JPH05235468A - Semiconductor laser apparatus - Google Patents
Semiconductor laser apparatusInfo
- Publication number
- JPH05235468A JPH05235468A JP4035980A JP3598092A JPH05235468A JP H05235468 A JPH05235468 A JP H05235468A JP 4035980 A JP4035980 A JP 4035980A JP 3598092 A JP3598092 A JP 3598092A JP H05235468 A JPH05235468 A JP H05235468A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- ridge
- semiconductor laser
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 239000013078 crystal Substances 0.000 claims abstract description 34
- 239000012535 impurity Substances 0.000 claims abstract description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 abstract description 15
- 239000010410 layer Substances 0.000 description 165
- 230000000903 blocking effect Effects 0.000 description 43
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 26
- 230000010355 oscillation Effects 0.000 description 16
- 239000000758 substrate Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000031700 light absorption Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、低い動作電流値で光デ
ィスク等の光源として好適な低雑音の半導体レ−ザ装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low noise semiconductor laser device which is suitable as a light source for an optical disk or the like with a low operating current value.
【0002】[0002]
【従来の技術】以下に従来の半導体レーザ装置について
説明する。図13は従来の半導体レーザ装置の断面図で
ある。n型のガリウムヒ素(GaAs)基板21の上に
n型のGaAsバッファ層22が形成されており、その
上にn型のガリウムアルミヒ素(Ga0.5Al0.5As)
クラッド層23、Ga0.85Al0.15As活性層24、リ
ッジ25aを有するp型のGa0.5Al0.5Asクラッド
層25が形成されており、電流チャンネルとなるリッジ
25a以外の部分には電流狭窄のためにn型のGaAs
電流ブロック層26が形成されている。なお27はp型
のGaAs保護層、28はp型のGaAsコンタクト層
である。2. Description of the Related Art A conventional semiconductor laser device will be described below. FIG. 13 is a sectional view of a conventional semiconductor laser device. An n-type GaAs buffer layer 22 is formed on an n-type gallium arsenide (GaAs) substrate 21, and n-type gallium aluminum arsenide (Ga 0.5 Al 0.5 As) is formed thereon.
A p-type Ga 0.5 Al 0.5 As clad layer 25 having a clad layer 23, a Ga 0.85 Al 0.15 As active layer 24, and a ridge 25 a is formed, and a portion other than the ridge 25 a serving as a current channel is provided for current confinement. n-type GaAs
The current blocking layer 26 is formed. Reference numeral 27 is a p-type GaAs protective layer, and 28 is a p-type GaAs contact layer.
【0003】図13に示す構造において、p型のGaA
sコンタクト層28から注入される電流はリッジ25a
内に有効に閉じ込められ、リッジ25aの下部のGa
0.85Al0.15As活性層24でレーザ発振が生じる。こ
のときn型のGaAs電流ブロック層26の屈折率はp
型のGa0.5Al0.5Asクラッド層25の屈折率より大
きくなっているが、n型のGaAs電流ブロック層26
の禁制帯幅の方がGa0. 85Al0.15As活性層24の禁
制帯幅よりも小さいので、レーザ光に対してn型のGa
As電流ブロック層26は吸収体となる。したがってレ
ーザ光はこのn型のGaAs電流ブロック層26による
吸収により、リッジ25a内に有効に閉じ込められる。
一般にリッジ25aの下端、すなわちストライプの幅を
5μm程度にすることで、光ディスク等に使われる単一
横モードのレーザ発振が得られる。In the structure shown in FIG. 13, p-type GaA is used.
The current injected from the s contact layer 28 is the ridge 25a.
Is effectively confined inside, and Ga under the ridge 25a is
Laser oscillation occurs in the 0.85 Al 0.15 As active layer 24. At this time, the refractive index of the n-type GaAs current blocking layer 26 is p.
The refractive index of the n-type GaAs current blocking layer 26 is larger than that of the n-type Ga 0.5 Al 0.5 As clad layer 25.
Since towards the forbidden band width smaller than the forbidden band width of the Ga 0. 85 Al 0.15 As active layer 24, the n-type with respect to the laser beam Ga
The As current blocking layer 26 serves as an absorber. Therefore, the laser light is effectively confined in the ridge 25a by being absorbed by the n-type GaAs current blocking layer 26.
Generally, by setting the width of the lower end of the ridge 25a, that is, the stripe width to about 5 μm, laser oscillation of a single transverse mode used for an optical disk or the like can be obtained.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上記の従
来の構成では、n型のGaAs電流ブロック層26の光
吸収による導波路の損失によりレーザのしきい値および
効率が制限されること、さらにGaAs電流ブロック層
26の光吸収によりレーザ光が急峻にストライプ内に閉
じ込められるためにスペクトルが単一モードになりやす
いこと、また従来構造でスペクトルの多モード発振を得
るためにはGaAs電流ブロック層26をGa0.85Al
0.15As活性層24からある程度以上離さなければなら
ないこと、リッジ25aの下部での横方向への漏れ電流
の増大により動作電流の増大を招くこと等の課題を有し
ていた。However, in the above conventional structure, the threshold and efficiency of the laser are limited by the loss of the waveguide due to the optical absorption of the n-type GaAs current blocking layer 26, and the GaAs current is further reduced. Since the laser light is steeply confined in the stripe due to the light absorption of the block layer 26, the spectrum tends to be a single mode, and in order to obtain the multimode oscillation of the spectrum in the conventional structure, the GaAs current block layer 26 is made of Ga. 0.85 Al
There are problems such as the fact that it must be separated from the 0.15 As active layer 24 to some extent or more, and the operating current is increased due to an increase in the lateral leakage current in the lower portion of the ridge 25a.
【0005】さらにストライプの幅を狭くすると電流ブ
ロック層26による光吸収が増大するためにストライプ
の幅もある程度以下には狭くできないという制約があ
り、低動作電流化の妨げとなっていた。Further, if the width of the stripe is narrowed, the absorption of light by the current blocking layer 26 is increased, so that there is a restriction that the width of the stripe cannot be narrowed to a certain extent or less, which has been an obstacle to lowering the operating current.
【0006】本発明は上記の従来の課題を解決するもの
で、動作電流が低くスペクトルがより多モードでかつ低
雑音の半導体レーザ装置を提供することを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object thereof is to provide a semiconductor laser device having a low operating current, a spectrum of more modes, and a low noise.
【0007】[0007]
【課題を解決するための手段】この目的を達成するため
に本発明の半導体レーザ装置は、Ga1-XAlXAs活性
層の少なくとも一方の面に形成されリッジを有する一導
電型のGa1-YAlYAs層と、リッジの長手方向の側面
に沿って形成された逆導電型のGa1-ZAlZAs層とを
備え、AlAs混晶比を決めるX、YおよびZの間にZ
>Y>X≧0なる関係を有し、さらにこれら各層の内n
型であるGaAlAs層に不純物としてSiを添加した
構成を有している。SUMMARY OF THE INVENTION The semiconductor laser device of the present invention to achieve this object, Ga 1-X Al X As is formed on at least one surface of the active layer of one conductivity type Ga 1 with ridges -Y Al Y As layer and a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the longitudinal side surface of the ridge, and between X, Y and Z that determine the AlAs mixed crystal ratio. Z
>Y> X ≧ 0, and among these layers, n
It has a structure in which Si is added as an impurity to a GaAlAs layer that is a mold.
