[go: up one dir, main page]

JPH0523551A - Perfection testing apparatus - Google Patents

Perfection testing apparatus

Info

Publication number
JPH0523551A
JPH0523551A JP17796191A JP17796191A JPH0523551A JP H0523551 A JPH0523551 A JP H0523551A JP 17796191 A JP17796191 A JP 17796191A JP 17796191 A JP17796191 A JP 17796191A JP H0523551 A JPH0523551 A JP H0523551A
Authority
JP
Japan
Prior art keywords
filter cartridge
liquid
flow rate
pressure
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17796191A
Other languages
Japanese (ja)
Inventor
Sumio Otani
純生 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP17796191A priority Critical patent/JPH0523551A/en
Publication of JPH0523551A publication Critical patent/JPH0523551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide an apparatus with high measurement precision for perfection testing of a precision filtration membrane filter cartridge. CONSTITUTION:A filter cartridge's perfection testing apparatus characterized in that prior to the perfection measurement of a filter cartridge by applying atmospheric pressure to a primary side of a precision filtration membrane filter cartridge, a liquid is supplied to the filter cartridge at a flow rate of 1m<3>/h or less 1m<2> membrane surface area of the filtration membrane to be filtered, and perfection of the filter cartridge is measured by closing a secondary side valve of a filter housing and applying back-pressure of 1kg/cm<2> or more after it is wetted with the liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は精密ろ過膜フィルターカ
ートリッジの完全性試験方法に関するものである。精密
ろ過膜フィルターカートリッジは、製薬工業における薬
剤、食品工業におけるアルコール飲料、前記製造工業及
び半導体製造工業をはじめとする微細な加工を行う電子
工業分野、さらに諸工業の実験室などにおいて使用され
る精製水や純水のろ過に用いられ、10ミクロン以下、
特に1ミクロン以下の微粒子や微生物を効率よくろ過す
るためのフィルターである。ろ過結果を保証するために
こうした精密ろ過膜フィルターカートリッジは、ろ過に
先立ってピンホールなどの欠陥が存在しないことを確認
するための完全性試験を行い、しかる後に実際のろ過に
供する。本発明はこのようなろ過前の完全性試験の精度
の高い新しい方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing the integrity of a microfiltration membrane filter cartridge. Microfiltration membrane filter cartridges are used in the pharmaceutical industry, alcoholic beverages in the food industry, the electronics industry that performs fine processing such as the manufacturing industry and the semiconductor manufacturing industry, and further used in laboratories of various industries. Used for filtering water and pure water, 10 microns or less,
In particular, it is a filter for efficiently filtering fine particles of 1 micron or less and microorganisms. To ensure filtration results, these microfiltration membrane filter cartridges are integrity tested prior to filtration to ensure the absence of pinholes and other defects and then subjected to actual filtration. The present invention relates to a new method with high accuracy for such a pre-filtration integrity test.

【0002】[0002]

【従来の技術】従来、精密ろ過膜はろ過面積を大きくし
かつ取扱を容易にするために、通常膜をプリーツ状に折
り、円筒状に形成し、円筒の内外の隔壁をなすフィルタ
ーとしたプリーツ型カートリッジフィルター、あるいは
精密ろ過膜を円盤状の支持枠の両面に接着し、これを何
段にも重ね、支持枠の内外における隔壁をなすフィルタ
ーとした円盤積層型カートリッジフィルターとして用い
られている。この時、加工されたフィルターに接着部分
のシール不良やフィルターの破損が全くおこらないとは
いえない。そこで精密ろ過膜フィルターカートリッジに
対してはそのフィルターの完全性、つまり上述したごと
き加工時のシール不良がないこと及びフィルターに細菌
が透過するような大きな欠陥が存在しないこと等を確認
するため厳しく検査される。
2. Description of the Related Art Conventionally, in order to increase the filtration area and facilitate handling, a microfiltration membrane is usually a pleat that is formed by folding the membrane into pleats and forming a cylindrical shape to form partition walls inside and outside the cylinder. A mold cartridge filter or a microfiltration membrane is adhered to both sides of a disc-shaped support frame, and the disc-shaped cartridge filter is used as a filter that forms a partition wall inside and outside the support frame by stacking these in multiple stages. At this time, it cannot be said that the processed filter does not suffer from defective sealing of the adhesive portion or damage to the filter. Therefore, the microfiltration membrane filter cartridge is rigorously inspected to confirm its integrity, that is, there is no sealing failure during processing as described above, and that there is no major defect such as bacteria permeation in the filter. To be done.

