin injection port 2
2 and remove the nipple 30D from the vacuum suction and resin outflow port.
【0059】(21)樹脂流動経路に残留する樹脂はすべ
て除去する。各ニップルは新しいものと取り換えてお
く。(21) All the resin remaining in the resin flow path is removed. Replace each nipple with a new one.
【0060】以上説明した図1に示す実施例では、金型
2はプリフォーム1をセットする型空間を両面から挾む
1対の金型要素から構成されており、その一方に樹脂注
入用ニップルを、他方に真空吸引及び樹脂流出用ニップ
ルを接続する口金を設けた例を示したが、本発明の複合
材料成形方法では、金型の型空間内の圧力は金型の外側
の雰囲気の圧力よりも低い状態で樹脂の注入及びプリフ
ォームへの含浸が行なわれるので、金型の構成をさらに
合理化することができる。その例を以下に説明する。In the embodiment shown in FIG. 1 described above, the mold 2 is composed of a pair of mold elements that sandwich the mold space for setting the preform 1 from both sides, and one of them has a resin injection nipple. , An example in which a die for connecting a vacuum suction and a resin outflow nipple is provided on the other side, but in the composite material molding method of the present invention, the pressure in the mold space of the mold is the pressure of the atmosphere outside the mold. Since the resin is injected and the preform is impregnated at a lower temperature, the structure of the mold can be further rationalized. An example will be described below.
【0061】図3は、図4に示すような断面がI型形状
を有する複合材料製部品を成形するための金型の構成を
示す図である。このような形状の部品を成形する場合、
図6で説明した従来の成形方法の場合は、厚肉の、部品
形状に合せた凹みや突出部を設けた金型要素数個を組合
せて構成されていたが、図3の例では、2枚の平板2a
と2本の「コ」型断面の部材2bと若干のスペーサー2
cとで構成され、すべて薄物型でよく、加圧バック25
で完全にシールすることができるので、型の分割も容易
である。又、軽量になる。そのため型要素に流用性が生
れ、他の形状の部品の成形にも利用することができる。FIG. 3 is a view showing the structure of a mold for molding a composite material part having an I-shaped cross section as shown in FIG. When molding parts with such a shape,
In the case of the conventional molding method described with reference to FIG. 6, it is configured by combining several mold elements having thick dents and protrusions according to the shape of parts, but in the example of FIG. One flat plate 2a
And two "U" -shaped cross-section members 2b and some spacers 2
It is composed of c and c, and all can be thin type.
Since it can be completely sealed with, it is easy to divide the mold. In addition, it becomes lightweight. Therefore, the mold element has a diversion property and can be used for molding parts having other shapes.
【0062】図5に示す他の成形型の例では、金型は製
品の片面の形状をした型を1枚用意するだけでよく、金
型2の型面にプリフォーム1をセットし、その上に加圧
バック25を重ねる。金型2上で互いに離れた位置に口
金40a、40bを取付け、口金40aより樹脂を加圧
バック25と金型2との間の空間にP2の圧力で注入す
る。このとき、加圧缶15内の圧力はP2より大きい圧
力P1としておく。そうすることにより加圧バック25
はP1−P2の圧力によりプリフォーム1の表面に押圧さ
れプリフォームの形状の成形型空間が金型2と加圧バッ
ク25により形成される。したがって、雄型と雌型の両
方を作る必要がなく、金型費用が低減できる。又、金型
の熱容量も両面作る場合に比して少なくてすみ、ヒータ
による加熱電力も少なくなる。又片面のみを作ればよい
ので複雑な形状でも容易に作ることができる。In another example of the molding die shown in FIG. 5, it is only necessary to prepare one die having the shape of one side of the product, and the preform 1 is set on the die surface of the die 2, A pressure bag 25 is placed on top. The caps 40a and 40b are attached to the mold 2 at positions separated from each other, and the resin is injected from the cap 40a into the space between the pressure bag 25 and the mold 2 at a pressure of P 2 . At this time, the pressure in the pressurizing can 15 is set to a pressure P 1 higher than P 2 . By doing so, the pressure bag 25
Is pressed against the surface of the preform 1 by the pressure of P 1 -P 2 , and a mold space having the shape of the preform is formed by the mold 2 and the pressure bag 25. Therefore, it is not necessary to make both a male mold and a female mold, and the mold cost can be reduced. Further, the heat capacity of the mold is smaller than that in the case of forming both sides, and the heating power by the heater is also small. Also, since only one side needs to be made, a complicated shape can be easily made.