【0008】[0008]
【作用】この構成によって、Ga1-ZAlZAsのストラ
イプ状の窓、すなわちリッジから注入される電流により
Ga1-XAlXAs活性層でレーザ発振が生じ、またGa
1-ZAlZAs層の屈折率はストライプ内部のGa1-YA
lYAsクラッド層よりも小さいのでレーザ光はこの屈
折率差によりストライプ内に有効に閉じ込められる。さ
らにGa1-ZAlZAs層の禁制帯幅はGa1-XAlXAs
活性層の禁制帯幅よりもかなり大きいので、レーザ光の
電流ブロック層による光吸収は殆どなく、電流ブロック
層の中および電流ブロック層の下部の活性層にも光は広
く分布し、スペクトルは多モードになる。With this configuration, Ga1-ZAlZAs's stra
Ip-shaped window, that is, the current injected from the ridge
Ga1-XAlXLaser oscillation occurs in the As active layer, and Ga
1-ZAlZThe refractive index of the As layer is Ga inside the stripe.1-YA
lYSince the laser light is smaller than the As clad layer, this
It is effectively confined in the stripe due to the difference in folding rate. It
Rani Ga1-ZAlZThe forbidden band width of the As layer is Ga1-XAlXAs
Since it is much larger than the forbidden band width of the active layer,
There is almost no light absorption by the current blocking layer, and the current blocking
Light also spreads to the active layer inside the layer and below the current blocking layer.
Well distributed and the spectrum becomes multimodal.
【0009】さらにレーザー光が導波されるn型のGa
AlAs層に不純物としてSiを添加しているので多モ
ード発振の妨げとなるn型GaAlAs層中での損失グ
レーティングを殆ど形成せず、十分な多モード発振を得
ることができる。Further, an n-type Ga that guides the laser light is used.
Since Si is added as an impurity to the AlAs layer, it is possible to obtain sufficient multimode oscillation with almost no formation of a loss grating in the n-type GaAlAs layer, which interferes with multimode oscillation.
【0010】[0010]
【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1は本発明の一実施例における半
導体レーザ装置の断面図である。n型のGaAs基板1
の上にn型のGaAsバッファ層2が形成されており、
その上にn型のGa0.5Al0.5Asクラッド層3、Ga
0.85Al0.15As活性層4、リッジ5aを有するp型の
Ga0.5Al0.5Asクラッド層5が形成されており、電
流狭窄のために電流チャンネルとなるリッジ5a以外の
領域にはn型のGa0.35Al0. 65As電流ブロック層6
が形成されている。なお7はp型のGaAs保護層、8
はp型のGaAsコンタクト層である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention. n-type GaAs substrate 1
An n-type GaAs buffer layer 2 is formed on the
On top of that, n-type Ga 0.5 Al 0.5 As clad layer 3, Ga
A p-type Ga 0.5 Al 0.5 As clad layer 5 having a 0.85 Al 0.15 As active layer 4 and a ridge 5a is formed, and n-type Ga 0.35 is formed in a region other than the ridge 5a which becomes a current channel due to current constriction. al 0. 65 As current blocking layer 6
Are formed. 7 is a p-type GaAs protective layer, 8
Is a p-type GaAs contact layer.
【0011】ここで安定な単一横モード発振を得るため
に、n型のGa0.35Al0.65As電流ブロック層6のA
lAs混晶比をp型のGa0.5Al0.5Asクラッド層5
のAlAs混晶比より10%以上高く設定する。もしn
型のGa0.35Al0.65As電流ブロック層6のAlAs
混晶比がp型のGa0.5Al0.5Asクラッド層5と同程
度の場合はプラズマ効果によるストライプ内の屈折率の
低下があり、そのためにアンチガイドの導波路となり、
単一な横モード発振は得られない。ましてn型のGa
0.35Al0.65As電流ブロック層6のAlAs混晶比が
p型のGa0.5Al0.5Asクラッド層5より低い場合は
完全に横モードが不安定になり、目的としている低動作
電流化さえ達成できない。本実施例では図1に示すよう
に、n型のGa0.35Al0.65As電流ブロック層6のA
lAs混晶比をp型のGa0.5Al0.5Asクラッド層5
より0.15高くし、0.65としている。Here, in order to obtain a stable single transverse mode oscillation, A of the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is obtained.
p-type Ga 0.5 Al 0.5 As clad layer 5 having a mixed crystal ratio of 1 As
10% or more higher than the AlAs mixed crystal ratio. If n
Type Ga 0.35 Al 0.65 As AlAs of the current blocking layer 6
When the mixed crystal ratio is about the same as that of the p-type Ga 0.5 Al 0.5 As clad layer 5, there is a decrease in the refractive index in the stripe due to the plasma effect, so that it becomes an anti-guide waveguide,
A single transverse mode oscillation cannot be obtained. Much less n-type Ga
If the AlAs mixed crystal ratio of the 0.35 Al 0.65 As current blocking layer 6 is lower than that of the p-type Ga 0.5 Al 0.5 As clad layer 5, the transverse mode becomes completely unstable, and even the target low operating current cannot be achieved. In this embodiment, as shown in FIG. 1, A of the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is
p-type Ga 0.5 Al 0.5 As clad layer 5 having a mixed crystal ratio of 1 As
It is set to 0.65, which is 0.15 higher than that.
【0012】このような構造においては、p型のGaA
sコンタクト層8から注入される電流はリッジ5a内に
閉じ込められ、リッジ5aの下部のGa0.85Al0.15A
s活性層4でレーザ発振が生じる。ここでn型のGa
0.35Al0.65As電流ブロック層6の屈折率は電流チャ
ンネル内部のp型のGa0.5Al0.5Asクラッド層5の
屈折率より十分小さいのでレーザ光はこの屈折率差によ
りリッジ5a内に閉じ込められ、単一横モードのレーザ
光が得られる。In such a structure, p-type GaA
The current injected from the s contact layer 8 is confined in the ridge 5a, and Ga 0.85 Al 0.15 A under the ridge 5a is included.
Laser oscillation occurs in the s active layer 4. Where n-type Ga
Since the refractive index of the 0.35 Al 0.65 As current blocking layer 6 is sufficiently smaller than the refractive index of the p-type Ga 0.5 Al 0.5 As cladding layer 5 inside the current channel, the laser light is confined in the ridge 5 a due to this refractive index difference, One transverse mode laser light is obtained.
【0013】またn型のGa0.35Al0.65As電流ブロ
ック層6の禁制帯幅はGa0.85Al 0.15As活性層4の
禁制帯幅よりも大きいので、従来の構造のように電流ブ
ロック層による光吸収がなく、大幅に導波路の損失を低
減することができ、低動作電流化が図れる。さらに光吸
収が殆どないため、レーザ光がn型のGa0.35Al0. 65
As電流ブロック層6の下部にも広がりスペクトルが多
モードになりやすい。N-type Ga0.35Al0.65As current flow
The forbidden band width of the back layer 6 is Ga0.85Al 0.15As active layer 4
Since it is larger than the forbidden band, the current
There is no light absorption by the lock layer, which significantly reduces the waveguide loss.
Therefore, the operating current can be reduced. Light absorption
The laser light is almost n-type, so the laser light is n-type Ga0.35Al0. 65
The spectrum spreads also under the As current blocking layer 6 and has many spectra.
Easy to enter mode.
【0014】ただし光を導波する各n型GaAlAs
層、本実施例ではn型のGa0.5Al0 .5Asクラッド層
3およびn型のGa0.35Al0.65As電流ブロック層6
に従来よく使用されている不純物として液相成長法(L
PE法)ではTeを、また有機金属気相成長法(MOC
VD法)ではSeを添加した場合、これらの不純物はG
aAlAs中でDXセンタとなり、数mWから数十mW
で発振している主モードの光密度では可飽和吸収効果が
顕著になるため、発振している主モードの定在波によっ
て損失グレーティングが形成されてしまう。このため発
振している主モード以外の他のモードが抑圧され、逆に
シングルモード性を強めてしまい、この構造の利点であ
る多モード性が損なわれてしまう。However, each n-type GaAlAs that guides light
Layer, Ga 0.35 Al 0.65 of Ga 0.5 Al 0 .5 As cladding layer 3 and the n-type n-type in this embodiment As current blocking layer 6
Liquid phase growth method (L
Te in PE method, and metal organic vapor phase epitaxy method (MOC).