【0003】従来精密ろ過膜フィルターカートリッジの
完全性検査の方法の一つとしては「バブルポイント法」
がある。バブルポイント法による検査方法の原理は次の
とおりである。即ち第1図に示したごとく、精密ろ過膜
の孔モデルとして円筒状の毛細管31を仮定し、これを
液体槽32中にたてると、この毛細管現象において次の
式が成り立つ。 ρh=2σ cosθ/r 上記の式において、rは毛細管の半径、ρは液体の比
重、hは毛細管を上昇した液体の高さ、σは液体の表面
張力、θは液体と精密ろ過膜との接触角をそれぞれ表
す。次に上昇した液体33の高さhと比重ρの積は毛細
管31の単位面積当たりの毛細管力、すなわち圧力pに
等しく、下記の式が成り立つ。 p=ρh ここでこの毛細管力に打ち勝つ気体圧力pをかけると、
毛細管31中の液体33が押し出され、初めてこの毛細
管から気体が吹き出してくることになる。そして気体圧
力pは毛細管31の直径dに反比例するので、 d=4σ cosθ/p 最初に最大径の毛細管から気体が吹き出してくる。この
時の気体圧力pが「バブルポイント」である。精密ろ過
膜に細菌が通過するような大きな径の孔が存在すると、
正常な精密ろ過膜に比較してこのバブルポイント(圧力
p)が低く、精密ろ過膜に異常のあることが検出され
る。
The "bubble point method" is one of the conventional integrity inspection methods for microfiltration membrane filter cartridges.
There is. The principle of the inspection method by the bubble point method is as follows. That is, as shown in FIG. 1, assuming a cylindrical capillary tube 31 as a pore model of a microfiltration membrane and placing it in a liquid tank 32, the following equation holds in this capillary phenomenon. ρh = 2σ cos θ / r In the above formula, r is the radius of the capillary, ρ is the specific gravity of the liquid, h is the height of the liquid rising in the capillary, σ is the surface tension of the liquid, and θ is the liquid and the microfiltration membrane. The contact angles are shown. Next, the product of the height h of the liquid 33 and the specific gravity ρ that have risen is equal to the capillary force per unit area of the capillary 31, that is, the pressure p, and the following formula is established. p = ρh Here, if a gas pressure p that overcomes this capillary force is applied,
The liquid 33 in the capillary tube 31 is pushed out, and gas is blown out from this capillary tube for the first time. Since the gas pressure p is inversely proportional to the diameter d of the capillary 31, d = 4σ cos θ / p At first, the gas blows out from the capillary having the maximum diameter. The gas pressure p at this time is the “bubble point”. If there are large holes in the microfiltration membrane that allow bacteria to pass,
This bubble point (pressure p) is lower than that of a normal microfiltration membrane, and it is detected that the microfiltration membrane is abnormal.

【0004】大きなろ過面積を有するカートリッジタイ
プの精密ろ過膜に対する完全性試験には「拡散流量法」
と呼ばれる検査方法が一般的に用いられる。液体に濡れ
て孔が液体で満たされた精密ろ過膜にバブルポイントよ
りも低い気体の圧力をかけると、液体は孔の中に留まり
孔を塞いでいる。しかしHenry の法則に従って気体はそ
の絶対圧力に比例して液体に溶解する。そのため孔の入
口と出口とでは液体に溶解できる気体の濃度に差を生
じ、孔の入口で溶解した気体は拡散して孔の出口側に達
し、そこで気化する。このため孔を液体で完全に満たさ
れた精密ろ過膜は、バブルポイントよりも低い気体圧力
をかけた時でも、量は少ないが気体が膜を透過する。こ
の透過量は小さな膜面積では観測が困難であるが、膜面
積の大きなフィルターカートリッジでは容易に検出でき
る。気体の液体に対する溶解度をH、液体中の気体の拡
散係数をD、膜の空隙率をΦ、膜厚さをL、膜面積を
S、膜の一次側と二次側の圧力差をPとすると、気体の
透過流量(拡散流量)Qは次の式に従い、フィルターカ
ートリッジの構成が同じであれば、一定の透過流量が得
られるはずである。 Q=DHPSΦ/L 欠陥の無いフィルターの拡散流量が予め分かっている時
は、バブルポイントよりも少し低い気体圧力をかけて気
体の透過量を測定することにより、拡散による気体透過
の他にフィルターの欠陥部からの気体の透過の有無が判
断できる。
The "diffusion flow method" is used for the integrity test on the cartridge type microfiltration membrane having a large filtration area.
The inspection method called is commonly used. When a gas pressure lower than the bubble point is applied to a microfiltration membrane that is wet with liquid and the pores are filled with the liquid, the liquid remains in the pores and blocks the pores. However, according to Henry's law, gas dissolves in liquid in proportion to its absolute pressure. Therefore, there is a difference in the concentration of the gas that can be dissolved in the liquid between the entrance and the exit of the hole, and the gas dissolved at the entrance of the hole diffuses and reaches the exit side of the hole, where it is vaporized. Therefore, the microfiltration membrane whose pores are completely filled with the liquid allows the gas to permeate the membrane though the amount is small even when a gas pressure lower than the bubble point is applied. This permeation amount is difficult to observe with a small membrane area, but can be easily detected with a filter cartridge with a large membrane area. The solubility of the gas in the liquid is H, the diffusion coefficient of the gas in the liquid is D, the porosity of the film is Φ, the film thickness is L, the film area is S, and the pressure difference between the primary side and the secondary side of the film is P. Then, the permeation flow rate (diffusion flow rate) Q of the gas should be obtained according to the following formula, if the filter cartridge has the same configuration, a constant permeation flow rate. Q = DHPSΦ / L When the diffusion flow rate of a filter without defects is known in advance, the gas permeation amount is measured by applying a gas pressure slightly lower than the bubble point to measure the gas permeation by diffusion and The presence or absence of gas permeation from the defective portion can be determined.

