【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は発酵法による純度の高いD−乳酸の製
造法に関する。更に詳しくは、スポロラクトバチ
ルス属に属するD−乳酸生産菌を用いてD−乳酸
を製造するにあたり、特定の中和剤を用いること
によるD−乳酸の製造方法に関するものである。
〔従来の技術〕
スポロラクトバチルス属に属する乳酸菌による
D−乳酸の発酵生産が可能な事は広く知られてお
り、中和剤としてもつぱら炭酸カルシウムが用い
られている(「乳酸菌の研究」北原覚雄編著、東
大出版会(1966);米国特許第3262862号参照)。
さらにまた、従来の生産方式はすべて回分発酵
法であり、回分発酵毎に保存されている乳酸生産
菌を増殖させ順次培養液量を増加させるといつた
繁雑な操作を伴う前培養のステツプが必要とされ
ていた。効率的な生産を目的として、回分発酵を
反復する半連続培養法あるいは培地の供給と培養
液の抜き取りを連続して行う連続培養法も考えら
れている。前者においては培養の繰り返しにより
D−乳酸の純度低下が認められ、これを解決する
ためには本発明者が見出した高濃度の増殖促進成
分を添加する方法(特願昭60−22907号)が有効
である。後者においては長期間にわたる雑菌汚染
防止技術が未確立なため工業的な利用は全くなさ
れていないのが現状である。
〔発明が解決しようとする問題点〕
従つて、工業的なD−乳酸の発酵生産において
は、回分培養を実施するか、高価な増殖促進成分
の濃度を高めた状態で回分培養を反復する半連続
培養を用いる必要がある。しかしながら、これら
の方法は生産効率、経済性の面から考え、更に改
良すべき問題点を有している。
この問題点を解決するため鋭意検討の結果、回
分発酵を反復しても高純度のD−乳酸を製造でき
る方法を見出し本発明を完成した。
〔問題点を解決するための手段〕
本発明は、スポロラクトバチルス属に属するD
−乳酸生産菌を糖類、無機塩類、増殖促進成分か
らなるD−乳酸生産培地で回分培養を反復する半
連続培養によつて培養しD−乳酸を製造するにあ
たり、水酸化ナトリウムあるいはアンモニアで中
和することを特徴とするD−乳酸の製造方法であ
る。
(使用微生物)
本発明で用いる事のできる微生物としては、ス
ポロラクトバチルス属に属するD−乳酸生産菌で
あればいかなる微生物でもよく、代表的な菌株と
してはスポロラクトバチルス・イヌリナス
ATCC15538が挙げられる。
(培養方法)
スポロラクトバチルス属に属するD−乳酸生産
菌はまず通常の回分発酵法における操作と同様の
操作で種菌を調整する。つまり表−1に示した
GYP培地などで培養し、D−乳酸生産菌の生育
が充分に達したら順次培養液量を増加させD−乳
酸発酵培地の種菌を調整する。この場合、培養液
量の増加は10倍〜1000倍程度で増加させればよ
い。このようにして順次培養液量を増加させて得
た種菌を用い、D−乳酸発酵培地でD−乳酸を生
産すればよい。D−乳酸発酵培地の組成は、用い
る乳酸生産菌に適した培地を用いればよいが、基
本的にはグルコース、フラクトース、シユークロ
ース、イヌリン、マルトース、マンノース、ラフ
イノース、トレハロース等の糖類、或いは澱粉加
水分解物、糖密のようにこれらの糖類を含有する
もののうち一種及び二種以上に対し、硫酸マグネ
シウム、硫酸アンモニウム、リン酸第一カルシウ
ム、硫酸第一鉄等の無機塩類を必要に応じて加
え、増殖促進成分として酵母エキス、ペプトン、
肉エキス、大豆粉等の成分を添加する必要があ
る。乳酸生産菌は一般に多くの栄養要求性を示す
ために、これらの増殖促進成分の添加は必須であ
る。発酵は嫌気条件で行うため、窒素等の不活性
ガスを通気してもよい。
発酵温度は各々の乳酸生産菌に温度を用いれば
よく、例えばスポロラクトバチルス・イヌリナス
ATCC15538では37℃が好ましい。
発酵液のPHは乳酸の生成に伴い徐々に低下す
る。スポロラクトバチルス属のD−乳酸生産菌は
酸感受性を有するため、中和剤でPHを4.5以上7.0
以下に保つ必要がある。このような方法で1回目
のD−乳酸発酵が終了した時点でその発酵液の一
部を次の発酵の種菌として用い、再び同様の乳酸
発酵を繰り返すことができる。この場合、中和剤
としてCaCO3を用いる場合には、2回目以降の
発酵においても1回目の発酵と同一組成の培地を
用いるとD−乳酸の純度が低下する。このために
は、2回目の発酵以降は、増殖促進成分の濃度を
高めておくことにより、D−乳酸の純度低下を防
止することも可能である。
しかしながら、中和剤として水酸化ナトリウム
あるいはアンモニアを中和剤として用いた場合に
は、1回目の発酵と同一組成の培地を用いて発酵
の反復を繰り返しても、D−乳酸の純度は全く低
下しない。
この方法を用いることにより、高価な増殖促進
成分を多量に使用しなくても高純度のD−乳酸を
効果的に製造できる。
ここで用いられる中和剤については、水溶液、
粉末、ガスいかなる種類のものでもよく、操作性
を考えて適宜決めればよい。
[Industrial Application Field] The present invention relates to a method for producing highly pure D-lactic acid using a fermentation method. More specifically, the present invention relates to a method for producing D-lactic acid using a specific neutralizing agent when producing D-lactic acid using D-lactic acid producing bacteria belonging to the genus Sporolactobacillus. [Prior art] It is widely known