In the VD method), when Se is added, these impurities are G
Becomes DX center in aAlAs, from several mW to several tens mW
Since the saturable absorption effect becomes significant in the optical density of the main mode oscillating at, the loss grating is formed by the standing wave of the oscillating main mode. For this reason, modes other than the oscillating main mode are suppressed, conversely the single mode property is strengthened, and the multimode property, which is an advantage of this structure, is impaired.
【0015】この問題を解決するため、この構造の半導
体レーザー内の光を導波する各GaAlAs層に不純物
としてSiを添加した。この場合GaAlAs層中のS
iによって生じるDXセンタ準位と伝導帯との間のキャ
リアの熱的捕獲および放出の活性化エネルギーが不純物
にSeやTeを使用した場合と異なるため非常に低い光
密度で光吸収が飽和してしまい、発振している主モード
による損失グレーティングが殆ど形成されないことから
多モード性が損なわれることがなく、十分な多モード発
振を得ることができ、低雑音化が容易となる。In order to solve this problem, Si was added as an impurity to each GaAlAs layer that guides light in the semiconductor laser of this structure. In this case, S in the GaAlAs layer
Since the activation energy of thermal capture and emission of carriers between the DX center level and the conduction band generated by i is different from that when Se or Te is used as an impurity, the optical absorption is saturated at a very low optical density. Since the loss grating due to the oscillating main mode is hardly formed, the multimode property is not impaired, sufficient multimode oscillation can be obtained, and noise reduction is facilitated.
【0016】次に上記の構造を有する半導体レーザ装置
のスペクトル特性について説明する。図2(a)は本発
明の一実施例における半導体レーザ装置のスペクトル特
性と構造パラメータの関係を示す図、図2(b)は従来
の半導体レーザ装置のスペクトル特性と構造パラメータ
の関係を示す図である。これらの図において、横軸は電
流ブロック層と活性層との間のp型のクラッド層の厚さ
(dp)を、縦軸は活性層の厚さ(da)をそれぞれ示
している。図2(a)に示す本実施例では、図2(b)
に示す従来例に比べて、daおよびdpのいずれかまた
は両方が薄くても十分に多モード発振が得られている。
特にdpが薄くてもよいためストライプの外部への漏れ
電流が小さい状態で低雑音のレーザが得られ、より一層
動作電流の低減が図れる。具体的には従来例の構造では
0.3μm以下のdpで多モード発振を得るのは困難で
あったのに対し、本実施例の構造ではdpが0.2μm
以下でも十分に多モード発振が得られる。Next, the spectral characteristics of the semiconductor laser device having the above structure will be described. FIG. 2A is a diagram showing the relationship between the spectral characteristics and the structural parameters of the semiconductor laser device according to an embodiment of the present invention, and FIG. 2B is a diagram showing the relationship between the spectral characteristics and the structural parameters of the conventional semiconductor laser device. Is. In these figures, the horizontal axis represents the thickness (dp) of the p-type cladding layer between the current blocking layer and the active layer, and the vertical axis represents the thickness of the active layer (da). In the present embodiment shown in FIG. 2A, FIG.
As compared with the conventional example shown in (1), even if either or both of da and dp are thin, multimode oscillation is sufficiently obtained.
In particular, since the dp may be thin, a low noise laser can be obtained in the state where the leakage current to the outside of the stripe is small, and the operating current can be further reduced. Specifically, it was difficult to obtain multimode oscillation with a dp of 0.3 μm or less in the structure of the conventional example, whereas the dp of 0.2 μm in the structure of the present embodiment.
Even below, multimode oscillation can be sufficiently obtained.
【0017】次に本発明の一実施例における半導体レー
ザ装置のストライプ幅と動作電流値の関係について、図
3を参照しながら説明する。なお参考のために従来例に
ついても示した。本実施例の構造では従来例とは異な
り、ストライプ幅を狭くしたときでも電流ブロック層に
よる光吸収の増大により動作電流値が増加することはな
いので、ストライプ幅を従来例と比べてかなり狭い値に
設定でき、この点からも低動作電流化が達成できる。具
体的には、従来例の構造ではストライプ幅が4μm以下
になると動作電流値が増大していたのに対し、本実施例
の構造ではストライプ幅を狭くすると動作電流値がスト
ライプ幅に比例して低減する。さらに本実施例の構造で
ストライプ幅を狭くした場合、電流ブロック層への光の
しみ出しがストライプ内部にある光に比べて相対的に増
加するので、スペクトルの多モード性はより一層強くな
る。すなわちストライプ幅を狭くすることでより低雑音
になる。Next, the relationship between the stripe width and the operating current value of the semiconductor laser device in one embodiment of the present invention will be described with reference to FIG. For reference, a conventional example is also shown. In the structure of this embodiment, unlike the conventional example, the operating current value does not increase due to the increase in light absorption by the current blocking layer even when the stripe width is narrowed. Therefore, the stripe width is considerably narrower than that of the conventional example. Can be set to, and from this point as well, low operating current can be achieved. Specifically, in the structure of the conventional example, the operating current value increased when the stripe width was 4 μm or less, whereas in the structure of the present embodiment, when the stripe width was narrowed, the operating current value was proportional to the stripe width. Reduce. Further, when the stripe width is narrowed in the structure of the present embodiment, light seeping out to the current blocking layer is relatively increased as compared with light inside the stripe, so that the multimode property of the spectrum becomes stronger. That is, narrowing the stripe width results in lower noise.
【0018】次に本発明の半導体レーザ装置の製造方法
について説明する。図4はその半導体レーザ装置の製造
工程図である。まず図4(a)に示すように、n型のG
aAs基板1の上にMOCVDまたはMBE成長法によ
り、n型のGaAsバッファ層2(厚さ、0.5μ
m)、n型のGa0.5Al0.5Asクラッド層3(厚さ、
1μm)、Ga0.85Al0.15As活性層4(厚さ、0.
07μm)、p型のGa0.5Al0.5Asクラッド層5
(厚さ、1μm)およびp型のGaAs保護層7(厚
さ、0.2μm)を形成する。この保護層7は電流が流
れるp型のGa0.5Al0.5Asクラッド層5の表面酸化
を防止するのに必要である。なお活性層4の導電型は特
に記載していないが、p型であってもn型であっても、
またアンドープであってもかまわない。Next, a method of manufacturing the semiconductor laser device of the present invention will be described. FIG. 4 is a manufacturing process diagram of the semiconductor laser device. First, as shown in FIG. 4A, n-type G
The n-type GaAs buffer layer 2 (thickness: 0.5 μm) is formed on the aAs substrate 1 by MOCVD or MBE growth method.
m), n-type Ga 0.5 Al 0.5 As cladding layer 3 (thickness,
1 μm), Ga 0.85 Al 0.15 As active layer 4 (thickness, 0.
07 μm), p-type Ga 0.5 Al 0.5 As clad layer 5
(Thickness, 1 μm) and p-type GaAs protective layer 7 (thickness, 0.2 μm) are formed. This protective layer 7 is necessary to prevent surface oxidation of the p-type Ga 0.5 Al 0.5 As cladding layer 5 through which a current flows. Although the conductivity type of the active layer 4 is not particularly described, it may be p-type or n-type,
Further, it may be undoped.