【0005】「拡散流量法」と原理的には類似である
「圧力保持法」と呼ばれる検査方法も大きな面積のフィ
ルターカートリッジに適用される。この方法は、液体に
濡れて孔を塞がれた膜の一次側にバブルポイントよりも
低い気体圧力をかけた後、気体の供給を停止し、所定時
間の圧力の低下を観測する方法である。気体は液体中に
溶解拡散し、圧力の高い方から低い方へ透過していくた
め、拡散透過した気体の量に比例して圧力低下がおこ
る。従って同じ構造構成の欠陥の無いフィルターカート
リッジでは一定量の圧力低下がおこり、欠陥を有するフ
ィルターカートリッジでは欠陥の無いものよりも大きな
圧力低下がおこる。
An inspection method called "pressure holding method" which is similar in principle to the "diffusion flow rate method" is also applied to a filter cartridge having a large area. This method is a method of applying a gas pressure lower than the bubble point to the primary side of a film whose pores are blocked by being wet with a liquid, then stopping the supply of gas and observing a pressure drop for a predetermined time. . Since the gas dissolves and diffuses in the liquid and permeates from the higher pressure side to the lower pressure side, a pressure drop occurs in proportion to the amount of the diffusely permeated gas. Thus, a defect-free filter cartridge of the same construction will experience a certain amount of pressure drop, and a defective filter cartridge will experience a greater pressure drop than a non-defective filter cartridge.

【0006】[0006]

【発明が解決しようとする課題】上述した如く、フィル
ターカートリッジの完全性測定はいずれの方法も、精密
ろ過膜の孔を液体で満たし気体圧力をかけて、気体の透
過する量や透過を始める圧力を測定する。従って膜の孔
の一部に液体で満たされていない部分が存在すると、そ
こから低い圧力で多くの気体が透過してしまい、正しい
測定ができなくなる。フィルターカートリッジでは一定
容積の中に多くの膜を折り込んだり積層しているため、
膜を漏らす時に気泡が邪魔をして液体に漏れない場所を
生じることがある。特に液体として使用されることの多
い水は表面張力が大きいため気泡が抜けにくい。このた
めJIS K3832「精密ろ過膜エレメント及びモジ
ュールのバブルポイント試験方法」では、ハウジングの
一次側のエアーを排出しながら0.3から1.0kg/cm
2のろ過差圧をかけて液体をろ過しながら漏らす方法が
提示されている。しかしながらこのような条件で液体を
ろ過してもかならずしも完璧には漏らすことはできず、
特にプリーツ型フィルターカートリッジにおいては、膜
のシール際付近を完全に漏らすことは難しい。このため
拡散流量が本来の値よりも大きくなったり、バブルポイ
ント値が本来の値よりも小さくなったりして変動が大き
い。このため漏れ不良とフィルターのポンホールや破れ
等の欠陥との区別ができず、良品を不良とみなしたり、
不良品を良品と間違えたりしやすい。更に、単に0.3
から1.0kg/cm2 のろ過差圧を膜の一次側と二次側の
間にかけるためには多量の水を透過させねばならない。
このために大容量のポンプを準備したり、製薬工業にお
いては高価な蒸留水を多量に消費しコスト高になったり
するという問題もあった。
As described above, in any method of measuring the integrity of a filter cartridge, the amount of gas permeation and the pressure at which permeation is started by filling the pores of the microfiltration membrane with liquid and applying gas pressure. To measure. Therefore, if there is a portion not filled with liquid in a part of the pores of the membrane, a large amount of gas permeates from there through at a low pressure, and correct measurement cannot be performed. In a filter cartridge, many membranes are folded or stacked in a certain volume,
Bubbles can interfere with the leaking of the membrane, creating a location that does not leak to the liquid. In particular, water, which is often used as a liquid, has a large surface tension, and bubbles are difficult to escape. Therefore, according to JIS K3832, "Testing method for bubble point of microfiltration membrane element and module," 0.3 to 1.0 kg / cm while discharging air from the primary side of the housing.
A method of applying a filtration pressure difference of 2 to leak the liquid while filtering it is proposed. However, even if the liquid is filtered under such conditions, it cannot always be completely leaked,
Particularly in a pleated filter cartridge, it is difficult to completely leak the vicinity of the membrane when sealing. Therefore, the diffusion flow rate becomes larger than the original value, and the bubble point value becomes smaller than the original value, resulting in large fluctuation. For this reason, it is impossible to distinguish between a defective leak and a defect such as a filter hole or tear, and a good product is considered defective.
It is easy to mistake a defective product for a good product. Furthermore, just 0.3
In order to apply a filtration differential pressure of 1.0 kg / cm 2 to the primary side and the secondary side of the membrane, a large amount of water must be permeated.
For this reason, there has been a problem that a large-capacity pump is prepared, and in the pharmaceutical industry, a large amount of expensive distilled water is consumed and the cost becomes high.