that D-lactic acid can be fermented and produced by lactic acid bacteria belonging to the genus Sporolactobacillus, and calcium carbonate is also used as a neutralizing agent (Research on lactic acid bacteria). (edited by Kakuo Kitahara, University of Tokyo Press (1966); see U.S. Patent No. 3,262,862). Furthermore, all conventional production methods are batch fermentation methods, which require a pre-culturing step that involves complicated operations such as multiplying the lactic acid-producing bacteria stored in each batch fermentation and sequentially increasing the amount of culture solution. It was said that For the purpose of efficient production, a semi-continuous culture method in which batch fermentation is repeated or a continuous culture method in which the supply of a medium and the withdrawal of a culture solution are performed continuously are also considered. In the former case, a decrease in the purity of D-lactic acid was observed due to repeated culturing, and in order to solve this problem, a method discovered by the present inventors (Japanese Patent Application No. 22907/1982) of adding a high concentration of growth promoting components was proposed. It is valid. In the latter case, the technology for preventing long-term bacterial contamination has not yet been established, so there is currently no industrial use at all. [Problems to be Solved by the Invention] Therefore, in the industrial fermentation production of D-lactic acid, it is necessary to carry out batch culture or to repeat batch culture in a state where the concentration of an expensive growth-promoting component is increased. Continuous culture must be used. However, these methods have problems that should be further improved in terms of production efficiency and economy. In order to solve this problem, as a result of intensive studies, the present invention was completed by discovering a method that can produce highly pure D-lactic acid even if batch fermentation is repeated. [Means for Solving the Problems] The present invention provides D.
- In producing D-lactic acid by culturing lactic acid-producing bacteria in a D-lactic acid production medium consisting of sugars, inorganic salts, and growth-promoting components by repeating batch culture, neutralization is performed with sodium hydroxide or ammonia. This is a method for producing D-lactic acid. (Used microorganism) Any microorganism that can be used in the present invention may be any D-lactic acid producing bacteria belonging to the genus Sporolactobacillus, and representative strains include Sporolactobacillus inulinus.