【0019】次に図4(b)に示すように、ストライプ
状に窒化膜(窒化シリコン、窒化タングステン)または
酸化シリコン膜等の誘電体膜9を形成し、この誘電体膜
9をマスクとしてエッチングを行い、リッジ5aを形成
する。このときストライプ幅となるリッジ5aの下端の
幅は2.5μm、リッジ5a以外の領域のp型のGa
0.5Al0.5Asクラッド層5の厚さ(dp)は、0.1
5μmとした。Next, as shown in FIG. 4B, stripes
Nitride film (silicon nitride, tungsten nitride) or
A dielectric film 9 such as a silicon oxide film is formed, and the dielectric film 9 is formed.
9 is used as a mask to perform etching to form a ridge 5a.
To do. At this time, the lower end of the ridge 5a having the stripe width is
The width is 2.5 μm, and p-type Ga in the region other than the ridge 5a
0.5Al0.5The thickness (dp) of the As clad layer 5 is 0.1
It was 5 μm.
【0020】次に図4(c)に示すように、誘電体膜9
をマスクとしてMOCVD法によりn型のGa0.35Al
0.65As電流ブロック層6(厚さ、1μm)を選択的に
形成する。n型のGa0.35Al0.65As電流ブロック層
6の膜厚が薄いとその上のp型のGaAsコンタクト層
8においてレーザ光の吸収が生じるので、最低限0.4
μmの厚さが必要である。なお上記の全てのn型GaA
lAs層には不純物としてSiが添加されている。Next, as shown in FIG. 4C, the dielectric film 9
N-type Ga 0.35 Al by the MOCVD method using as a mask
A 0.65 As current blocking layer 6 (thickness, 1 μm) is selectively formed. If the film thickness of the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is thin, the laser light is absorbed in the p-type GaAs contact layer 8 thereover, so that the minimum thickness is 0.4.
A thickness of μm is required. All of the above n-type GaA
Si is added as an impurity to the 1As layer.
【0021】次に図4(d)に示すように、誘電体膜9
を除去し、MOCVDまたはMBE成長法によりp型の
GaAsコンタクト層8を形成する。最後にn型のGa
As基板1側およびp型のGaAsコンタクト層8側に
それぞれ電極を形成して半導体レーザ装置となる。Next, as shown in FIG. 4D, the dielectric film 9
And the p-type GaAs contact layer 8 is formed by MOCVD or MBE growth. Finally n-type Ga
An electrode is formed on each of the As substrate 1 side and the p-type GaAs contact layer 8 side to form a semiconductor laser device.
【0022】本実施例における半導体レーザでは、共振
器長200μmの素子において室温で3mWのレーザ光
を放出するのに必要な動作電流値が25mAと低電流で
あり、スペクトルは自己脈動(セルフパルセーション)
を生じるに十分な多モードで発振した。実際の雑音特性
は0〜10%の戻り光率の範囲内で−135dB/Hz
以下のRINの値が得られ、低雑音化を実現した。In the semiconductor laser of this embodiment, the operating current value required for emitting a laser beam of 3 mW at room temperature in an element having a cavity length of 200 μm is as low as 25 mA, and the spectrum is self-pulsating. )
It oscillated in multiple modes sufficient to cause. Actual noise characteristics are -135 dB / Hz within the range of 0-10% return light rate.
The following RIN values were obtained and low noise was realized.
【0023】なお図4に示す製造工程において、2回目
の結晶成長の際にp型のGa0.5Al0.5Asクラッド層
5の上に直接n型のGa0.35Al0.65As電流ブロック
層6を成長すると再成長界面がp−n接合となって深い
界面準位を形成し、レーザの電流対光出力特性の温度依
存性に悪影響を及ぼすことがある。これを防ぐために
は、2回目の結晶成長の際に最初にp型の薄い層を形成
した後にn型のGa0. 35Al0.65As電流ブロック層6
を形成するのが有効である。この場合再成長界面はp−
n接合でなくなるので深い界面準位が形成されない。In the manufacturing process shown in FIG. 4, the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is grown directly on the p-type Ga 0.5 Al 0.5 As cladding layer 5 during the second crystal growth. The regrowth interface serves as a pn junction to form a deep interface state, which may adversely affect the temperature dependence of the laser current-optical output characteristic. To prevent this, the second Ga 0. 35 Al 0.65 n-type after forming the thin p-type layer on the first time of crystal growth of As current blocking layer 6
Is effective. In this case, the regrowth interface is p-
Since it is not an n-junction, no deep interface state is formed.
【0024】以下本発明の他の実施例について、図5〜
図12を参照しながら説明する。図5は本発明の第2の
実施例における半導体レーザ装置の断面図であり、p型
のGa0.35Al0.65As電流ブロック層6を2回目の結
晶成長時に形成した例について示した。この場合n型の
Ga0.35Al0.65As電流ブロック層6はp型のGa
0.5Al0.5Asクラッド層5の上にSiを添加したn型
のGa0.35Al0.65As層17を介して形成されてい
る。なおn型のGa0.35Al0.65As電流ブロック層6
はレーザ光に対して透明でなければならないのでそのA
lAs混晶比はGa0.85Al0.15As活性層4のAlA
s混晶比より大きく、また横方向への漏れ電流を低くす
るためには膜厚は0.1μm以下にする必要がある。ま
た本実施例ではp型の層がない場合と屈折率を同じにす
るため、n型のGa0.35Al0.65As層17のAlAs
混晶比をn型のGa0.35Al0.65As電流ブロック層6
と同じにしている。またn型のGa0.35Al0.65As層
17の膜厚は0.01μmであり、電流分布にも殆ど影
響を与えない膜厚にしている。図5の構造により、低動
作電流、低雑音かつ温度特性に優れた半導体レーザを得
ることができる。Another embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG. FIG. 5 is a cross-sectional view of a semiconductor laser device according to the second embodiment of the present invention, showing an example in which a p-type Ga 0.35 Al 0.65 As current blocking layer 6 is formed during the second crystal growth. In this case, the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is a p-type Ga 0.35 Al 0.65 As current blocking layer 6.
It is formed on the 0.5 Al 0.5 As clad layer 5 via the Si-added n-type Ga 0.35 Al 0.65 As layer 17. The n-type Ga 0.35 Al 0.65 As current blocking layer 6
Must be transparent to the laser light, so A
lAs mixed crystal ratio is Ga 0.85 Al 0.15 As active layer 4 AlA
The film thickness needs to be 0.1 μm or less in order to increase the s mixed crystal ratio and reduce the leakage current in the lateral direction. Further, in the present embodiment, the AlAs of the n-type Ga 0.35 Al 0.65 As layer 17 is set in order to make the refractive index the same as when there is no p-type layer.
Mixed crystal ratio of n-type Ga 0.35 Al 0.65 As current blocking layer 6
Same as. Further, the film thickness of the n-type Ga 0.35 Al 0.65 As layer 17 is 0.01 μm, which is a film thickness that hardly affects the current distribution. With the structure shown in FIG. 5, a semiconductor laser having a low operating current, low noise and excellent temperature characteristics can be obtained.
【0025】なおp型GaAs基板の上に上記のような
効果を持つ半導体レーザー装置を作製する場合には上記
の実施例におけるp型およびn型の導電型を逆にして結
晶を成長するのであるが、この場合図5におけるn型の
Ga0.35Al0.65As層17がp型となる。またこのと
きのp型の薄い層に不純物としてSiを添加することに
よりこの層において多モード性が損なわれることはな
い。When a semiconductor laser device having the above-mentioned effects is manufactured on a p-type GaAs substrate, the p-type and n-type conductivity types in the above embodiment are reversed to grow a crystal. However, in this case, the n-type Ga 0.35 Al 0.65 As layer 17 in FIG. 5 becomes p-type. Further, the addition of Si as an impurity to the p-type thin layer at this time does not impair the multimodality in this layer.