【0007】[0007]

【課題を解決するための手段】上記課題は下記の如き手
段によって解決できた。つまり、精密ろ過膜フィルター
カートリッジの一次側に気体圧力をかけてフィルターカ
ートリッジの完全性を測定するに先立って、ろ過膜の膜
面積1m2当たり1m3/h以下の流量でフィルターカート
リッジに液体を供給しろ過するとともに、フィルターハ
ウジングの二次側バルブを絞って1kg/cm2 以上の背圧
をかけることにより、フィルターカートリッジを液体に
濡らした後完全性を測定することを特徴とする、フィル
ターカートリッジの完全性試験装置によって達成され
た。以下実施例を挙げて詳細な説明を行うが、本発明は
実施例に限定されるものではない。
The above-mentioned problems can be solved by the following means. That is, before the gas pressure is applied to the primary side of the microfiltration membrane filter cartridge to measure the integrity of the filter cartridge, liquid is supplied to the filter cartridge at a flow rate of 1 m 3 / h or less per 1 m 2 of membrane area of the filtration membrane. The filter cartridge is characterized by squeezing the valve on the secondary side of the filter housing and applying a back pressure of 1 kg / cm 2 or more to measure the integrity of the filter cartridge after wetting it with liquid. Achieved by integrity test equipment. Hereinafter, a detailed description will be given with reference to examples, but the present invention is not limited to the examples.