One example is ATCC15538. (Cultivation method) First, a seed strain of D-lactic acid producing bacteria belonging to the genus Sporolactobacillus is prepared in the same manner as in a normal batch fermentation method. In other words, as shown in Table-1
Cultivate in GYP medium or the like, and when the D-lactic acid-producing bacteria have grown sufficiently, the amount of culture solution is increased sequentially to adjust the inoculum of the D-lactic acid fermentation medium. In this case, the amount of culture solution may be increased by about 10 to 1000 times. D-lactic acid may be produced in a D-lactic acid fermentation medium using the seed bacteria obtained by sequentially increasing the amount of culture solution in this manner. As for the composition of the D-lactic acid fermentation medium, a medium suitable for the lactic acid-producing bacteria used may be used, but basically sugars such as glucose, fructose, sucrose, inulin, maltose, mannose, raffinose, and trehalose, or starch hydrolyzed Inorganic salts such as magnesium sulfate, ammonium sulfate, ferrous calcium phosphate, ferrous sulfate, etc. are added as necessary to one or more of these saccharide-containing substances, such as molasses, and saccharides are grown. Yeast extract, peptone,
It is necessary to add ingredients such as meat extract and soy flour. Since lactic acid-producing bacteria generally exhibit many nutritional requirements, the addition of these growth-promoting components is essential. Since fermentation is carried out under anaerobic conditions, an inert gas such as nitrogen may be aerated. The fermentation temperature may be determined based on the temperature for each lactic acid producing bacterium, such as Sporolactobacillus inulinus.
ATCC15538 prefers 37°C. The pH of the fermentation liquid gradually decreases as lactic acid is produced. D-lactic acid producing bacteria of the genus Sporolactobacillus are acid sensitive, so use a neutralizer to lower the pH to 4.5 or higher and 7.0.
Must be kept below. When the first D-lactic acid fermentation is completed in this manner, a portion of the fermented liquid can be used as a starter for the next fermentation, and the same lactic acid fermentation can be repeated again. In this case, when CaCO 3 is used as a neutralizing agent, the purity of D-lactic acid will decrease if a medium with the same composition as the first fermentation is used in the second and subsequent fermentations. To this end, from the second fermentation onward, it is possible to prevent a decrease in the purity of D-lactic acid by increasing the concentration of the growth-promoting component. However, when sodium hydroxide or ammonia is used as a neutralizing agent, the purity of D-lactic acid decreases even if the fermentation is repeated using a medium with the same composition as the first fermentation. do not. By using this method, highly pure D-lactic acid can be effectively produced without using large amounts of expensive growth-promoting components. Regarding the neutralizing agent used here, an aqueous solution,
Any type of powder or gas may be used, and may be determined as appropriate in consideration of operability.
〔実施例〕〔Example〕
以下実施例により本発明を更に詳細に説明す
る。なお、実施例におけるD−乳酸の純度測定は
全乳酸量をイオン交換樹脂(SAX801)を用いた
HPLC法で、L−乳酸をL−乳酸脱水素酵素を用
いる酵素法で測定し、次式により算出したもので
ある。
D−乳酸純度(%)=(1−L−乳酸量/全乳酸量)
×100
実施例 1
スポロラクトバチルス・イヌリナス
ATCC15538をGYP培地に接種し、37℃、3日間
静置培養した。この培養液1mlをCaCO31%含む
GYP培地25mlに接種し、37℃、1日静置培養し
種菌を調整した。この種菌50mlを次に示す発酵
培地950mlに接種し、37℃、8.5%アンモニア水に
よりPH5.8〜6.2にコントロールしながら発酵を行
つた。
発酵培地
グルコース 100g/
酵母エキス 5g/
MgSO4・7H2O 0.2g/
FeSO4・7H2O 10mg/
MnSO4・4.5H2O 10mg/
NaCl 10mg/
発酵41時間においてグルコースは完全に消費さ
れ、乳酸82g/が蓄積した。このもののD−乳
酸純度は99.5%であつた。この1回目のD−乳酸