【0026】図6は本発明の第3の実施例における半導
体レーザ装置の断面図であり、p型GaAs基板の上に
形成した例について示した。図6に示すように、p型の
GaAs基板10の上にp型のGaAsバッファ層1
1、p型のGa0.5Al0.5Asクラッド層12、Ga
0.85Al0.15As活性層4、Siを添加したリッジ13
aを有するn型のGa0.5Al0.5Asクラッド層13、
p型のGa0.35Al0.65As電流ブロック層14、リッ
ジ13aの上のn型のGaAs保護層15およびn型の
GaAsコンタクト層16が形成されている。なおp型
のGa0.35Al0.65As電流ブロック層14はSiを添
加したn型のGa0.5Al0.5Asクラッド層13の上に
Siを添加したn型のGa0.35Al0.65As層17を介
して形成されている。本実施例の構造における各層は図
5に示す構造とはその導電型が反転しているが、図5の
場合と同様の効果がある。なおかつ、このn型のGa
0.35Al 0.65As層17には不純物としてSiを添加し
ているためこの層において多モード性が損なわれること
はなく、低動作電流、低雑音かつ温度特性に優れた半導
体レーザを得ることができる。FIG. 6 shows a semiconductor device according to the third embodiment of the present invention.
2 is a cross-sectional view of a body laser device on a p-type GaAs substrate
The formed example is shown. As shown in FIG.
P-type GaAs buffer layer 1 on GaAs substrate 10
1, p-type Ga0.5Al0.5As clad layer 12, Ga
0.85Al0.15As active layer 4, Si-added ridge 13
n-type Ga having a0.5Al0.5As clad layer 13,
p-type Ga0.35Al0.65As current blocking layer 14, lid
N-type GaAs protective layer 15 on
A GaAs contact layer 16 is formed. P-type
Ga0.35Al0.65The As current blocking layer 14 has Si added thereto.
Added n-type Ga0.5Al0.5On the As clad layer 13
Si-added n-type Ga0.35Al0.65Via the As layer 17
Is formed. Each layer in the structure of this embodiment is a diagram
The conductivity type of the structure shown in FIG.
It has the same effect as the case. Moreover, this n-type Ga
0.35Al 0.65Si is added as an impurity to the As layer 17.
That the multimodality is lost in this layer.
, A semiconductor with low operating current, low noise and excellent temperature characteristics
Body laser can be obtained.
【0027】また図4に示す製造工程においてn型のG
aAs基板を使用した場合、誘電体膜9を構成する窒化
シリコン膜を除去する際にHF系のエッチャントを用い
るが、この時2回目成長で形成したn型のGa0.35Al
0.65As電流ブロック層6も同時にエッチングされるこ
とがある。これを防ぐためには、2回目成長時にn型の
Ga0.35Al0.65As電流ブロック層6上にエッチング
防止用のAlAs混晶比の低い層を導入すると有効であ
る。この層はAlAs混晶比の高いGa0.35Al0.65A
s電流ブロック層6を表面酸化から保護する効果も有す
る。また不純物としてSiをこの層に添加することによ
り、この層で多モード性が損なわれることがなくなる。Further, in the manufacturing process shown in FIG.
When an aAs substrate is used, an HF-based etchant is used when removing the silicon nitride film forming the dielectric film 9. At this time, the n-type Ga 0.35 Al formed by the second growth is used.
The 0.65 As current blocking layer 6 may also be etched at the same time. In order to prevent this, it is effective to introduce a layer having a low AlAs mixed crystal ratio for preventing etching onto the n-type Ga 0.35 Al 0.65 As current blocking layer 6 during the second growth. This layer has a high AlAs mixed crystal ratio of Ga 0.35 Al 0.65 A
It also has an effect of protecting the s current blocking layer 6 from surface oxidation. Also, by adding Si as an impurity to this layer, the multimodal property is not impaired in this layer.
【0028】図7は本発明の第4の実施例における半導
体レーザ装置の断面図であり、n型のGaAlAs層1
8を0.5μm導入した例について示した。図7におい
て、n型のGa0.35Al0.65As電流ブロック層6の厚
さは、平坦性を保つために0.5μmと図1に示す実施
例より薄くしている。この導入したGaAlAs層18
層の導電型は電流のブロックという点でn型の方がよ
く、不純物としてSiを添加することにより多モード性
を損なわずに低雑音化できる。またn型のGaAlAs
層18は2層以上の多層であってもよい。図7の構造に
より、低動作電流、低雑音かつ量産性に優れた半導体レ
ーザ装置を得ることができる。FIG. 7 is a sectional view of a semiconductor laser device according to a fourth embodiment of the present invention, in which an n-type GaAlAs layer 1 is formed.
An example in which 8 is introduced at 0.5 μm is shown. In FIG. 7, the thickness of the n-type Ga 0.35 Al 0.65 As current blocking layer 6 is 0.5 μm, which is smaller than that of the embodiment shown in FIG. 1, in order to maintain flatness. This introduced GaAlAs layer 18
The conductivity type of the layer is preferably n-type in terms of blocking current, and the addition of Si as an impurity can reduce noise without impairing multimodality. In addition, n-type GaAlAs
The layer 18 may be a multilayer including two or more layers. With the structure shown in FIG. 7, a semiconductor laser device having a low operating current, low noise, and excellent mass productivity can be obtained.
【0029】以上説明した実施例における構造は、動作
電流値が低く、従来より多モードにすることができるの
で、低雑音かつ高出力の半導体レーザを実現できる。実
際に高出力用半導体レーザ装置として、350μmの共
振器長で作製し、端面にコーティングを行うことによ
り、100mW以上の光出力が得られ、数mWの低出力
時には多モード発振をさせることができた。このような
半導体レーザ装置を光ディスクの光源として用いること
により、読み込み時に低雑音化を図るための高周波重畳
回路が不要となりピックアップの大幅な小型化が実現で
きる。The structure in the above-described embodiment has a low operating current value and can be operated in multiple modes as compared with the prior art, so that a semiconductor laser with low noise and high output can be realized. By actually producing a high-power semiconductor laser device with a cavity length of 350 μm and coating the end face, an optical output of 100 mW or more can be obtained, and multimode oscillation can be performed at a low output of several mW. It was By using such a semiconductor laser device as a light source of an optical disc, a high frequency superimposing circuit for reducing noise during reading is not required, and a drastic downsizing of the pickup can be realized.
【0030】図8は本発明の第5の実施例における半導
体レーザ装置の断面図であり、p型のGa0.6Al0.4A
s光ガイド層19を有するLOC構造の例について示し
た。図8に示す構造では、端面の光による破壊レベルが
向上するため一段と高出力化が図れる。p型のGa0.6
Al0.4As光ガイド層19のAlAs混晶比はGa0.
85Al0.15As活性層4のAlAs混晶比よりも高けれ
ばよいが、温度特性を考えるとその禁制帯幅がGa0.85
Al0.15As活性層4より0.3eV以上大きいことが
望ましく、本実施例ではp型のGa0.6Al0.4As光ガ
イド層19のAlAs混晶比は0.4とし、その層厚は
横方向への漏れ電流を小さくするために0.1μmと薄
くしている。この光ガイド層がn型の場合には不純物と
してSiを添加することによりこの層において多モード
性が損なわれることがなくなる。また光ガイド層は図8
のように活性層の下部でなくとも、上部または両側にあ
ってもよい。本実施例の構造により、低動作電流、高出
力かつ低雑音の半導体レーザ装置が得られる。FIG. 8 is a sectional view of a semiconductor laser device according to the fifth embodiment of the present invention, in which p-type Ga 0.6 Al 0.4 A is used.
An example of the LOC structure having the s light guide layer 19 is shown. In the structure shown in FIG. 8, the destruction level of the end face due to the light is improved, so that the output can be further increased. p-type Ga 0.6
The AlAs mixed crystal ratio of the Al 0.4 As optical guide layer 19 is Ga 0.