【0008】図2は背圧負荷及びろ過流量調節を容易に
し、且つ拡散流量測定装置を組み込んだ、精密ろ過装置
の1例を示している。精密ろ過膜フィルターカートリッ
ジ2はフィルターハウジング1に装着され、水供給タン
ク3からポンプ4にて供給される水をろ過通液し、排水
バルブ22を経て排水される。この時エア抜きバルブ1
5から充分にエアは排出されしかる後にバルブ15は閉
じられる。次いで流量調節バルブ12を徐々に絞り、背
圧をかけていく。圧力計6を見て背圧が高くなりすぎた
時は、バイパスバルブ13を開いてポンプから供給され
る水の一部を循環させる。フィルターを透過する水量が
所定の流量になるように流量調節バルブ12とバイパス
バルブ13とを調節する。所定の背圧と流量で所定の時
間水を通液した後、ポンプを停止しバルブ11を閉じて
水の供給を停止する。ハウジング1内の水を排水するた
め、気体供給バルブ20を開き圧力調節バルブ21で
0.5kg/cm2 に減圧された清浄空気を空気圧縮機から
供給する。ハウジング内の排水が終了すると圧力調節バ
ルブ21を操作して、所定の拡散流量測定圧力まで空気
圧力を高くする。圧力計5が所定の圧力に達したなら
ば、気体供給バルブ20を閉じ、拡散流量測定バルブ1
8と19を開き、気体流量計8で拡散流量を測定する。
このようにして拡散流量測定が終了しフィルターの完全
性が確認できた後、ろ過原液供給バルブ16及びろ過液
送液バルブ17を開き、目的のろ過を行う。
FIG. 2 shows an example of a microfiltration device which facilitates back pressure load and filtration flow rate adjustment and incorporates a diffusion flow rate measuring device. The microfiltration membrane filter cartridge 2 is mounted on the filter housing 1, and the water supplied from the water supply tank 3 by the pump 4 is filtered and passed through the drain valve 22 to be drained. At this time, the air bleeding valve 1
After sufficient air is exhausted from the valve 5, the valve 15 is closed. Then, the flow control valve 12 is gradually reduced to apply back pressure. When the back pressure becomes too high when looking at the pressure gauge 6, the bypass valve 13 is opened to circulate a part of the water supplied from the pump. The flow rate adjusting valve 12 and the bypass valve 13 are adjusted so that the amount of water passing through the filter becomes a predetermined flow rate. After passing water at a predetermined back pressure and flow rate for a predetermined time, the pump is stopped and the valve 11 is closed to stop the water supply. In order to drain the water in the housing 1, the gas supply valve 20 is opened and clean air whose pressure has been reduced to 0.5 kg / cm 2 by the pressure control valve 21 is supplied from the air compressor. When the drainage in the housing is completed, the pressure control valve 21 is operated to increase the air pressure to a predetermined diffusion flow rate measurement pressure. When the pressure gauge 5 reaches a predetermined pressure, the gas supply valve 20 is closed and the diffusion flow rate measurement valve 1
8 and 19 are opened, and the diffusion flow rate is measured by the gas flow meter 8.
In this way, after the diffusion flow rate measurement is completed and the integrity of the filter can be confirmed, the filtered stock solution supply valve 16 and the filtered solution feed valve 17 are opened to perform the intended filtration.

【0009】完全性試験に先立って水を通液する時にフ
ィルターカートリッジにかける背圧は高ければ高い程効
果が大きい。望ましくは2kg/cm2 以上の背圧をかける
と効果的である。少なくとも1kg/cm2 以上の背圧をか
けないと、通液水量を効果的に減少することは難しい。
1kg/cm2 の背圧をかけた時は、通液流量は膜面積1m2
当たり1m3/h以下、0.5m3/h以上で3分から10
分の通液で、フィルターは充分に水に濡れ、完全性測定
が可能になる。2kg/cm2 の背圧をかけた時は、通液流
量は膜面積1m2当たり1m3/h以下、0.1m3/h以下
で3分から10分の通液で、フィルターは充分に水に濡
れ、完全性測定が可能になる。
The higher the back pressure applied to the filter cartridge when water is passed prior to the integrity test, the greater the effect. It is effective to apply a back pressure of 2 kg / cm 2 or more. Unless a back pressure of at least 1 kg / cm 2 or more is applied, it is difficult to effectively reduce the amount of water flow.
When a back pressure of 1 kg / cm 2 is applied, the flow rate of the liquid is 1 m 2 of membrane area.
Per 1m 3 / h or less, 3 minutes to 10 at 0.5m 3 / h or more
By passing a minute, the filter is sufficiently wet with water and the integrity can be measured. When a back pressure of 2 kg / cm 2 is applied, the flow rate of the liquid is 1 m 3 / h or less per 1 m 2 of the membrane area, and 0.1 m 3 / h or less is 3 to 10 minutes, and the filter is sufficiently water It becomes wet and the integrity can be measured.