【0063】[0063]
【発明の効果】以上の如く、本発明によれば、強化繊維
で作られたプリフォームに樹脂等のマトリックス材料を
加圧含浸させて成形する繊維強化複合材料による大面積
の製品の成形が可能、かつ容易になり、成形型を軽量
化、低コスト化することができ、複雑な形状の製造も容
易になる。As described above, according to the present invention, it is possible to mold a large area product by the fiber reinforced composite material in which a preform made of reinforcing fibers is pressure-impregnated with a matrix material such as a resin for molding. In addition, the molding die can be reduced in weight and cost, and manufacturing of a complicated shape is facilitated.
【図1】本発明の成形方法を実施するための本発明の成
形装置の実施例の全体構成を示す系統図を含む断面図で
ある。FIG. 1 is a cross-sectional view including a system diagram showing an overall configuration of an embodiment of a molding apparatus of the present invention for carrying out a molding method of the present invention.
【図2】上記実施例の脱気チューブの構成の一例を示す
斜視図である。FIG. 2 is a perspective view showing an example of a configuration of a degassing tube of the above embodiment.
【図3】本発明の方法の実施に利用される成形金型の他
の一例の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of another example of a molding die used for carrying out the method of the present invention.
【図4】図3に示す成形型で作られる複合材料製品の外
観を示す斜視図である。FIG. 4 is a perspective view showing an appearance of a composite material product manufactured by the molding die shown in FIG.
【図5】本発明の方法の実施に利用される成形金型のさ
らに他の一例の構成を示す断面図である。FIG. 5 is a cross-sectional view showing the configuration of still another example of a molding die used for carrying out the method of the present invention.
【図6】プリフォームに樹脂を加圧含浸させて成形する
従来の複合材料成形装置の一例の構成を示す図式図であ
る。FIG. 6 is a schematic view showing a configuration of an example of a conventional composite material molding apparatus for molding a preform by impregnating a preform with resin.
1 プリフォーム 2 金型 3 ヒータ 15 加圧缶 16 樹脂注入タンク 17 樹脂止めタンク 18a、18b 圧力調節弁 19 加圧ポンプ 20 真空ポンプ 21 マルチチャンネル温度調節器 22 樹脂注入ポート 23 真空吸引及び樹脂流出ポート 24 加圧ポート 25 加圧バック 26 脱気チューブ 27 脱気ポート 28 熱電対ポート 29 電力端子ポート 30A、30B、30C、30D、30E、30F…ニ
ップル 32 排気弁 34a、34b 圧力切換弁1 Preform 2 Mold 3 Heater 15 Pressurizing Can 16 Resin Injection Tank 17 Resin Stop Tank 18a, 18b Pressure Control Valve 19 Pressure Pump 20 Vacuum Pump 21 Multi-Channel Temperature Controller 22 Resin Injection Port 23 Vacuum Suction and Resin Outflow Port 24 Pressurized Port 25 Pressurized Back 26 Degassing Tube 27 Degassing Port 28 Thermocouple Port 29 Power Terminal Ports 30A, 30B, 30C, 30D, 30E, 30F ... Nipple 32 Exhaust Valve 34a, 34b Pressure Switching Valve
Claims (5)
したプリフォームを金型の型空間内に設置して密閉し、
該空間に液状マトリックス材料を圧送してプリフォーム
に液状マトリックス材料を加圧含浸させ、硬化させて成
形する繊維強化複合材料の成形方法において、液状マト
リックス材料のプリフォームへの加圧含浸工程は金型を
加圧缶内に収納し、加圧缶内の圧力を金型の型空間内の
圧力よりも高くして行なうことを特徴とする成形方法。1. A preform in which reinforcing fibers are preliminarily formed into a predetermined three-dimensional shape is installed in a mold space of a mold and hermetically sealed,
In the method of molding a fiber-reinforced composite material, in which a liquid matrix material is pressure-impregnated into a preform by pressure-impregnating the liquid matrix material into the space, and is then cured, the preform of the liquid matrix material is impregnated under pressure. A molding method characterized in that the mold is housed in a pressure can and the pressure in the pressure can is made higher than the pressure in the mold space of the mold.