85 Al 0.15 As long as it is higher than the AlAs mixed crystal ratio of the active layer 4, its band gap is Ga 0.85 considering the temperature characteristics.
It is desirable that the Al 0.15 As active layer 4 is larger than the active layer 4 by 0.3 eV or more. In this embodiment, the AlAs mixed crystal ratio of the p-type Ga 0.6 Al 0.4 As optical guide layer 19 is 0.4, and the layer thickness thereof is in the lateral direction. In order to reduce the leakage current of, the thickness is made as thin as 0.1 μm. When this light guide layer is n-type, the addition of Si as an impurity prevents the multimode property of this layer from being impaired. The light guide layer is shown in FIG.
It may be on the upper side or both sides of the active layer instead of the lower side. With the structure of this embodiment, a semiconductor laser device with low operating current, high output and low noise can be obtained.
【0031】なお図5の構造、図6の構造、図7の構
造、図8の構造による効果はそれぞれ独立のものであ
り、これらの構造を組み合わせることにより各々の効果
を併せ持つ優れた半導体レーザ装置を得ることが可能と
なる。以下に組み合わせた場合の実施例について説明す
る。The effects of the structure shown in FIG. 5, the structure shown in FIG. 6, the structure shown in FIG. 7, and the structure shown in FIG. 8 are independent of each other. By combining these structures, an excellent semiconductor laser device having both effects can be obtained. Can be obtained. An example of the combination will be described below.
【0032】図9は本発明の第6の実施例における半導
体レーザ装置の断面図であり、図5の構造と図7の構造
を組み合わせた例について示した。この場合、低動作電
流、低雑音特性に加えて特性温度が高く、量産性に優れ
た半導体レーザ装置を得ることができる。FIG. 9 is a sectional view of a semiconductor laser device according to a sixth embodiment of the present invention, showing an example in which the structure of FIG. 5 and the structure of FIG. 7 are combined. In this case, it is possible to obtain a semiconductor laser device which has a low operating current, low noise characteristics, a high characteristic temperature, and excellent mass productivity.
【0033】図10は本発明の第7の実施例における半
導体レーザ装置の断面図であり、図5の構造と図8の構
造を組み合わせた例について示した。なお光ガイド層1
9は活性層4の上部でなくとも、下部または両側にあっ
てもよい。この場合、低動作電流、低雑音特性に加えて
特性温度が高く、より高出力の半導体レーザ装置を得る
ことができる。FIG. 10 is a sectional view of a semiconductor laser device according to a seventh embodiment of the present invention, showing an example in which the structure of FIG. 5 and the structure of FIG. 8 are combined. Light guide layer 1
9 may be on the lower side or both sides of the active layer 4. In this case, in addition to the low operating current and low noise characteristics, the characteristic temperature is high, and a higher output semiconductor laser device can be obtained.
【0034】図11は本発明の第8の実施例における半
導体レーザ装置の断面図であり、図7の構造と図8の構
造を組み合わせた例について示した。なお光ガイド層1
9は活性層4の上部でなくとも、下部または両側にあっ
てもよい。この場合、低動作電流、低雑音特性に加えて
より高出力で量産性に優れた半導体レーザ装置を得るこ
とができる。FIG. 11 is a sectional view of a semiconductor laser device according to the eighth embodiment of the present invention, showing an example in which the structure of FIG. 7 and the structure of FIG. 8 are combined. Light guide layer 1
9 may be on the lower side or both sides of the active layer 4. In this case, in addition to low operating current and low noise characteristics, a semiconductor laser device having higher output and excellent mass productivity can be obtained.
【0035】図12は本発明の第9の実施例における半
導体レーザ装置の断面図であり、図5の構造、図7の構
造および図8の構造を組み合わせた例について示した。
なお光ガイド層19は活性層4の上部でなくとも、下部
または両側にあってもよい。この場合、低動作電流、低
雑音特性に加えて特性温度が高く、より高出力で量産性
に優れた半導体レーザ装置を得ることができる。FIG. 12 is a sectional view of a semiconductor laser device according to a ninth embodiment of the present invention, showing an example in which the structure of FIG. 5, the structure of FIG. 7 and the structure of FIG. 8 are combined.
The light guide layer 19 need not be on the upper part of the active layer 4, but may be on the lower part or both sides. In this case, it is possible to obtain a semiconductor laser device which has a high operating temperature, a low noise characteristic, a high characteristic temperature, a higher output, and excellent mass productivity.
【0036】なお上記の各実施例において基板にn型、
p型のどちらを用いて製作してもよいが、基板がn型の
場合は電流ブロック層がn型となり、基板がp型の場合
はリッジが形成されるクラッド層がn型となる。またこ
れらの構造において、レーザー光を導波するn型のGa
AlAs層に不純物としてSiを添加することにより、
その層での多モード性が損なわれることがなく低雑音化
できる。It should be noted that in each of the above embodiments, an n-type substrate,
Either p-type may be used for manufacturing, but when the substrate is n-type, the current blocking layer is n-type, and when the substrate is p-type, the clad layer in which the ridge is formed is n-type. In these structures, an n-type Ga that guides laser light is also used.
By adding Si as an impurity to the AlAs layer,
The noise can be reduced without impairing the multimodality in that layer.
【0037】[0037]
【発明の効果】以上のように本発明は、Ga1-XAlXA
s活性層の少なくとも一方の面に形成されたリッジを有
する一導電型のGa1-YAlYAs層と、リッジの長手方
向の側面に沿って形成された逆導電型のGa1-ZAlZA
s層とを備え、AlAs混晶比を決めるX、YおよびZ
の関係がZ>Y>X≧0であり、これらの各層の内n型
であるGaAlAs層に不純物としてSiを添加した構
成により、動作電流値が低く、しかも低雑音である優れ
た半導体レ−ザ装置を実現できるものである。As described above, according to the present invention, Ga 1 -X Al X A
s One- conductivity type Ga 1-Y Al Y As layer having a ridge formed on at least one surface of the s active layer and an opposite-conductivity type Ga 1-Z Al layer formed along the longitudinal side surface of the ridge. Z A
S, and X, Y and Z for determining the AlAs mixed crystal ratio
Is Z>Y> X ≧ 0, and an excellent semiconductor laser having a low operating current value and low noise is obtained by adding Si as an impurity to the GaAlAs layer which is an n-type among these layers. The device can be realized.
【0038】また本発明によれば、電流ブロック層のA
lAs混晶比がクラッド層のAlAs混晶比より高く設
定されているため、単一な横モードで発振し、レーザ光
の電流ブロック層による光吸収が殆どなく、大幅に導波
路の損失を低減でき、動作電流値の低減が図れる。Further, according to the present invention, A of the current blocking layer is
Since the 1As mixed crystal ratio is set higher than the AlAs mixed crystal ratio of the clad layer, it oscillates in a single transverse mode, there is almost no optical absorption of the laser light by the current block layer, and the loss of the waveguide is greatly reduced. Therefore, the operating current value can be reduced.
【0039】また本発明によれば、光が電流ブロック層
およびその下部の活性層に広がるためスペクトルの多モ
ード発振が得られやすいため、活性層と電流ブロック層
との距離を従来より近づけることができるとともに、光
を導波する各n型GaAlAs層に不純物としてSiを
添加することにより発振している主モードによる損失グ
レーティングを殆ど形成せず、より多モード性の優れた
低雑音の半導体レーザ装置が得られる。Further, according to the present invention, since light spreads in the current blocking layer and the active layer thereunder, it is easy to obtain multimode oscillation of the spectrum. Therefore, the distance between the active layer and the current blocking layer can be made shorter than before. In addition, a low-noise semiconductor laser device having excellent multi-mode characteristics with almost no loss grating due to the main mode oscillating by adding Si as an impurity to each n-type GaAlAs layer that guides light can be formed. Is obtained.