【0010】背圧をかけて水を通液すると何故膜がよく
濡れるのかは解明されていない。本発明者は次のような
メカニズムであろうと推定している。つまり、精密ろ過
膜のシール部は、たとえば熱溶融樹脂中に膜を挿入し冷
却固化することにより、シールされている。このシール
際の膜の孔は、シール部以外の膜中の孔と違って行き止
まりになっているため、シール際の膜中の空気は水の通
液だけでは押し出されない。従って膜のシール際は空気
が邪魔をして水が孔の中に入ることができない。このた
めに単純な通液だけではシール際のみ濡れにくいのであ
ろう。しかしここで背圧をかけると、空気の水に対する
溶解度が飛躍的に増大し、短い時間で残留している空気
を溶解除去し、こうして空気が除去された後には容易に
水が浸透できるのであろうと推定される。上記推定から
も分かるようにいくら高い背圧をかけても、フィルター
カートリッジを水に浸して単に圧力をかけるだけでは充
分に濡らすことはできず、いくばくかの流量で水を流し
て膜を透過させることが必要である。あまり少ない流量
では水の流れは一部分に偏り、特にカートリッジの隅に
存在する膜のシール際には水は流れにくい。従って通液
流量は膜面積1m2当たり少なくとも0.1m3/h以上か
けることが望ましい。従って使用する水は事前に脱気さ
れたものが好ましいことは言うまでもない。しかし空気
を限界まで溶解している水でも、背圧をかけることによ
り溶解度が飛躍的に増大するので、充分に使用可能であ
る。使用する水の温度は何度が適切かは未だ明確になっ
ていない。水温が高いと水の空気に対する溶解度は小さ
くなるので、この目的のためには不適切である。一方水
温が高いと水の表面張力が低下するので、孔の中に浸透
しやすくなると考えられる。
It is not known why the membrane gets wet well when back pressure is applied to pass water. The present inventors presume that the mechanism is as follows. That is, the seal portion of the microfiltration membrane is sealed, for example, by inserting the membrane into a hot melt resin and cooling and solidifying the membrane. Unlike the holes in the film other than the sealing portion, the holes in the film at the time of sealing are dead ends, so that the air in the film at the time of sealing cannot be pushed out only by passing water. Therefore, when the membrane is sealed, the air is obstructed and water cannot enter the hole. For this reason, it may be difficult to get wet only by sealing with a simple liquid flow. However, when back pressure is applied here, the solubility of air in water increases dramatically, and the remaining air is dissolved and removed in a short time, and water can easily permeate after the air is removed in this way. Estimated to be As can be seen from the above estimation, no matter how high back pressure is applied, it is not possible to sufficiently wet the filter cartridge by simply immersing it in water and simply applying pressure, and water is passed at some flow rate to permeate the membrane. It is necessary. If the flow rate is too low, the water flow is partially biased, and it is difficult for the water to flow, especially when sealing the membrane existing in the corner of the cartridge. Therefore, it is desirable to apply the flow rate of at least 0.1 m 3 / h or more per 1 m 2 of membrane area. Therefore, it goes without saying that the water used is preferably degassed in advance. However, even water in which air is dissolved to the limit can be sufficiently used because the solubility is dramatically increased by applying back pressure. It is not yet clear how many times the temperature of the water used is appropriate. Higher water temperatures make water less soluble in air and are unsuitable for this purpose. On the other hand, when the water temperature is high, the surface tension of water decreases, and it is considered that the water easily penetrates into the pores.

【0011】本発明の完全性測定を実際の生産の場で実
施する時は、流量調節バルブ12及びバイパスバルブ1
3を自動バルブにし、圧力計6及び流量計7と連動させ
て、通液条件を自動調節すると共に、所定時間の通液終
了後、自動的に完全性測定を行うように、拡散流量測定
装置やバブルポイント測定装置等と連動させて使用する
こともできる。水通液条件を変化させて5分間フィルタ
ーカートリッジを濡らし、2.5kg/cm2 の圧縮空気を
フィルターカートリッジの一次側に負荷し、拡散流量を
それぞれの条件で各10本測定しその平均値を比較した
結果を表1に示した。本来の正しい拡散流量は約10ml
以下であるが、濡れの不十分なフィルターカートリッジ
の空気透過流量は、拡散流量の他に水に濡れていない部
分がらもれてくる空気流量も加算されて、大きな空気透
過流量となっている。表1で使用したフィルターカート
リッジは富士写真フイルム株式会社製、アストロポアP
SMCP20SW(膜面積0.7m2)のプリーツ型カー
トリッジフィルターである。
When the integrity measurement of the present invention is carried out in an actual production site, the flow control valve 12 and the bypass valve 1 are used.
3 is an automatic valve, and in conjunction with the pressure gauge 6 and the flowmeter 7, the liquid flow conditions are automatically adjusted, and the integrity measurement is performed automatically after the liquid flow is finished for a predetermined time. It can also be used in conjunction with a bubble point measuring device or the like. Wet the filter cartridge for 5 minutes by changing the water flow conditions, load 2.5 kg / cm 2 of compressed air on the primary side of the filter cartridge, measure the diffusion flow rate under 10 conditions for each, and measure the average value. The results of the comparison are shown in Table 1. Original correct diffusion flow rate is about 10 ml
As will be described below, the air permeation flow rate of the insufficiently wetted filter cartridge is a large air permeation flow rate by adding the diffusion air flow rate and the air flow rate that leaks the part not wetted by water. The filter cartridges used in Table 1 are Astropore P manufactured by Fuji Photo Film Co., Ltd.
A pleated cartridge filter of SMCP20SW (membrane area 0.7 m 2 ).