発酵終了液50mlを上記発酵培地950mlに加え発酵
を繰り返し実施した。得られたD−乳酸純度は
99.2%であつた。このものを種菌として同様に繰
り返し3回目の発酵を実施した結果、D−乳酸純
度は99.3%であつた。
実施例 2
実施例1と同様の方法で調整された種菌を用い
下記の発酵培地を用い、20%水酸化ナトリウム水
溶液でPHを5.8〜6.2にコントロールしながら37℃
で発酵を行つた。
グルコース 200g/
酵母エキス 10g/
MgSO4・7H2O 0.2g/
FeSO4・7H2O 10mg/
MnSO4・4.5H2O 10mg/
NaCl 10mg/
発酵50時間においてグルコースは完全に消費さ
れ、乳酸128g/が蓄積した。このもののD−
乳酸純度は99.2%であつた。実施例1と同様の方
法で発酵を5回繰り返した結果、3回目、5回目
におけるD−乳酸純度は98.9%、99.1%であつ
た。
比較例
中和剤として炭酸カルシウムを用い実施例1と
同様の実験を行つた。1回目の発酵においては
99.2%のD−乳酸純度が得られたが、2回目の発
酵においては97.3%にD−乳酸純度は低下した。
〔発明の効果〕
D−乳酸発酵に於いて、特定の中和剤を用いる
ことにより前回の発酵終了液を種菌として用いて
発酵を行つてもD−乳酸純度を高く保つことが出
来た。
D−乳酸は各種光学活性化合物を化学合成する
ための出発物質として重要であり、近年D−乳酸
に対する需要が増大しつつあり、本発明により工
業的規模での効率的なD−乳酸の製造が可能とな
つた。
The present invention will be explained in more detail with reference to Examples below. In addition, in the purity measurement of D-lactic acid in the examples, the total lactic acid amount was measured using an ion exchange resin (SAX801).
L-lactic acid was measured by HPLC method using an enzymatic method using L-lactate dehydrogenase, and calculated using the following formula. D-lactic acid purity (%) = (1-L-lactic acid amount/total lactic acid amount)
×100 Example 1 Sporolactobacillus inulinus
ATCC15538 was inoculated into GYP medium and statically cultured at 37°C for 3 days. 1ml of this culture solution contains 1% CaCO 3
The cells were inoculated into 25 ml of GYP medium, and cultured for one day at 37°C to prepare a seed culture. 50 ml of this inoculum was inoculated into 950 ml of the fermentation medium shown below, and fermentation was carried out at 37° C. while controlling the pH to 5.8 to 6.2 with 8.5% ammonia water. Fermentation medium Glucose 100g / Yeast extract 5g / MgSO 4.7H 2 O 0.2g / FeSO 4.7H 2 O 10mg / MnSO 4.4.5H 2 O 10mg / NaCl 10mg / In 41 hours of fermentation, glucose is completely consumed and lactic acid 82g/was accumulated. The D-lactic acid purity of this product was 99.5%. 50 ml of this first D-lactic acid fermentation finished liquid was added to 950 ml of the above fermentation medium, and fermentation was repeated. The purity of D-lactic acid obtained was
It was 99.2%. A third fermentation was repeated in the same manner using this seed as a starter, and the purity of D-lactic acid was 99.3%. Example 2 Inoculum prepared in the same manner as in Example 1 was used, and the following fermentation medium was used, and the pH was controlled at 5.8 to 6.2 with a 20% sodium hydroxide solution at 37°C.
Fermentation was carried out in Glucose 200g / Yeast extract 10g / MgSO 4.7H 2 O 0.2g / FeSO 4.7H 2 O 10mg / MnSO 4.4.5H 2 O 10mg / NaCl 10mg / Glucose was completely consumed in 50 hours of fermentation, and lactic acid 128g / has accumulated. D- of this
The lactic acid purity was 99.2%. Fermentation was repeated five times in the same manner as in Example 1, and the D-lactic acid purity in the third and fifth times was 98.9% and 99.1%. Comparative Example An experiment similar to Example 1 was conducted using calcium carbonate as a neutralizing agent. In the first fermentation
A D-lactic acid purity of 99.2% was obtained, but the D-lactic acid purity decreased to 97.3% in the second fermentation. [Effects of the Invention] In D-lactic acid fermentation, by using a specific neutralizing agent, it was possible to maintain high D-lactic acid purity even when fermentation was performed using the liquid from the previous fermentation as a starter. D-lactic acid is important as a starting material for the chemical synthesis of various optically active compounds, and the demand for D-lactic acid has been increasing in recent years, and the present invention enables efficient production of D-lactic acid on an industrial scale. It became possible.