を使用することを特徴とする請求項1に記載の成形方
法。2. The molding method according to claim 1, wherein a pressure bag is used as a sealing means for the mold.
したプリフォームを金型の型空間内に設置して密閉し、
該空間に液状マトリックス材料を圧送してプリフォーム
に液状マトリックス材料を圧送してプリフォームに液状
マトリックス材料を加圧含浸させ、加熱硬化させて成形
する繊維強化複合材料の成形装置において、 上記金型を収容可能で、内部圧力を液状マトリックス材
料の加圧含浸時の上記金型の型空間内圧力よりも高い圧
力に加圧可能な加圧缶と、該加圧缶内の圧力を上記圧力
に加圧可能な加圧手段とを有することを特徴とする成形
装置。3. A preform in which reinforcing fibers are formed in a predetermined three-dimensional shape in advance is installed in a mold space of a mold and hermetically sealed,
In the molding apparatus of the fiber-reinforced composite material, the liquid matrix material is pressure-fed into the space, the liquid matrix material is pressure-fed into the preform, the preform is pressure-impregnated with the liquid matrix material, and the mixture is heat-cured to be molded. And a pressure can capable of increasing the internal pressure to a pressure higher than the pressure inside the mold space of the mold during pressure impregnation of the liquid matrix material, and the pressure in the pressure can to the above pressure. A molding apparatus comprising: a pressurizing unit capable of pressurizing.
ことを特徴とする請求項3に記載の成形装置。4. The molding apparatus according to claim 3, wherein the sealing means of the mold is a pressure bag.
材料を加圧含浸させるための金型への液状マトリックス
材料注入管及び金型からの真空吸引管、含浸された液状
マトリックス材料の加熱硬化のため金型に設けられたヒ
ータへの電力供給線及び金型温度検知信号取出し線を上
記加圧缶の壁を貫通して配管又は配線可能とするため、
上記加圧缶の壁に上記各管、線を気密を保持して内外よ
り接続可能なポートを設けたことを特徴とする請求項3
に記載の成形装置。5. A liquid matrix material injection pipe into a mold for pressure-impregnating the above-mentioned preform with a liquid matrix material, a vacuum suction pipe from the mold, and a gold for heat-curing the impregnated liquid matrix material. In order to make it possible to connect the power supply line to the heater provided in the mold and the mold temperature detection signal take-out line through the wall of the pressurizing can by piping or wiring,
4. The wall of the pressurizing can is provided with a port capable of connecting from inside and outside while keeping the tubes and wires airtight.