【0012】[0012]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】毛細管現象の原理図。FIG. 1 is a principle diagram of a capillary phenomenon.

【図2】本発明の完全性測定装置の1実施例を示すフロ
ー図。
FIG. 2 is a flowchart showing one embodiment of the integrity measuring apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 フィルターハウジング 2 フィルターカートリッジ 3 水供給タンク 4 ポンプ 5 一次側圧力計 6 二次側圧力計 7 液体流量計 8 気体流量計 11 水供給バルブ 12 流量調節バルブ 13 バイパスバルブ 14 ドレンバルブ 15 エア抜きバルブ 16 ろ過原液供給バルブ 17 ろ過液送液バルブ 18 拡散流量測定バルブ 19 拡散流量測定バルブ 20 気体供給バルブ 21 圧力調節バルブ 22 排水バルブ 23 濾過原液供給ライン 24 空気圧縮機又は窒素ボンベに通じるライン 31 円筒状の毛細管 32 液体槽 33 毛細管中に吸い上げられた液体 1 Filter housing 2 filter cartridge 3 Water supply tank 4 pumps 5 Primary side pressure gauge 6 Secondary pressure gauge 7 Liquid flow meter 8 Gas flow meter 11 Water supply valve 12 Flow control valve 13 Bypass valve 14 Drain valve 15 Air bleeding valve 16 Filtration stock solution supply valve 17 Filtrate delivery valve 18 Diffusion flow rate measurement valve 19 Diffusion flow rate measurement valve 20 gas supply valve 21 Pressure control valve 22 Drain valve 23 Filtration stock solution supply line 24 Lines leading to air compressors or nitrogen cylinders 31 cylindrical capillaries 32 liquid tank 33 Liquid sucked into the capillary

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 精密ろ過膜フィルターカートリッジを装
着したフィルターハウジングの一次側に、(1) 水供給タ
ンク、ポンプ及びポンプをバイパスし且つバイパス水量
を自動調節するためのバルブを有する水供給装置と、
(2) 完全性試験装置を設置し、フィルターハウジングの
二次側に、(3) 圧力計及び流量調節自動バルブからなる
流量調節装置を設置したことを特徴とする、完全性試験
装置。
1. A water supply device having (1) a water supply tank, a pump and a valve for bypassing the pump and automatically adjusting the amount of bypass water, on the primary side of a filter housing having a microfiltration membrane filter cartridge mounted thereon.
(2) An integrity test device, in which an integrity test device is installed, and (3) a flow rate control device including a pressure gauge and a flow rate control automatic valve is installed on the secondary side of the filter housing.
【請求項2】 精密ろ過膜フィルターカートリッジの一
次側に気体圧力をかけてフィルターカートリッジの完全
性を測定するに先立って、ろ過膜の膜面積1m2当たり1
m3/h以下の流量でフィルターカートリッジに液体を供
給しろ過するとともに、フィルターハウジングの二次側
バルブを絞って1kg/cm2 以上の背圧をかけることによ
り、フィルターカートリッジを液体に濡らした後完全性
を測定することを特徴とする、請求項1に記載のフィル
ターカートリッジの完全性試験方法。
2. Prior to measuring the integrity of the filter cartridge by applying gas pressure to the primary side of the microfiltration membrane filter cartridge, 1 per 1 m 2 of membrane area of the filtration membrane is used.
After the liquid is supplied to the filter cartridge at a flow rate of m 3 / h or less and filtered, the secondary side valve of the filter housing is squeezed and a back pressure of 1 kg / cm 2 or more is applied to wet the filter cartridge with the liquid. The integrity test method for a filter cartridge according to claim 1, wherein the integrity is measured.
JP17796191A 1991-07-18 1991-07-18 Perfection testing apparatus Pending JPH0523551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17796191A JPH0523551A (en) 1991-07-18 1991-07-18 Perfection testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17796191A JPH0523551A (en) 1991-07-18 1991-07-18 Perfection testing apparatus

Publications (1)

Publication Number Publication Date
JPH0523551A true JPH0523551A (en) 1993-02-02

Family

ID=16040109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17796191A Pending JPH0523551A (en) 1991-07-18 1991-07-18 Perfection testing apparatus

Country Status (1)

Country Link
JP (1) JPH0523551A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029184A1 (en) * 1996-12-27 1998-07-09 Asahi Kasei Kogyo Kabushiki Kaisha Device and method for detecting leakage of filter film
WO1998035749A1 (en) * 1997-02-14 1998-08-20 Nihon Millipore Kabushiki Kaisha Cross-filter apparatus
JP2007501118A (en) * 2003-08-01 2007-01-25 ステリス インク Filter assembly for reprocessing equipment
US7569182B2 (en) 2003-08-01 2009-08-04 American Sterilizer Company Filter assembly for a reprocessor
US8072514B2 (en) 2006-03-16 2011-12-06 Canon Kabushiki Kaisha Imaging system and method for error reduction processing
JP2013535328A (en) * 2010-08-11 2013-09-12 ガンブロ・ルンディア・エービー Apparatus and method for testing hollow fiber membrane filters
US10617603B2 (en) 2016-01-22 2020-04-14 Baxter International Inc. Sterile solutions product bag
CN112384800A (en) * 2018-07-06 2021-02-19 Qorvo美国公司 Uncovered sample slot port for reagent kit
US11021275B2 (en) 2016-01-22 2021-06-01 Baxter International Inc. Method and machine for producing sterile solution product bags
CN114858650A (en) * 2022-05-17 2022-08-05 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029184A1 (en) * 1996-12-27 1998-07-09 Asahi Kasei Kogyo Kabushiki Kaisha Device and method for detecting leakage of filter film
AU719922B2 (en) * 1996-12-27 2000-05-18 Asahi Kasei Medical Co., Ltd. Apparatus and method for detecting leakage through filtration membrane
US6065329A (en) * 1996-12-27 2000-05-23 Asahi Kasei Kogyo Kabushiki Kaisha Device and method for detecting leakage of filter film
WO1998035749A1 (en) * 1997-02-14 1998-08-20 Nihon Millipore Kabushiki Kaisha Cross-filter apparatus
JP2007501118A (en) * 2003-08-01 2007-01-25 ステリス インク Filter assembly for reprocessing equipment
US7569182B2 (en) 2003-08-01 2009-08-04 American Sterilizer Company Filter assembly for a reprocessor
US8792024B2 (en) 2006-03-16 2014-07-29 Canon Kabushiki Kaisha Imaging system and method for error-reduction processing
US8072514B2 (en) 2006-03-16 2011-12-06 Canon Kabushiki Kaisha Imaging system and method for error reduction processing
JP2013535328A (en) * 2010-08-11 2013-09-12 ガンブロ・ルンディア・エービー Apparatus and method for testing hollow fiber membrane filters
US10617603B2 (en) 2016-01-22 2020-04-14 Baxter International Inc. Sterile solutions product bag
US11021275B2 (en) 2016-01-22 2021-06-01 Baxter International Inc. Method and machine for producing sterile solution product bags
US11564867B2 (en) 2016-01-22 2023-01-31 Baxter International Inc. Sterile solutions product bag
US11623773B2 (en) 2016-01-22 2023-04-11 Baxter International Inc. Method and machine for producing sterile solution product bags
CN112384800A (en) * 2018-07-06 2021-02-19 Qorvo美国公司 Uncovered sample slot port for reagent kit
CN114858650A (en) * 2022-05-17 2022-08-05 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter
CN114858650B (en) * 2022-05-17 2023-10-17 合肥檀泰环保科技有限公司 Filter membrane breakage detection device in filter

Similar Documents

Publication Publication Date Title
EP1159058B1 (en) Method and apparatus for evaluating a membrane
US8689610B2 (en) Integrity test method for porous filters
JP3502912B2 (en) Apparatus and method for detecting leakage of filtration membrane
US6324898B1 (en) Method and apparatus for testing the integrity of filtering membranes
EP2603309B1 (en) Process for testing hollow fibre membrane filters
JP3111101B2 (en) Leak inspection method for membrane separation equipment
JP2000510766A (en) Methods and equipment for in situ testing of membrane integrity.
JP2001190938A (en) Method of detecting breakage of water treating membrane
JP6402263B2 (en) Interface module for filter integrity testing
JPH03110445A (en) Completeness testing method
JPH0523551A (en) Perfection testing apparatus
US6666970B1 (en) Process and apparatus for testing filtration unit integrity
JP5037758B2 (en) Membrane module integrity inspection method
JPS6058530A (en) Method and apparatus for testing membrane filter
CN114235657B (en) Method for testing the integrity of a filter medium
JPH04142445A (en) Completeness testing method
JP2001099775A (en) Depth filter integrity test method
JP3184631B2 (en) Leak inspection method for hollow fiber membrane module
JP2004219253A (en) Leak inspection method for water purifying cartridge
JP3373307B2 (en) Ultrafiltration membrane integrity test method
WO2019141498A1 (en) Membrane modules with limited defects and related methods
JPH038420A (en) Method for testing perfectness
JP2023049603A (en) Method for testing filter and manufacturing method