【0040】また本発明によれば、電流ブロック層によ
る光吸収が殆どないためにストライプ幅も従来より狭く
することができ、その結果漏れ電流が少なくなる効果と
ストライプ幅を狭くできる効果の相乗作用で動作電流値
を低くする方向に寸法を設定でき、コンパクトディスク
用などの低雑音のレーザとしてより一層の動作電流値の
低減が図れる。Further, according to the present invention, since there is almost no light absorption by the current blocking layer, the stripe width can be made narrower than before, and as a result, the synergistic action of the effect of reducing the leakage current and the effect of narrowing the stripe width can be achieved. The dimension can be set in the direction of lowering the operating current value, and the operating current value can be further reduced as a low noise laser for a compact disc or the like.
【0041】さらに本発明によれば、動作電流値の低減
は活性層における発熱量の低減をもたらすため光出力も
従来と比べて増大し、高出力半導体レーザ装置を構成し
た場合でも低出力での多モード発振が可能であり、この
ような半導体レーザ装置を光ディスクの光源として用い
れば読み込み時に低雑音化を図るための高周波重畳回路
が不要となり、光ピックアップの大幅な小型化が実現で
きる。Further, according to the present invention, since the reduction of the operating current value brings about the reduction of the amount of heat generated in the active layer, the optical output is also increased as compared with the conventional one, and even when the high output semiconductor laser device is constructed, the output is low. Multimode oscillation is possible, and when such a semiconductor laser device is used as a light source of an optical disc, a high frequency superimposing circuit for reducing noise during reading is not required, and the optical pickup can be significantly downsized.
【図1】本発明の一実施例における半導体レーザ装置の
断面図FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention.
【図2】(a)は本発明の一実施例における半導体レー
ザ装置のスペクトル特性と構造パラメータの関係を示す
図 (b)は従来の半導体レーザ装置のスペクトル特性と構
造パラメータの関係を示す図FIG. 2A is a diagram showing the relationship between spectral characteristics and structural parameters of a semiconductor laser device according to an embodiment of the present invention. FIG. 2B is a diagram showing the relationship between spectral properties and structural parameters of a conventional semiconductor laser device.
【図3】本発明の一実施例における半導体レーザ装置の
ストライプ幅と動作電流値の関係を示す図FIG. 3 is a diagram showing a relationship between a stripe width and an operating current value of a semiconductor laser device according to an embodiment of the present invention.
【図4】(a)〜(d)は本発明の一実施例における半
導体レーザ装置の製造工程図4A to 4D are manufacturing process diagrams of a semiconductor laser device according to an embodiment of the present invention.
【図5】本発明の第2の実施例における半導体レーザ装
置の断面図FIG. 5 is a sectional view of a semiconductor laser device according to a second embodiment of the present invention.
【図6】本発明の第3の実施例における半導体レーザ装
置の断面図FIG. 6 is a sectional view of a semiconductor laser device according to a third embodiment of the present invention.
【図7】本発明の第4の実施例における半導体レーザ装
置の断面図FIG. 7 is a sectional view of a semiconductor laser device according to a fourth embodiment of the present invention.
【図8】本発明の第5の実施例における半導体レーザ装
置の断面図FIG. 8 is a sectional view of a semiconductor laser device according to a fifth embodiment of the present invention.
【図9】本発明の第6の実施例における半導体レーザ装
置の断面図FIG. 9 is a sectional view of a semiconductor laser device according to a sixth embodiment of the present invention.
【図10】本発明の第7の実施例における半導体レーザ
装置の断面図FIG. 10 is a sectional view of a semiconductor laser device according to a seventh embodiment of the present invention.
【図11】本発明の第8の実施例における半導体レーザ
装置の断面図FIG. 11 is a sectional view of a semiconductor laser device according to an eighth embodiment of the present invention.
【図12】本発明の第9の実施例における半導体レーザ
装置の断面図FIG. 12 is a sectional view of a semiconductor laser device according to a ninth embodiment of the present invention.
【図13】従来の半導体レーザ装置の断面図FIG. 13 is a sectional view of a conventional semiconductor laser device.
4 Ga0.85Al0.15As活性層(Ga1-XAlXAs活
性層) 5 p型のGa0.5Al0.5Asクラッド層(一導電型の
Ga1-YAlYAs層) 5a リッジ 6 n型のGa0.35Al0.65As電流ブロック層(逆導
電型のGa1-ZAlZAs層)4 Ga 0.85 Al 0.15 As active layer (Ga 1-X Al X As active layer) 5 p-type Ga 0.5 Al 0.5 As clad layer (one conductivity type Ga 1-Y Al Y As layer) 5a ridge 6 n-type Ga 0.35 Al 0.65 As current blocking layer (reverse conductivity type Ga 1-Z Al Z As layer)
Claims (8)
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層とを備え、A
lAs混晶比を決めるX、YおよびZの間にZ>Y>X
≧0なる関係を有し、かつ前記各層の内n型であるGa
AlAs層に不純物としてSiを添加したことを特徴と
する半導体レ−ザ装置。 1. A Ga 1-Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer and a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction,
lAs mixed crystal ratio which determines Z>Y> X between Y and Z
Ga having a relation of ≧ 0 and being n-type in each of the layers
A semiconductor laser device, wherein Si is added as an impurity to the AlAs layer.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-YAlYAs層と前記Ga1-ZAlZAs層の間に形成さ
れた層厚が0.1μm以下の一導電型のGa1-BAlBA
s層とを備え、AlAs混晶比を決めるX、Y、Zおよ
びBの間にZ>Y>X≧0、B>Xなる関係を有し、か
つ前記各層の内n型であるGaAlAs層に不純物とし
てSiを添加したことを特徴とする半導体レ−ザ装置。2. A Ga 1 -Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
One conductivity type Ga 1-B Al B A having a layer thickness of 0.1 μm or less formed between the 1-Y Al Y As layer and the Ga 1-Z Al Z As layer.
a GaAlAs layer which has an s-layer, has a relationship of Z>Y> X ≧ 0, and B> X among X, Y, Z, and B, which determines an AlAs mixed crystal ratio, and is an n-type among the layers. A semiconductor laser device, wherein Si is added as an impurity to the semiconductor laser device.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-ZAlZAs層上に形成された前記Ga1-ZAlZAs層
よりもAlAs混晶比が低く少なくとも1層以上からな
るGaAlAs層またはGaAs層とを備え、AlAs
混晶比を決めるX、YおよびZの間にZ>Y>X≧0な
る関係を有し、かつ前記各層の内n型であるGaAlA
s層に不純物としてSiを添加したことを特徴とする半
導体レーザ装置。3. A Ga 1 -Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
1-Z Al Z As formed on said layer Ga 1-Z than Al Z As layer and a GaAlAs layer or GaAs layer AlAs mixed crystal ratio is formed of at least one layer lower, AlAs
GaAlA which has a relationship of Z>Y> X ≧ 0 among X, Y and Z which determine the mixed crystal ratio and which is n-type in each of the layers.