The molding apparatus according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3942092A JPH0729304B2 (en) | 1992-02-26 | 1992-02-26 | Composite material molding method and molding apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3942092A JPH0729304B2 (en) | 1992-02-26 | 1992-02-26 | Composite material molding method and molding apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05237853A true JPH05237853A (en) | 1993-09-17 |
JPH0729304B2 JPH0729304B2 (en) | 1995-04-05 |
Family
ID=12552494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3942092A Expired - Lifetime JPH0729304B2 (en) | 1992-02-26 | 1992-02-26 | Composite material molding method and molding apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0729304B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005096436A (en) * | 2003-08-27 | 2005-04-14 | General Electric Co <Ge> | Unified apparatus for filling porous compound material preform and method therefor |
WO2010058802A1 (en) * | 2008-11-18 | 2010-05-27 | 三菱重工業株式会社 | Equipment for producing composite material and process for producing composite material |
JP2011529405A (en) * | 2008-07-29 | 2011-12-08 | エアバス オペレーションズ リミテッド | Manufacturing method of composite material |
JP2013123896A (en) * | 2011-12-16 | 2013-06-24 | Meiho Co Ltd | Injection molding apparatus, and injection molding method |
JP2013203005A (en) * | 2012-03-29 | 2013-10-07 | Toray Ind Inc | Device and method of manufacturing frp |
-
1992
- 1992-02-26 JP JP3942092A patent/JPH0729304B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005096436A (en) * | 2003-08-27 | 2005-04-14 | General Electric Co <Ge> | Unified apparatus for filling porous compound material preform and method therefor |
EP1510328A3 (en) * | 2003-08-27 | 2011-05-11 | General Electric Company | Integrated apparatus and method for filling porous composite preforms |
JP2011529405A (en) * | 2008-07-29 | 2011-12-08 | エアバス オペレーションズ リミテッド | Manufacturing method of composite material |
WO2010058802A1 (en) * | 2008-11-18 | 2010-05-27 | 三菱重工業株式会社 | Equipment for producing composite material and process for producing composite material |
RU2481947C2 (en) * | 2008-11-18 | 2013-05-20 | Мицубиси Хеви Индастриз, Лтд. | Method of making composite material and apparatus for realising said method |
US8557167B2 (en) | 2008-11-18 | 2013-10-15 | Mitsubishi Heavy Industries, Ltd. | Composite material manufacturing device and composite material manufacturing method |
JP5374519B2 (en) * | 2008-11-18 | 2013-12-25 | 三菱重工業株式会社 | Composite material manufacturing apparatus and composite material manufacturing method |
US9050748B2 (en) | 2008-11-18 | 2015-06-09 | Mitsubishi Heavy Industries, Ltd. | Composite material manufacturing device and composite material manufacturing method |
JP2013123896A (en) * | 2011-12-16 | 2013-06-24 | Meiho Co Ltd | Injection molding apparatus, and injection molding method |
JP2013203005A (en) * | 2012-03-29 | 2013-10-07 | Toray Ind Inc | Device and method of manufacturing frp |
Also Published As
Publication number | Publication date |
---|---|
JPH0729304B2 (en) | 1995-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5863452A (en) | Isostatic pressure resin transfer molding | |
EP2070678B1 (en) | Process for the production of preforms and fiber-reinforced plastics with the mold | |
US6840750B2 (en) | Resin infusion mold tool system and vacuum assisted resin transfer molding with subsequent pressure bleed | |
CA2570661C (en) | System and method for resin infusion | |
CA2854615C (en) | Thermal processing and consolidation system and method | |
JP3653249B2 (en) | Method and apparatus for manufacturing fiber reinforced structural part by injection molding method | |
CA2467437C (en) | Method and device for producing fiber-reinforced plastic components | |
CN101304868B (en) | Tool for a resin transfer moulding method | |
US7939011B2 (en) | Resin containment and injection system and method | |
WO2011043253A1 (en) | Process and apparatus for producing fiber-reinforced plastic | |
JPH05237853A (en) | Composite material molding method and molding apparatus | |
US20220009184A1 (en) | Glazing Panel Repair | |
CN110576625B (en) | One-way opening composite material box body forming method | |
US20120043704A1 (en) | Bulk resin infusion | |
EP0382536B1 (en) | Apparatus for moulding a fluid settable material | |
JP4292971B2 (en) | FRP manufacturing method and manufacturing apparatus | |
EP2635428B1 (en) | Thermal processing and consolidation system and method | |
US20220143935A1 (en) | Composite material molding method and composite material molding device | |
EP1446278B1 (en) | A mould tool and method for resin transfer moulding | |
CN111231368A (en) | Vacuum diversion device and vacuum diversion method | |
JP2006205546A (en) | Demolding apparatus for rtm molding | |
US20070290401A1 (en) | Process for making a composite structure | |
EP1157810A1 (en) | Production system, device and process for manufacturing structural parts made of composite material by resin transfer molding | |
CN117507416A (en) | Double-vacuum bag pressing forming device and method | |
JPH02220816A (en) | Molding method for composite material |