A semiconductor laser device, wherein Si is added as an impurity to the s layer.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-XAlXAs活性層に接して形成されたGa1-CAlCA
s層とを備え、AlAs混晶比を決めるX、Y、Zおよ
びCの間にZ>Y>C>X≧0なる関係を有し、かつ前
記各層の内n型であるGaAlAs層に不純物としてS
iを添加したことを特徴とする半導体レーザ装置。4. A Ga 1 -Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
Ga 1-C Al C A formed in contact with 1-X Al X As active layer
s layer, which has a relationship of Z>Y>C> X ≧ 0 among X, Y, Z, and C that determines the AlAs mixed crystal ratio, and has an impurity in the GaAlAs layer that is n-type among the layers. As S
A semiconductor laser device having i added thereto.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-YAlYAs層と前記Ga1-ZAlZAs層の間に形成さ
れた層厚が0.1μm以下の一導電型のGa1-BAlBA
s層と、前記Ga1-ZAlZAs層上に形成された前記G
a1-ZAlZAs層よりもAlAs混晶比が低く少なくと
も1層以上からなるGaAlAs層またはGaAs層と
を備え、AlAs混晶比を決めるX、Y、ZおよびBの
間にZ>Y>X≧0、B>Xなる関係を有し、かつ前記
各層の内n型であるGaAlAs層に不純物としてSi
を添加したことを特徴とする半導体レ−ザ装置。5. A Ga 1-Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
One conductivity type Ga 1-B Al B A having a layer thickness of 0.1 μm or less formed between the 1-Y Al Y As layer and the Ga 1-Z Al Z As layer.
s layer and the G formed on the Ga 1 -Z Al Z As layer
a 1-Z Al Z As layer having a lower AlAs mixed crystal ratio and at least one GaAlAs layer or a GaAs layer, and Z> Y between X, Y, Z and B for determining the AlAs mixed crystal ratio. > X ≧ 0, B> X, and Si is used as an impurity in the GaAlAs layer that is n-type among the layers.
A semiconductor laser device comprising:
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-YAlYAs層と前記Ga1-ZAlZAs層の間に形成さ
れた層厚が0.1μm以下の一導電型のGa1-BAlBA
s層と、前記Ga1-XAlXAs活性層に接して形成され
たGa1-CAlCAs層とを備え、AlAs混晶比を決め
るX、Y、Z、BおよびCの間にZ>Y>C>X≧0、
B>Xなる関係を有し、かつ前記各層の内n型であるG
aAlAs層に不純物としてSiを添加したことを特徴
とする半導体レ−ザ装置。6. A Ga 1-Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
One conductivity type Ga 1-B Al B A having a layer thickness of 0.1 μm or less formed between the 1-Y Al Y As layer and the Ga 1-Z Al Z As layer.
s layer and a Ga 1-C Al C As layer formed in contact with the Ga 1-x Al x As active layer, and between X, Y, Z, B and C that determine the AlAs mixed crystal ratio. Z>Y>C> X ≧ 0,
G which has a relation of B> X and is n-type in each of the layers
A semiconductor laser device, wherein Si is added as an impurity to the aAlAs layer.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-ZAlZAs層上に形成された前記Ga1-ZAlZAs層
よりもAlAs混晶比が低く少なくとも1層以上からな
るGaAlAs層またはGaAs層と、前記Ga1-XA
lXAs活性層に接して形成されたGa1-CAlCAs層
とを備え、AlAs混晶比を決めるX、Y、ZおよびC
の間にZ>Y>C>X≧0なる関係を有し、かつ前記各
層の内n型であるGaAlAs層に不純物としてSiを
添加したことを特徴とする半導体レーザ装置。7. A Ga 1-Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
1-Z Al Z As formed on said layer Ga 1-Z Al Z As layer and GaAlAs layer or GaAs layer AlAs mixed crystal ratio is formed of at least one layer lower than the Ga 1-X A
and a Ga 1-C Al C As layer formed in contact with the l x As active layer to determine the AlAs mixed crystal ratios X, Y, Z and C.
And Z>Y>C> X ≧ 0, and Si is added as an impurity to the GaAlAs layer which is the n-type of each of the layers.
方の面に形成されたリッジを有する一導電型のGa1-Y
AlYAs層と、前記リッジの長手方向の側面に沿って
形成された逆導電型のGa1-ZAlZAs層と、前記Ga
1-YAlYAs層と前記Ga1-ZAlZAs層の間に形成さ
れた層厚が0.1μm以下の一導電型のGa1-BAlBA
s層と、前記Ga1-ZAlZAs層上に形成された前記G
a1-ZAlZAs層よりもAlAs混晶比が低く少なくと
も1層以上からなるGaAlAs層またはGaAs層
と、前記Ga1-XAlXAs活性層に接して形成されたG
a1ーCAlCAs層とを備え、AlAs混晶比を決める
X、Y、Z、BおよびCの間にZ>Y>C>X≧0、B
>Xなる関係を有し、前記各層の内n型であるGaAl
As層に不純物としてSiを添加したことを特徴とする
半導体レ−ザ装置。8. A Ga 1-Y of one conductivity type having a ridge formed on at least one surface of a Ga 1-x Al x As active layer.
An Al Y As layer, a Ga 1 -Z Al Z As layer of opposite conductivity type formed along the side surface of the ridge in the longitudinal direction, and the Ga layer.
One conductivity type Ga 1-B Al B A having a layer thickness of 0.1 μm or less formed between the 1-Y Al Y As layer and the Ga 1-Z Al Z As layer.
s layer and the G formed on the Ga 1 -Z Al Z As layer
a 1-Z Al Z As layer and GaAlAs layer or GaAs layer AlAs mixed crystal ratio is formed of at least one layer lower than the Ga 1-X Al X As active layer G formed in contact with
a 1-C Al C As layer, and Z>Y>C> X ≧ 0, B between X, Y, Z, B and C that determine the AlAs mixed crystal ratio.
> X, and n-type GaAl in each of the layers
A semiconductor laser device, wherein Si is added to the As layer as an impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03598092A JP3200918B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03598092A JP3200918B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05235468A true JPH05235468A (en) | 1993-09-10 |
JP3200918B2 JP3200918B2 (en) | 2001-08-20 |
Family
ID=12457038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03598092A Expired - Fee Related JP3200918B2 (en) | 1992-02-24 | 1992-02-24 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3200918B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6181723B1 (en) | 1997-05-07 | 2001-01-30 | Sharp Kabushiki Kaisha | Semiconductor light emitting device with both carbon and group II element atoms as p-type dopants and method for producing the same |
-
1992
- 1992-02-24 JP JP03598092A patent/JP3200918B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6377598B1 (en) | 1997-05-03 | 2002-04-23 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device and method for producing the same |
US6181723B1 (en) | 1997-05-07 | 2001-01-30 | Sharp Kabushiki Kaisha | Semiconductor light emitting device with both carbon and group II element atoms as p-type dopants and method for producing the same |
US6351480B1 (en) | 1997-05-07 | 2002-02-26 | Sharp Kabushiki Kaisha | Semiconductor light emitting device and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3200918B2 (en) | 2001-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5587334A (en) | Semiconductor laser device fabrication method | |
JPH05235470A (en) | Laser diode | |
US5646953A (en) | Semiconductor laser device | |
JP3098827B2 (en) | Semiconductor laser device | |
JPH0936474A (en) | Semiconductor laser and fabrication thereof | |
US5136601A (en) | Semiconductor laser | |
JP2842465B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3200918B2 (en) | Semiconductor laser device | |
JPH08250801A (en) | Semiconductor laser device and its manufacture | |
JP3110527B2 (en) | Semiconductor laser device | |
JPS58225681A (en) | Semiconductor laser element | |
JP2988552B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3194237B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0613709A (en) | Semiconductor laser device and manufacture thereof | |
JPH05183235A (en) | Semiconductor laser | |
JP3115490B2 (en) | Semiconductor laser device | |
JP2922010B2 (en) | Semiconductor laser device | |
JPH0621568A (en) | Semiconductor laser device and its manufacture | |
JP2001148537A (en) | Semiconductor laser | |
JPH03208390A (en) | Semiconductor laser element and manufacture thereof | |
JPH06112580A (en) | Semiconductor laser device | |
JPH06342957A (en) | Semiconductor laser and manufacture thereof | |
JPH0211025B2 (en) | ||
JPS5990982A (en) | Semiconductor laser element | |
JPH06132607A (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |