JPH05232490A - Liquid crystal element - Google Patents
Liquid crystal elementInfo
- Publication number
- JPH05232490A JPH05232490A JP4035363A JP3536392A JPH05232490A JP H05232490 A JPH05232490 A JP H05232490A JP 4035363 A JP4035363 A JP 4035363A JP 3536392 A JP3536392 A JP 3536392A JP H05232490 A JPH05232490 A JP H05232490A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- transparent electrode
- insulating substrate
- transparent
- crystal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 93
- 239000000758 substrate Substances 0.000 claims abstract description 116
- 230000000149 penetrating effect Effects 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 239000010410 layer Substances 0.000 description 64
- 230000003595 spectral effect Effects 0.000 description 23
- 238000000034 method Methods 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 238000004070 electrodeposition Methods 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- 238000007639 printing Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000004988 Nematic liquid crystal Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 239000001054 red pigment Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004990 Smectic liquid crystal Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000001055 blue pigment Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000001056 green pigment Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000000986 disperse dye Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 235000012736 patent blue V Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- JOUDBUYBGJYFFP-FOCLMDBBSA-N thioindigo Chemical compound S\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2S1 JOUDBUYBGJYFFP-FOCLMDBBSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/42—Arrangements for providing conduction through an insulating substrate
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、反射型の液晶素子に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective liquid crystal element.
【0002】[0002]
【従来の技術】低分子のネマチック液晶をポリマー中に
ミクロに分散させてなる液晶・ポリマー複合フィルムの
両面に透明導電膜を形成した構造の液晶素子は、低分子
のネマチック液晶のみを用いた、これまでの液晶素子に
くらべ、偏光板が不要なため明るくて視野角が広く見
やすい、大面積化が容易である、柔軟性がある、と
いう利点があるため、1985年に発表されて(下記注
1〜3参照)以来、研究開発が活発に行われている。2. Description of the Related Art A liquid crystal device having a structure in which transparent conductive films are formed on both surfaces of a liquid crystal / polymer composite film in which a low molecular weight nematic liquid crystal is microscopically dispersed in a polymer uses only a low molecular weight nematic liquid crystal. It was announced in 1985 because it has the advantages that it is brighter and has a wider viewing angle because it does not require a polarizing plate, is easier to view, and has flexibility compared to conventional liquid crystal elements. Since then (see 1-3), research and development have been actively conducted.
【0003】1)日経マイクロデバイス1985年8月
号53頁 2)特許出願公表公報番号:昭和58−501631
号,公表日:昭和58年9月29日,優先権主張日:1
981年9月16日 3)技術報告書〔Fergason,J.L.,"Polymer Encapsulate
d Nematic LiquidCrystals for Display and Light Con
trol Applications,"SID InternationalSymposium Dige
st of Technical Papers, pp.68-70,May 1985. この液晶・ポリマー複合材料(以下「ポリマー複合液
晶」と略す)は、その液晶の分散構造により、液晶が不
連続にポリマー媒体中に分散したPDLC(polymer-di
spersed liquid crystal) と、ポリマーのネットワーク
(スポンジ)中に液晶が連続して存在するPN−LC
(polymer network liquid crystal) の2タイプに分類
される(下記注4参照)。1) Nikkei Microdevice, August 1985, p. 53 2) Patent application publication gazette number: Showa 58-501631
No., Publication date: September 29, 1983, Priority claim date: 1
September 16, 983 3) Technical report [Fergason, JL, "Polymer Encapsulate
d Nematic Liquid Crystals for Display and Light Con
trol Applications, "SID International Symposium Dige
st of Technical Papers, pp.68-70, May 1985. This liquid crystal / polymer composite material (hereinafter abbreviated as “polymer composite liquid crystal”) has a liquid crystal dispersed structure in which the liquid crystal is discontinuously dispersed in a polymer medium. PDLC (polymer-di
spersed liquid crystal) and PN-LC in which liquid crystal exists continuously in polymer network (sponge)
(Polymer network liquid crystal) (see Note 4 below).
【0004】4)日経エレクトロニクス1990年6月
11日号(No.502)102頁 ポリマー複合液晶は、通常は不透明状態であるが、電圧
が印加されると透明となる。このポリマー複合液晶は、
これに2色性色素を溶解させておくと、電圧の印加によ
り、有色不透明状態から無色透明状態に変化させること
ができる。これらの動作原理については、数多くの文献
(下記注5、6など)に記載されているので、ここでは
詳述しない。4) Nikkei Electronics, June 11, 1990 (No. 502) p. 102 The polymer composite liquid crystal is normally in an opaque state, but becomes transparent when a voltage is applied. This polymer composite liquid crystal
If a dichroic dye is dissolved in this, it is possible to change from a colored opaque state to a colorless transparent state by applying a voltage. Since these operating principles are described in many documents (Notes 5 and 6 below), they will not be described in detail here.
【0005】5)雑誌「応用物理」Appl. phys. Lett.
vol.48, pp.27 (1986) 6)表示用材料調査報告I(電子材料技術委員会報告)
平成2年3月、社団法人日本電子工業振興協会58〜6
0頁、64〜65頁 最近になって、梶山らにより、高分子液晶と低分子ネマ
チック液晶をブレンドした複合液晶が誘起スメクチック
液晶となり、高周波電場下では透明になり、低周波電場
下では不透明になり、これらの状態が電源をoff状態
にしてもメモリされることが見い出されている(下記注
7〜9参照)。5) Magazine "Applied Physics" Appl. Phys. Lett.
vol.48, pp.27 (1986) 6) Survey materials for display I (report by Electronic Materials Technical Committee)
March 1990, Japan Electronics Industry Promotion Association 58-6
Page 0, 64-65 Recently, Kajiyama et al. Have made a compound liquid crystal, which is a blend of polymer liquid crystal and low molecular weight nematic liquid crystal, an induced smectic liquid crystal, which becomes transparent under high frequency electric field and becomes opaque under low frequency electric field. It has been found that these states are stored in memory even when the power supply is turned off (see Note 7 to 9 below).
【0006】7)ケミストリイ レター Chemistry Le
tters, pp.817 〜 820(1989) 8)ポリマー プレプリンツ Polymer Preprints, Jap
an, vol.39, No.3, pp.761(1990) 9)ポリマー プレプリンツ Polymer Preprints, Jap
an, vol.39, No.8, pp.2373 (1990) これらの複合液晶は、その動作機能から、調光、調色、
表示などの分野での応用が図られている。7) Chemistry Letter Chemistry Le
tters, pp.817 ~ 820 (1989) 8) Polymer Preprints, Jap
an, vol.39, No.3, pp.761 (1990) 9) Polymer Preprints, Jap
an, vol.39, No.8, pp.2373 (1990) These composite liquid crystals have dimming, toning, and
It is being applied in fields such as displays.
【0007】液晶を用いた表示素子の電極パターンに
は、従来、セグメント電極、ドットマトリックス電極、
マトリックス電極、くし歯形電極が知られており、駆動
方式には、スタティック駆動方式とマルチプレックス
(時分割)駆動方式が知られている。セグメント形とド
ットマトリックス形の表示素子では、画素数が少ない時
は、全てのセグメント電極(画素電極)をそれぞれ個別
に駆動するスタチック駆動方式がとられるが、画素数が
増加すると、一般に、電極パターンの如何によらず、マ
ルチプレックス駆動方式をとる。しかし、動作しきい値
特性の勾配がゆるやかなポリマー複合液晶の場合、クロ
ストーク効果が生じるので、その採用が困難である。Conventionally, the electrode pattern of a display element using liquid crystal has a segment electrode, a dot matrix electrode,
Matrix electrodes and comb-teeth electrodes are known, and as a driving method, a static driving method and a multiplex (time division) driving method are known. In the segment type and dot matrix type display elements, when the number of pixels is small, a static drive method in which all segment electrodes (pixel electrodes) are individually driven is adopted, but when the number of pixels increases, the electrode pattern generally becomes larger. The multiplex drive system is adopted regardless of the above. However, in the case of a polymer composite liquid crystal having a gentle slope of the operation threshold characteristic, a crosstalk effect occurs, and thus it is difficult to adopt it.
【0008】それと、液晶素子の場合、反射型のものと
透過型のものとがある。反射型液晶素子の場合、入射面
から入った光が液晶層の裏面側で反射されて表面側に戻
るようになっており、利用範囲が広くて実用性は高い。
図25は、従来のセグメント形およびドットマトリック
ス形の反射型液晶表示素子における、画素電極4と、各
画素電極4を駆動する信号配線路6を示している。図2
5から判るように、画素電極4と信号配線路6が絶縁基
板5の同一面(液晶層側の面)上に形成されている。そ
のため、従来の液晶表示素子では、信号配線路6は、隣
接する画素電極4,4間を通さなければならず、画素を
高密度化できないという問題があった。In the case of a liquid crystal element, there are a reflective type and a transmissive type. In the case of a reflective liquid crystal element, light entering from the incident surface is reflected on the back surface side of the liquid crystal layer and returns to the front surface side, which has a wide range of use and is highly practical.
FIG. 25 shows the pixel electrodes 4 and the signal wiring paths 6 for driving the pixel electrodes 4 in the conventional segment type and dot matrix type reflective liquid crystal display elements. Figure 2
5, the pixel electrode 4 and the signal wiring path 6 are formed on the same surface of the insulating substrate 5 (the surface on the liquid crystal layer side). Therefore, in the conventional liquid crystal display element, the signal wiring path 6 has to pass between the adjacent pixel electrodes 4 and 4, and there is a problem that the density of the pixels cannot be increased.
【0009】[0009]
【発明が解決しようとする課題】そこで、発明者らは、
様々な角度から検討を行い、画素の高密度化が図れる反
射型液晶素子を案出した。すなわち、信号配線路を電極
形成面と反対側の面に形成し両者の間を基板を貫通する
導電路で接続するようにしたのである。信号配線路を画
素電極と同じ面に設けずにすむため、画素の高密度化が
図れる。Therefore, the inventors have
By studying from various angles, we devised a reflective liquid crystal device that can achieve high pixel density. That is, the signal wiring path is formed on the surface opposite to the surface on which the electrode is formed, and the two are connected by a conductive path penetrating the substrate. Since it is not necessary to provide the signal wiring path on the same surface as the pixel electrode, the density of pixels can be increased.
【0010】しかしながら、発明者らの案出にかかる液
晶素子は、視認性が未だ十分とは言えなかった。視認性
が良くなければ実用性が高いとは言いがたい。画素電極
4と透明電極基板の透明電極の間に電圧が加わると、液
晶層における画素電極4の接触領域が透明化し、入射光
が画素電極4の表面で反射して戻ってくる。そのため、
液晶素子の画面には画素電極4の平面形状に応じた形の
表示があらわれる。しかしながら、従来の場合、反射し
て戻ってくる光の量が少ないので、表示は今ひとつ鮮明
性に欠ける。つまり、コントラストが低い表示しかなさ
れず、視認性が良くないのである。画素電極4の表面を
荒らして拡散性を高めても反射性はさほど向上しない。However, the liquid crystal element proposed by the inventors has not been sufficiently visible. If the visibility is not good, it is hard to say that it is highly practical. When a voltage is applied between the pixel electrode 4 and the transparent electrode of the transparent electrode substrate, the contact area of the pixel electrode 4 in the liquid crystal layer becomes transparent, and the incident light is reflected by the surface of the pixel electrode 4 and returns. for that reason,
On the screen of the liquid crystal element, a display having a shape corresponding to the planar shape of the pixel electrode 4 appears. However, in the conventional case, since the amount of light reflected and returned is small, the display lacks sharpness. That is, only a display with low contrast is displayed, and the visibility is not good. Even if the surface of the pixel electrode 4 is roughened to increase the diffusivity, the reflectivity is not improved so much.
【0011】この発明は、上記事情に鑑み、高密度化が
図れるのに加え、十分な視認性が備わった液晶素子を提
供することを課題とする。In view of the above circumstances, it is an object of the present invention to provide a liquid crystal element which has high visibility and sufficient visibility.
【0012】[0012]
【課題を解決するための手段】前記課題を解決するた
め、この発明にかかる液晶素子は、絶縁基板の片面に透
明電極が、その反対面に信号配線路および接続端子の少
なくとも一方がそれぞれ形成され、前記透明電極と信号
配線路および接続端子の少なくとも一方とが前記絶縁基
板を貫通する導電路により互いに接続されているととも
に、前記絶縁基板の前記透明電極の対向側には透明電極
基板が液晶層を介して設置されてなる構成に加えて、前
記絶縁基板の片面のうち少なくとも透明電極形成域を白
色系表面とするようにしている。In order to solve the above problems, a liquid crystal element according to the present invention has a transparent electrode formed on one surface of an insulating substrate and at least one of a signal wiring path and a connection terminal formed on the opposite surface thereof. The transparent electrode and at least one of the signal wiring path and the connection terminal are connected to each other by a conductive path penetrating the insulating substrate, and a transparent electrode substrate is provided on a side of the insulating substrate opposite to the transparent electrode with a liquid crystal layer. In addition to the configuration in which the transparent substrate is formed through the above, at least the transparent electrode formation region of one surface of the insulating substrate is a white surface.
【0013】透明導電基板は、前記従来例と同様に透明
基板の内面(液晶層側の面)に透明電極を形成したもの
が普通であるが、透明基板自体が導電性を有するのであ
れば、透明電極を必要としない。この場合、透明基板と
しては、ガラス板や透明セラミックス板、ポリエチレン
テレフタレート(PET)やポリカーボネートなどの透
明樹脂フィルム、アクリル板やポリカーボネート板など
の透明プラスチック板が例示できる。透明電極材料とし
ては、ITO膜(酸化インジウム−酸化スズ)やネサ膜
(酸化スズ)が適当である。The transparent conductive substrate is usually one in which a transparent electrode is formed on the inner surface (the surface on the liquid crystal layer side) of the transparent substrate as in the conventional example, but if the transparent substrate itself has conductivity, Does not require transparent electrodes. In this case, examples of the transparent substrate include a glass plate, a transparent ceramics plate, a transparent resin film such as polyethylene terephthalate (PET) and polycarbonate, and a transparent plastic plate such as an acrylic plate and a polycarbonate plate. As a transparent electrode material, an ITO film (indium oxide-tin oxide) or a Nessa film (tin oxide) is suitable.
【0014】画素用の透明電極が形成されている絶縁基
板は、絶縁基板における透明電極形成側の表面のうち、
少なくとも透明電極形成域が白色系表面である。透明電
極未形成域は液晶層が常に不透明であるため白色系表面
である必要はないが、透明電極未形成域も白色系表面で
あってもよい。例えば、アルミナ基板のように全表面だ
けでなく内部も白色系の絶縁基板であってもよい。さら
には、一般のプリント配線基板に用いられている基板材
料の表面を白色系のコート層を設け、白色系の表面とし
たものであってもよい。積層板の場合は最上層に白色系
プリプレグを用いた構成のものでもよい。白色系表面の
白さの程度としては、反射率が400nm〜800nm
の全波長範囲において70%以上で極力変動の少ないフ
ラットな分光特性のものが挙げられる。The insulating substrate on which the transparent electrodes for pixels are formed is one of the surfaces on the transparent electrode forming side of the insulating substrate.
At least the transparent electrode formation region is a white surface. The transparent electrode non-formed area does not have to be a white surface because the liquid crystal layer is always opaque, but the transparent electrode unformed area may be a white surface. For example, a white insulating substrate may be used not only on the entire surface but also on the inside, such as an alumina substrate. Further, the surface of a substrate material used for a general printed wiring board may be provided with a white coating layer to form a white surface. In the case of a laminated plate, a white prepreg may be used as the uppermost layer. As for the degree of whiteness of the white surface, the reflectance is 400 nm to 800 nm.
In the entire wavelength range of 70% or more, a flat spectral characteristic with 70% or more and minimal fluctuation is listed.
【0015】具体的な基板材料としては、アルミナ基板
のようなセラミック基板、紙フェノール基板,紙エポキ
シ基板,ガラスエポキシ基板,ガラスポリイミド基板な
どのリジッド基板や、セミフレキシブル基板のほか、ポ
リエステルフィルム,ポリイミドフィルムなどのフレキ
シブル基板等を用いることができる。勿論、セミフレキ
シブル基板であってもよい。この発明では、透明導電基
板と絶縁基板の材質を選ぶことにより、剛直でフラット
な液晶素子から曲面加工可能なフレキシブルないしセミ
フレキシブル液晶素子までを作製することができる。Specific substrate materials include ceramic substrates such as alumina substrates, rigid substrates such as paper phenol substrates, paper epoxy substrates, glass epoxy substrates and glass polyimide substrates, semi-flexible substrates, polyester films and polyimides. A flexible substrate such as a film can be used. Of course, a semi-flexible substrate may be used. According to the present invention, by selecting materials for the transparent conductive substrate and the insulating substrate, a rigid and flat liquid crystal element to a flexible or semi-flexible liquid crystal element that can be curved can be manufactured.
【0016】絶縁基板の白色系表面には画素用の透明電
極が形成されている。この透明電極は、勿論、導電性材
料からなり、例えば、ITO膜、あるいは、ネサ膜など
の透明導電膜が使われる。普通、ITO膜やネサ膜を絶
縁基板の白色系表面に形成した後、ホトエッチングやレ
ーザ光線を利用したパターンニングを行い所定の形状に
する。ITO膜は蒸着やスパッタリング等で絶縁基板上
に形成できる。ネサ膜は塩化スズを含んだ水溶液を加熱
した絶縁基板に吹き付けることにより形成できる。IT
O膜の方がネサ膜より透明性の高いものが得やすく液晶
素子には向いている。A transparent electrode for a pixel is formed on the white surface of the insulating substrate. This transparent electrode is, of course, made of a conductive material, and for example, a transparent conductive film such as an ITO film or a nesa film is used. Usually, an ITO film or a NES film is formed on a white surface of an insulating substrate, and then photo-etching or patterning using a laser beam is performed to obtain a predetermined shape. The ITO film can be formed on the insulating substrate by vapor deposition, sputtering or the like. The nesa film can be formed by spraying an aqueous solution containing tin chloride onto a heated insulating substrate. IT
It is easier to obtain an O film having higher transparency than a Nesa film, which is suitable for a liquid crystal element.
【0017】透明電極や信号配線路や接続端子、導電路
付きの絶縁基板としては、具体的には、通常のスルホー
ル両面板の形態をとるものを用いることができる。この
ようなスルホール両面板は、通常のプリント配線板の技
術で作製できる。スルホール配線路が透明電極と信号配
線路や接続端子をつなぐことになる。また、信号配線路
の密度をさらに上げるために、信号配線路を多層化する
ことは有用である。このような多層化も、通常の多層プ
リント配線板の作製技術で行える。As the insulating substrate with the transparent electrodes, the signal wiring paths, the connection terminals, and the conductive paths, specifically, an ordinary insulating board having a through-hole double-sided plate can be used. Such a through-hole double-sided board can be manufactured by a usual printed wiring board technique. The through-hole wiring path connects the transparent electrode to the signal wiring path and the connection terminal. Further, in order to further increase the density of the signal wiring paths, it is useful to make the signal wiring paths multilayer. Such multi-layering can also be performed by a general technique for producing a multilayer printed wiring board.
【0018】信号配線路や接続端子は、透明電極と同じ
材料の他、銅、アルミニウム、ニッケル等の金属材料、
あるいは、導電ペースト等の導電材料で形成したものが
挙げられる。例えば、厚み18〜36μm程度の銅層が
例示されるが、これに限らない。普通、レジスト塗布、
選択エッチング等によるパターン化を行い、所定形状の
信号配線路や接続端子にする。The signal wiring paths and connection terminals are made of the same material as the transparent electrode, as well as metal materials such as copper, aluminum and nickel.
Alternatively, it may be formed of a conductive material such as a conductive paste. For example, a copper layer having a thickness of about 18 to 36 μm is exemplified, but the thickness is not limited to this. Normally, resist coating,
Patterning is performed by selective etching or the like to form a signal wiring path or a connection terminal having a predetermined shape.
【0019】スルホール配線路の材料としては、銅、ス
ズ、ハンダ、金等が挙げられる。例えば、無電解メッキ
で下地となる金属膜を形成し、さらに電気メッキで十分
な厚み(例えば、数十μm)の金属膜を積層しスルホー
ル配線路を形成するようにする。なお、スルホール用の
空孔は導電性のよい材料(Agペーストなど)が充填さ
れているのが、均一な表示面を得る上で好ましい。Examples of materials for the through-hole wiring path include copper, tin, solder and gold. For example, a base metal film is formed by electroless plating, and a metal film having a sufficient thickness (for example, several tens of μm) is further laminated by electroplating to form a through-hole wiring path. It is preferable that the holes for through holes are filled with a material having good conductivity (Ag paste or the like) in order to obtain a uniform display surface.
【0020】画素電極となる各透明電極毎に独立した接
続端子が設けられている場合、一つ一つの画素に独立し
て電圧を印加するアクティブマトリックス方式の駆動に
適している。大型表示や広告表示を行う場合、所定の透
明電極の接続端子に給電配線路をつなぎ電圧を印加する
のであるが、各透明電極毎に独立した接続端子が設けら
れている場合、表示パターンに合わせた給電配線路の形
成が容易に行え、その変更も容易に行える。表示パター
ンに対応する接続端子につながる給電配線路を絶縁基板
の接続端子形成側の面に設けるのであるが、給電配線路
の形成・変更が容易にできるのである。このようである
と、イベントの場合などのように一定期間の間だけ所定
パターンの表示を行い、次のイベントで他のパターンの
表示を行うといったように、表示パターンの変更が頻繁
でない場合に非常に有用である。給電配線路は、例え
ば、実寸大で表示パターンに対応する電路パターンを作
成し、これを接続端子に取り付けることで容易に実現で
きる。具体的には、以下の〜のような方法がある。When each transparent electrode serving as a pixel electrode is provided with an independent connection terminal, it is suitable for active matrix driving in which a voltage is independently applied to each pixel. When a large display or advertisement display is performed, a voltage is applied by connecting a power supply wiring path to the connection terminal of a predetermined transparent electrode, but when an independent connection terminal is provided for each transparent electrode, it is adjusted according to the display pattern. The power supply wiring path can be easily formed and its change can be easily performed. Although the power supply wiring path connected to the connection terminal corresponding to the display pattern is provided on the surface of the insulating substrate on which the connection terminal is formed, the power supply wiring path can be easily formed and changed. This is very useful when the display pattern changes infrequently, such as when displaying a certain pattern for a certain period of time such as in the case of an event and displaying another pattern at the next event. Useful for. The power supply wiring path can be easily realized by, for example, creating an electric path pattern corresponding to a display pattern at an actual size and attaching it to a connection terminal. Specifically, there are the following methods.
【0021】 市販の導電ペースト(導電性フィラ
ー、バインダー、溶剤および添加剤の混合物)を所定の
電路パターンで印刷することでも、給電配線路が簡単に
実現できる。なお、導電性フィラーには、銀粉、銅粉、
ニッケル粉、グラファイト、カーボンブラック等が使用
される。バインダーには、エポキシ、ウレタン、アクリ
ル、アルキッド、メラミン、フェノール等の樹脂組成物
が使用される。The power supply wiring path can also be easily realized by printing a commercially available conductive paste (mixture of conductive filler, binder, solvent and additive) in a predetermined electric path pattern. The conductive filler, silver powder, copper powder,
Nickel powder, graphite, carbon black, etc. are used. As the binder, a resin composition of epoxy, urethane, acrylic, alkyd, melamine, phenol or the like is used.
【0022】 導電テープや導電箔(導電シート)を
使って所定の電路パターンを形成する方法もある。導電
性粘着剤付きの導電テープあるいは導電箔を用い、表面
に塗布された導電性粘着剤で導電テープあるいは導電テ
ープを接続端子に接着するのである。導電性粘着剤の場
合は取り外して、再び別の給電配線路へ変更することが
容易にできる。導電箔の場合、表示パターンに合わせた
電路パターンに切り欠いておき、一度に配設することが
可能である。There is also a method of forming a predetermined electric circuit pattern using a conductive tape or a conductive foil (conductive sheet). A conductive tape or conductive foil with a conductive adhesive is used, and the conductive tape or conductive tape is adhered to the connection terminal with the conductive adhesive applied to the surface. In the case of a conductive adhesive, it can be easily removed and replaced with another power supply wiring path. In the case of a conductive foil, it is possible to dispose the conductive foil by cutting it out into an electric circuit pattern that matches the display pattern and arranging it at one time.
【0023】 また、磁性材料の利用で給電配線路が
簡単に形成・変更可能となる。接続端子の少なくとも一
部に磁性材料を使うか、あるいは、スルホール孔に導電
磁性材料が充填するかする一方、導電テープあるいは導
電箔に永久磁石層が積層されている複層シート(テープ
状のものも含む)の場合、この永久磁石層の磁力により
導電テープあるいは導電箔を接続端子につなぐのであ
る。この場合も、導電箔が表示パターンに合わせた電路
パターンに切り欠かれていれば、一度に配設することが
出来て便利である。さらに、導電箔の場合、表示パター
ンに合わせた電路パターンに切り欠いておき、絶縁シー
トを介して永久磁石シートで押さえるという方法を用い
ることも可能である。Further, by using the magnetic material, the power supply wiring path can be easily formed and changed. A multilayer sheet (tape-shaped one) in which a magnetic material is used for at least a part of the connection terminal or a through hole is filled with a conductive magnetic material, while a conductive tape or conductive foil is laminated with a permanent magnet layer. In the case of (including also), the conductive tape or conductive foil is connected to the connection terminal by the magnetic force of this permanent magnet layer. Also in this case, if the conductive foil is notched in the electric path pattern that matches the display pattern, it can be arranged at one time, which is convenient. Further, in the case of the conductive foil, it is also possible to use a method in which a notch is formed in an electric circuit pattern that matches the display pattern, and the permanent magnet sheet is pressed through the insulating sheet.
【0024】導電性磁性材料には、鉄、コバルト、ニッ
ケル等の金属やその合金がある。また、永久磁石層材料
としては、アルニコ系磁石合金、フェライト磁石材料、
希土類コバルト磁石材料、Fe−Cr−Co磁石材料や
Pt−Co磁石材料がある。れる。導電層と永久磁石層
が積層された上記複層シート(テープ状のものも含む)
は、これらの磁石材料をゴムや熱可塑性もしくは熱硬化
性樹脂にブレンドしたいわゆるゴム磁石やプラスチック
磁石のシート(テープ状シートも含む)に導電箔や導電
テープを貼り合わせることで作製できる。The conductive magnetic material includes metals such as iron, cobalt and nickel and alloys thereof. Further, as the permanent magnet layer material, alnico magnet alloy, ferrite magnet material,
There are rare earth cobalt magnet materials, Fe-Cr-Co magnet materials and Pt-Co magnet materials. Be done. The above-mentioned multi-layer sheet in which a conductive layer and a permanent magnet layer are laminated (including a tape-shaped sheet)
Can be prepared by bonding a conductive foil or a conductive tape to a so-called rubber magnet or plastic magnet sheet (including a tape-shaped sheet) obtained by blending these magnet materials with rubber or a thermoplastic or thermosetting resin.
【0025】 金属線をバンダ付けあるいは導電性接
着剤により表示パターンに対応する接続端子につなぐこ
とで給電配線路が容易に実現できる。液晶層としては、
低分子のネマチック液晶や強誘電性液晶のほかに、2色
性色素を溶解させたホスト−ゲスト型液晶も用いること
ができるが、最近開発の、ポリマーマトリックス中に低
分子のネマチック液晶が不連続な形あるいは連続の形で
分散したいわゆるPDLCやPN−LCなどのポリマー
複合液晶が、前述のごとく、大面積化が容易で、柔軟性
があり、偏光板が不要なため明るくて視野角が広く見や
すいといった特徴があるため、好ましく用いられる。高
分子液晶と低分子ネマチック液晶をブレンドした誘起ス
メクチック液晶も、同様な利点があることに加えて2周
波駆動でメモリ性のあるため、より好適に用いることが
できる。A power supply wiring path can be easily realized by connecting a metal wire to a connection terminal corresponding to a display pattern by banding or a conductive adhesive. As the liquid crystal layer,
In addition to low-molecular nematic liquid crystals and ferroelectric liquid crystals, host-guest type liquid crystals in which a dichroic dye is dissolved can be used, but recently developed low-molecular nematic liquid crystals are discontinuous in a polymer matrix. As mentioned above, polymer composite liquid crystals such as so-called PDLC and PN-LC dispersed in a continuous or continuous form are easy to increase in area and have flexibility, and since a polarizing plate is unnecessary, they are bright and have a wide viewing angle. It is preferably used because it is easy to see. The induced smectic liquid crystal obtained by blending the high molecular weight liquid crystal and the low molecular weight nematic liquid crystal can be used more preferably because it has the same advantages and has a memory property by being driven at two frequencies.
【0026】この発明の液晶素子の液晶層に使われる2
色性色素としては、繊維用分散染料などに使われている
アントラキノン系、アゾ系、キノフタロン系、ペリレン
系、クマリン系、チオインジゴ系の化合物などが挙げら
れる。具体的には、下記のような化学式(1)〜(3)
の化合物が例示される。化学式(1)で示されるものは
黄色〜オレンジ色系であり、化学式(2)で示されるも
のは赤色〜紫色系であり、化学式(3)で示されるもの
は青色〜空色系である。黒色を出す場合は複数の化合物
が併用される。2 used in the liquid crystal layer of the liquid crystal device of the present invention
Examples of the colorant include anthraquinone-based, azo-based, quinophthalone-based, perylene-based, coumarin-based, and thioindigo-based compounds used in fiber disperse dyes and the like. Specifically, the following chemical formulas (1) to (3)
Compounds of are exemplified. The one represented by the chemical formula (1) is yellow to orange, the one represented by the chemical formula (2) is red to purple, and the one represented by the chemical formula (3) is blue to sky blue. When producing a black color, a plurality of compounds are used in combination.
【0027】[0027]
【化1】 [Chemical 1]
【0028】[0028]
【化2】 [Chemical 2]
【0029】[0029]
【化3】 [Chemical 3]
【0030】反射型の液晶素子の場合、下地を隠蔽した
方がコントラストがよいので、液晶に2色性色素をブレ
ンドしたカラー液晶が好ましいといえるが、これに限定
する必要はない。続いて、この発明の液晶素子に使用で
きるスルホール配線板の作製について、具体的に説明す
る。In the case of a reflection type liquid crystal element, it is preferable to use a color liquid crystal in which a dichroic dye is blended with the liquid crystal because the contrast is better when the base is hidden, but the invention is not limited to this. Next, the production of a through-hole wiring board that can be used in the liquid crystal element of the present invention will be specifically described.
【0031】まず、図6にみるように、両面ともが白色
系表面のアルミナ基板(絶縁基板)5にスルホール用の
孔31を開ける。孔開けは、例えば、パンチング加工や
レーザ加工等を利用して行う。ついで、図7にみるよう
に、透明電極を形成する方の面の孔31の開口周縁に導
電ランド用の凹み32を形成する。凹み32もレーザ加
工等を利用して行える。アルミナ基板5の厚みは、例え
ば1mm程度、孔31の径は0.35mm程度、凹み3
2の径は0.60mm程度である。First, as shown in FIG. 6, a through hole 31 is formed in an alumina substrate (insulating substrate) 5 whose both surfaces are white. The holes are formed by using, for example, punching processing or laser processing. Then, as shown in FIG. 7, a recess 32 for a conductive land is formed in the opening peripheral edge of the hole 31 on the surface on which the transparent electrode is formed. The recess 32 can also be formed by using laser processing or the like. The thickness of the alumina substrate 5 is, for example, about 1 mm, the diameter of the hole 31 is about 0.35 mm, and the recess 3 is formed.
The diameter of 2 is about 0.60 mm.
【0032】凹み32の加工に続いて、図8にみるよう
に、アルミナ基板5両面および孔31の内面に銅膜33
を形成する。孔31の内面の銅膜は勿論、スルホール配
線路8である。銅膜33は、無電解銅メッキを行い、続
いて、電気銅メッキを行うことで形成できる。スルホー
ル配線路8形成の後、図9にみるように、エッチング工
程でスルホール配線路8が損傷しないように、スルホー
ル用の孔31内を埋込材35で埋めてから、レジスト膜
36,37を銅膜33の上に形成する。レジスト膜は溶
液あるいはフィルムなど一般的に使われるもので十分で
ある。そして、図10にみるように、レジスト膜36,
37を現像し選択エッチングして必要部分だけを覆うエ
ッチングマスク38,39にしてから、エッチングを行
い、銅膜の不要部分を除去し所定のパターンにする。ア
ルミナ基板5の裏面に残った銅膜33は信号配線路ない
し接続端子である。また、アルミナ基板5の表面に残っ
た銅膜33は導電ランドである。Following the processing of the recess 32, a copper film 33 is formed on both surfaces of the alumina substrate 5 and the inner surface of the hole 31, as shown in FIG.
To form. The copper film on the inner surface of the hole 31 is, of course, the through-hole wiring path 8. The copper film 33 can be formed by performing electroless copper plating and then electrolytic copper plating. After the through-hole wiring path 8 is formed, as shown in FIG. 9, the through-hole 31 is filled with the burying material 35 so that the through-hole wiring path 8 is not damaged in the etching process, and then the resist films 36 and 37 are formed. It is formed on the copper film 33. The resist film may be a commonly used one such as a solution or a film. Then, as shown in FIG. 10, the resist film 36,
37 is developed and selectively etched to form etching masks 38 and 39 that cover only necessary portions, and then etching is performed to remove unnecessary portions of the copper film to form a predetermined pattern. The copper film 33 remaining on the back surface of the alumina substrate 5 is a signal wiring path or a connection terminal. The copper film 33 remaining on the surface of the alumina substrate 5 is a conductive land.
【0033】最後に、図11にみるように、アルミナ基
板5の表面に透明導電膜を形成し(例えば、ITO膜を
蒸着ないしスパッタリングで形成し)、レジストマスク
等を用いて、所定のパターンにし、画素電極となる透明
電極4を形成する。なお、透明電極5の表面または裏面
に着色層を設け、カラー電極構成とするようにしてもよ
い。Finally, as shown in FIG. 11, a transparent conductive film is formed on the surface of the alumina substrate 5 (for example, an ITO film is formed by vapor deposition or sputtering), and a predetermined pattern is formed using a resist mask or the like. Then, the transparent electrode 4 serving as a pixel electrode is formed. A colored layer may be provided on the front surface or the back surface of the transparent electrode 5 to form a color electrode structure.
【0034】図14にみるように、透明電極5の裏面に
着色層15を設ける場合は、透明電極を形成する前に透
明電極と略同じパターンで着色層を印刷法などで形成し
てから、透明導電膜形成・パターン化を行い透明電極4
を形成する。ただ、着色層15は導電性をもたせるか、
着色層15に孔を設け、この孔を介して透明電極4がス
ルホール配線路8に接続するようにしておくことが好ま
しい。そうでないと駆動電圧が高くなってしまう。As shown in FIG. 14, when the colored layer 15 is provided on the back surface of the transparent electrode 5, the colored layer is formed by a printing method or the like in the same pattern as the transparent electrode before forming the transparent electrode. Transparent electrode 4 is formed by forming a transparent conductive film and patterning
To form. However, whether the colored layer 15 has conductivity,
It is preferable that the colored layer 15 be provided with a hole so that the transparent electrode 4 is connected to the through hole wiring path 8 through the hole. Otherwise, the driving voltage will be high.
【0035】また、図15にみるように、透明電極5の
表面に着色層15を設ける場合は、透明電極4の上から
略同じパターンで着色層15を印刷法で形成するか、透
明電極4を電極にして電着法や電解重合法で着色層15
を形成するようにする。この場合も、着色層15が導電
性であることが好ましい。電着法や電解重合法の場合、
スルホール配線路8を介して透明電極4に電圧をかけら
れる。Further, as shown in FIG. 15, when the colored layer 15 is provided on the surface of the transparent electrode 5, the colored layer 15 is formed on the transparent electrode 4 in the substantially same pattern by a printing method or the transparent electrode 4 is formed. The colored layer 15 is formed by electrodeposition or electrolytic polymerization using the electrode as an electrode.
To form. Also in this case, the colored layer 15 is preferably conductive. In the case of electrodeposition method or electrolytic polymerization method,
A voltage can be applied to the transparent electrode 4 through the through hole wiring path 8.
【0036】印刷や電着あるいは電解重合を複数回に分
けて行い、各回毎に着色層の色と位置を変え、同じ絶縁
基板における透明電極の着色層が透明電極同士で異なる
多色構成(マルチカラー)にすることが簡単に出来る。
いわゆるRGBフルカラー構成にすることも出来る。全
透明電極に同時に同一の色の着色層を形成し単色(単一
カラー)構成とすることも簡単に出来る。印刷法として
は、インキを用いて平版印刷、グラビア印刷、スクリー
ン印刷などがあり、電着法としてはカチオン電着あるい
はアニオン電着が挙げられる。Printing, electrodeposition, or electrolytic polymerization is performed in plural times, and the color and position of the colored layer are changed each time, and the colored layers of the transparent electrodes on the same insulating substrate are different in the transparent electrodes from each other. You can easily change the color.
A so-called RGB full-color configuration can also be used. It is also possible to simply form colored layers of the same color on all the transparent electrodes at the same time to form a monochromatic (single color) structure. The printing method includes lithographic printing, gravure printing, screen printing and the like using ink, and the electrodeposition method includes cation electrodeposition or anion electrodeposition.
【0037】なお、上記の着色層は蛍光染料や蛍光顔料
あるいは他の蛍光物質を含み蛍光性があれば、反射光に
蛍光が加わるため好ましい。また、ランド用の銅膜を設
ける代わりに、下記のようにして透明電極4とスルホー
ル配線路8の導通を確かなものとするようにしてもよ
い。すなわち、図7の工程において、スルホール用の孔
31にランド用の凹みを付ける代わりに、図12にみる
ように、透明電極形成面側に先広がりの直線状テーパ3
1aを付け、透明電極4がテーパ31a部分でスルホー
ル配線路8に接触するようにしたり、図13にみるよう
に、スルホール用の孔31に緩やかな曲線状テーパ31
bを付け、透明電極4がテーパ31b部分でスルホール
配線路8に接触するようにしたりすると接触面積が増
し、透明電極4とスルホール配線路8の接続が確かなも
のとなるのである。勿論、さらに、スルホール用の孔3
1に埋込材を充填するようにしてもよい。It is preferable that the colored layer contains a fluorescent dye, a fluorescent pigment, or another fluorescent substance and has fluorescence, because fluorescence is added to the reflected light. Further, instead of providing the copper film for land, the conduction between the transparent electrode 4 and the through-hole wiring path 8 may be ensured as follows. That is, in the process of FIG. 7, instead of forming the recess for land in the hole 31 for through hole, as shown in FIG. 12, the linear taper 3 which is divergent toward the transparent electrode formation surface side is formed.
1a so that the transparent electrode 4 comes into contact with the through hole wiring path 8 at the taper 31a portion, or as shown in FIG.
If b is added and the transparent electrode 4 contacts the through-hole wiring path 8 at the taper 31b portion, the contact area is increased and the connection between the transparent electrode 4 and the through-hole wiring path 8 is ensured. Of course, in addition, holes 3 for through holes
1 may be filled with an embedding material.
【0038】この発明の液晶素子による表示素子では、
信号配線路の外部への取り出し端子部は、絶縁基板の端
部に集めて、そのままコネクタに接続させてもよいし、
DIP(デュアルインパッケージ)方式やPGA(ピン
グリッドアレイ)方式のようにしてもよい。このように
すれば、高密度配線に対応でき、表示素子ユニットを多
数個用いて拡張することにより大画面表示を容易に実現
できる。In the display element using the liquid crystal element of the present invention,
The output terminal portion of the signal wiring path to the outside may be gathered at the end portion of the insulating substrate and directly connected to the connector,
A DIP (dual in package) system or a PGA (pin grid array) system may be used. In this way, high-density wiring can be accommodated, and a large screen display can be easily realized by expanding with a large number of display element units.
【0039】以上は、この発明の液晶素子を、表示用途
を例にとって説明したものであるが、この発明にかかる
液晶素子の用途は、必ずしも表示用途に限定されるもの
ではない。Although the liquid crystal element of the present invention has been described above by taking the display application as an example, the application of the liquid crystal element according to the present invention is not necessarily limited to the display application.
【0040】[0040]
【作用】この発明の液晶素子では、画素用の透明電極
と、信号配線路や給電配線路が、同一絶縁基板の片面と
他面に分かれて形成されているので、隣接する透明電極
間に信号配線路や給電配線路を通す必要がなく、そのた
め、画素用の透明電極を互いに近接させることができ、
画素の高密度化を図ることができる。In the liquid crystal element of the present invention, since the transparent electrode for the pixel and the signal wiring line and the power feeding wiring line are formed separately on one surface and the other surface of the same insulating substrate, the signal between the adjacent transparent electrodes is reduced. Since it is not necessary to pass the wiring path or the power feeding wiring path, the transparent electrodes for pixels can be brought close to each other,
It is possible to increase the density of pixels.
【0041】また、透明電極毎に接続端子が絶縁基板の
反対の面に形成されている場合は、表示パターンに合わ
せた給電配線路の形成が容易に行え、その変更も容易に
行えるため、表示パターンの設定・変更が簡単に実現
る。この発明の液晶素子では、液晶層3が二色性色素含
有の高分子分散液晶からなる場合、図16にみるよう
に、透明電極2と画素用の透明電極4との間に電圧がか
かっていない時には液晶層3が不透明であり、図17に
みるように、透明電極2と透明電極4の間に電圧が印加
された時には液晶層3が透明化する。透明化したとき
は、透明基板1の表面から入った光は液晶層3の裏面側
で表面で反射して再び表面に戻る。When the connection terminal is formed on the opposite surface of the insulating substrate for each transparent electrode, the power supply wiring path can be easily formed in accordance with the display pattern, and its change can be easily made. Easy setting and changing of patterns. In the liquid crystal element of the present invention, when the liquid crystal layer 3 is made of a polymer dispersed liquid crystal containing a dichroic dye, a voltage is applied between the transparent electrode 2 and the pixel transparent electrode 4 as shown in FIG. When not present, the liquid crystal layer 3 is opaque, and as shown in FIG. 17, when a voltage is applied between the transparent electrode 2 and the transparent electrode 4, the liquid crystal layer 3 becomes transparent. When it is made transparent, the light entering from the front surface of the transparent substrate 1 is reflected on the back surface side of the liquid crystal layer 3 and returns to the front surface again.
【0042】この発明の液晶素子では、絶縁基板5の白
色系表面の上に透明電極4が形成されている。透明電極
4の表裏面に着色層がない場合、液晶層3が透明化する
と、入射光は透明電極4を通り絶縁基板5の白色系表面
で反射され再び透明電極4を通り透明基板1の表面に戻
ってくる。白色系表面は反射率が高くて透明電極4を通
して入射した光を殆ど吸収しないため反射して戻ってく
る光の量が多い。そのため、この発明の液晶素子の画面
上には、透明電極の平面形状と同じ形の鮮明な白色系表
示が現れる。In the liquid crystal element of the present invention, the transparent electrode 4 is formed on the white surface of the insulating substrate 5. When there is no colored layer on the front and back surfaces of the transparent electrode 4, when the liquid crystal layer 3 becomes transparent, incident light passes through the transparent electrode 4 and is reflected by the white surface of the insulating substrate 5 and again passes through the transparent electrode 4 and the surface of the transparent substrate 1. Come back to. Since the white surface has a high reflectance and hardly absorbs the light incident through the transparent electrode 4, a large amount of light is reflected and returned. Therefore, a clear white display having the same shape as the planar shape of the transparent electrode appears on the screen of the liquid crystal element of the present invention.
【0043】また、透明電極4の表面や裏面に着色層が
ある場合も、白色系の表面は白色系としての物性、すな
わち均一で高い反射率特性を失ってはいない。このよう
に絶縁基板5の白色表面が高反射率特性であるため、着
色層や透明電極4を通り抜けた入射光は絶縁基板5で吸
収されることなく再び入射側に戻る。したがって、液晶
素子の画面上には明るい色調(高い明度)での表示がな
される。また、反射率特性の均一性が失われず保持され
ているため、着色層による色の発現が絶縁基板の影響を
受けず損なわれない。したがって、適切な色の表示が画
面上にあらわれる。それに、表示色の種類についても、
着色層を作る際に着色剤を表示目的に合った色が出せる
ものを選ぶことで適切なものとすることができる。Further, even when the transparent electrode 4 has a colored layer on the front surface or the back surface thereof, the white surface does not lose the physical properties as a white system, that is, the uniform and high reflectance characteristic. In this way, since the white surface of the insulating substrate 5 has a high reflectance characteristic, incident light passing through the colored layer and the transparent electrode 4 returns to the incident side without being absorbed by the insulating substrate 5. Therefore, a bright color tone (high lightness) is displayed on the screen of the liquid crystal element. Further, since the uniformity of the reflectance characteristics is maintained without being lost, the color expression by the colored layer is not affected by the influence of the insulating substrate. Therefore, an appropriate color display will appear on the screen. Also, regarding the type of display color,
When the colored layer is formed, it is possible to make the colorant suitable by selecting a colorant capable of producing a color suitable for the display purpose.
【0044】絶縁基板5を白色系表面とする場合、絶縁
基板5が一定程度の厚みがあるものであるから、絶縁基
板全体が白色系である場合だけでなく白色系のコート層
を設ける場合もコート層の厚みが十分に確保できるた
め、白色系表面の裏側が透けているようなことはなく、
均一で高い反射率特性という白色系としての物性を容易
に確保できる。When the insulating substrate 5 has a white surface, since the insulating substrate 5 has a certain thickness, not only when the entire insulating substrate is white, but also when a white coating layer is provided. Since the thickness of the coat layer can be sufficiently secured, the back side of the white surface is not transparent,
It is possible to easily secure the physical properties as a white system that is uniform and has high reflectance characteristics.
【0045】絶縁基板5の透明電極形成面が白色表面で
ない場合、絶縁基板5の表面では入射光の吸収が起こり
反射して戻る光の量が少ないため、表示が不鮮明なもの
となるだけでなく、着色層の色に絶縁基板の表面の色が
重なって着色層による色の発現が損なわれるため、表示
は適切な色にならない。絶縁基板の透明電極形成面には
スルホール配線路と接続している導電ランドがあって、
透明電極が前記導電ランドの上に形成されていたり、ス
ルホール用の孔には透明電極形成面側に先広がりのテー
パが付けられており、透明電極が前記テーパの部分でス
ルホール配線路に接触するように形成されていたりする
場合には、透明電極とスルホール配線路との接触面積が
実質的に広く接続が確実なものとなる。When the transparent electrode forming surface of the insulating substrate 5 is not a white surface, the surface of the insulating substrate 5 absorbs incident light, and the amount of light reflected and returned is small, so that the display is not clear. Since the color of the colored layer is overlapped with the color of the surface of the insulating substrate, the expression of the color by the colored layer is impaired, so that the display is not an appropriate color. On the transparent electrode formation surface of the insulating substrate, there is a conductive land connected to the through hole wiring path,
A transparent electrode is formed on the conductive land, or a hole for a through hole is tapered toward the transparent electrode forming surface side, and the transparent electrode contacts the through hole wiring path at the tapered portion. In such a case, the contact area between the transparent electrode and the through-hole wiring path is substantially wide and the connection is ensured.
【0046】[0046]
【実施例】以下にこの発明の実施例を説明するが、この
発明の範囲はこれに限定されない。まず、この発明の液
晶素子の基本構成例を説明する。 −構成例A− 図1は、構成例Aにかかる反射型の液晶素子をあらわ
す。図において、1は透明基板、2は透明共通電極であ
り、これら両者で透明電極基板を構成している。また、
3はポリマー複合液晶層、4は画素用の透明電極、5は
絶縁基板、6は信号配線路、8はスルホール配線路であ
る。図2は、構成例Aの液晶素子における、透明電極4
と、各透明電極4を駆動する信号配線路6を示してい
る。図2から判るように、信号配線路6は、絶縁基板基
板5における透明電極形成面(液晶層3側の面)とは反
対の面において透明電極4と重なり合うように形成され
ており、隣接する透明電極4,4間を通ってはいない。
そのため、隣接する画素用の透明電極同志の間隔が狭く
なっている。各信号配線路6の端子部9は、絶縁基板5
の端部に集められている。絶縁基板5の透明電極形成面
は、勿論、白色系表面であることは言うまでもない。EXAMPLES Examples of the present invention will be described below, but the scope of the present invention is not limited thereto. First, a basic configuration example of the liquid crystal element of the present invention will be described. —Structure Example A— FIG. 1 shows a reflective liquid crystal element according to Structure Example A. In the figure, 1 is a transparent substrate, 2 is a transparent common electrode, and these both constitute a transparent electrode substrate. Also,
3 is a polymer composite liquid crystal layer, 4 is a transparent electrode for pixels, 5 is an insulating substrate, 6 is a signal wiring path, and 8 is a through-hole wiring path. FIG. 2 shows the transparent electrode 4 in the liquid crystal element of Structural Example A.
And a signal wiring path 6 for driving each transparent electrode 4. As can be seen from FIG. 2, the signal wiring path 6 is formed so as to overlap the transparent electrode 4 on the surface of the insulating substrate 5 opposite to the surface on which the transparent electrode is formed (the surface on the liquid crystal layer 3 side), and is adjacent to the transparent electrode 4. It does not pass between the transparent electrodes 4 and 4.
Therefore, the distance between adjacent transparent electrodes for pixels is narrowed. The terminal portion 9 of each signal wiring path 6 is connected to the insulating substrate 5
Are gathered at the end of. Needless to say, the transparent electrode forming surface of the insulating substrate 5 is a white surface.
【0047】−構成例B− 図3は、構成例Bにかかる反射型の液晶素子をあらわ
す。図において、1は透明基板、2は透明共通電極であ
り、これら両者で透明導電基板を構成している。また、
3はポリマー複合液晶層、4は画素用の透明電極、5は
絶縁基板、8はスルホール配線路、10は接続端子であ
る。接続端子10のサイズは透明電極4のサイズより小
さい。また、裏面に導電性粘着剤がコートされた銅箔テ
ープ(図示省略)を所定の電路パターンとなるように接
続端子10に張り付けてある。また、外部電極との接続
を容易とするため、図5にみるように、電源接続用端子
11を絶縁基板5の裏面に形成してある。-Structural Example B- FIG. 3 shows a reflective liquid crystal element according to Structural Example B. In the figure, 1 is a transparent substrate, 2 is a transparent common electrode, and these both constitute a transparent conductive substrate. Also,
3 is a polymer composite liquid crystal layer, 4 is a transparent electrode for pixels, 5 is an insulating substrate, 8 is a through-hole wiring path, and 10 is a connection terminal. The size of the connection terminal 10 is smaller than the size of the transparent electrode 4. Further, a copper foil tape (not shown) having a back surface coated with a conductive adhesive is attached to the connection terminal 10 so as to form a predetermined electric path pattern. Further, in order to facilitate the connection with the external electrode, as shown in FIG. 5, the power supply connection terminal 11 is formed on the back surface of the insulating substrate 5.
【0048】なお、構成例Bだけでなく、構成例Aにお
いても、絶縁基板5では、図4にみるように、表面に縦
・横に整然と並んだ画素用の透明電極4群が設けられて
おり、図5にみるように、裏面に各透明電極4毎に接続
端子10(構成例Aの場合は信号配線路6)がそれぞれ
形成されている。透明電極4群は、図4では都合上、1
3×13ドットで示すが、16×16ドット、50×1
00ドットなど他のものも勿論できる。この実施例では
24×96ドットとした。また、一枚で大きな表示パネ
ルにするのではなく、16×16ドット、あるいは、2
4×24ドットの小さな表示ユニットをつなぎ合わせて
一つの表示パネルにしてもよい。Not only in the configuration example B but also in the configuration example A, in the insulating substrate 5, as shown in FIG. 4, the transparent electrodes 4 for pixels arranged in order in the vertical and horizontal directions are provided on the surface. As shown in FIG. 5, the connection terminal 10 (the signal wiring path 6 in the case of the configuration example A) is formed on the back surface for each transparent electrode 4. For the sake of convenience, the group of transparent electrodes 4 is 1 in FIG.
3x13 dots, 16x16 dots, 50x1
Others such as 00 dots can of course be used. In this embodiment, 24 × 96 dots are used. Also, instead of using a single large display panel, 16 x 16 dots, or 2
You may connect small display units of 4 × 24 dots into one display panel.
【0049】スルホール配線路は径0.3〜0.5mm程
度で通常のプリント配線板作製プロセスで作製した。無
電解メッキと電気メッキの施されたスルホール孔の中に
ハンダを充填した。また、構成例A,Bとも、透明電極
4の表面または裏面に着色層を設けてもよいことも言う
までもない。The through-hole wiring path has a diameter of about 0.3 to 0.5 mm and was manufactured by an ordinary printed wiring board manufacturing process. Solder was filled into the through-holes that were electrolessly plated and electroplated. In addition, it goes without saying that a colored layer may be provided on the front surface or the back surface of the transparent electrode 4 in both the configuration examples A and B.
【0050】通常の用途をカバーするには、透明電極4
のサイズは1〜10mm角程度、透明電極間隔は0.1〜
2mm程度とするが、これに限らない。例えば、透明電極
サイズは5mm角、透明電極間隔は1mm、接続端子10は
3mm角といったところである。透明電極の形は、正方形
の他、長方形、ひし形、円形、楕円形など他の形状でも
よい。To cover normal applications, the transparent electrode 4
Size is about 1 to 10 mm square, and transparent electrode spacing is 0.1 to
It is about 2 mm, but not limited to this. For example, the transparent electrode size is 5 mm square, the transparent electrode interval is 1 mm, and the connection terminal 10 is 3 mm square. The shape of the transparent electrode may be other than square, such as rectangle, rhombus, circle, and ellipse.
【0051】−実施例1− 実施例1は構成例Aの液晶素子である。この発明の構成
上で重要なスルホール配線板を以下のようなものであ
る。まず、絶縁基板として、厚み1.0mm、96%アル
ミナ基板を用い、図6以下の通りにして、表面に導電ラ
ンドを、裏面に信号配線路を、基板中に導電ランドと信
号配線路を繋ぐスルホール配線路を形成するようにし
た。-Example 1- Example 1 is a liquid crystal device of structural example A. The through-hole wiring board which is important in the construction of the present invention is as follows. First, a 1.0% thick 96% alumina substrate is used as an insulating substrate, and conductive lands are connected to the front surface, signal wiring paths are connected to the back surface, and conductive lands and signal wiring paths are connected to the inside of the substrate as shown in FIG. 6 and below. A through hole wiring path is formed.
【0052】そして、ランド形成面に厚み1000Åの
ITO膜をスパッタリングで形成し、レジストマスクを
形成しエッチングしてITOからなる透明電極を形成し
た。このスルホール配線板の透明電極の表面に入射光を
当てて測定した分光反射特性(分光反射スペクトル)を
図18に実線で示す。分光反射率特性は、自記分光光度
計UV−350(島津製作所製)を使い、標準の光C
(昼光)で測定した。また、色彩・色度計CR−200
(ミノルタ製)で特定波長(表1参照)の反射率および
3次元座標(L,a,b)を測定した。測定結果を表1
に示す。Lは明度を表す指数であり、a,bは色相をあ
らわす指数である。Then, an ITO film having a thickness of 1000 liters was formed on the land forming surface by sputtering, a resist mask was formed and etching was performed to form a transparent electrode made of ITO. A spectral reflection characteristic (spectral reflection spectrum) measured by applying incident light to the surface of the transparent electrode of this through-hole wiring board is shown by a solid line in FIG. For spectral reflectance characteristics, use a standard spectrophotometer UV-350 (manufactured by Shimadzu Corp.)
(Daylight). Also, color / chromaticity meter CR-200
The reflectance and the three-dimensional coordinates (L, a, b) at a specific wavelength (see Table 1) were measured with (Minolta). Table 1 shows the measurement results
Shown in. L is an index showing lightness, and a and b are indexes showing hue.
【0053】−実施例2− 実施例1で得たスルホール配線板を用い、信号配線路形
成側をマスクで覆い、赤色顔料および樹脂からなる電着
液に浸漬し、信号配線路を利用して電圧をかけ、電流・
時間をコントロールし膜を透明電極の上に析出させた。
その後、水洗してから焼き付けし硬化させることにより
厚み1μmの赤色着色層を形成した他は、実施例1と同
様である。Example 2-Using the through-hole wiring board obtained in Example 1, covering the signal wiring path forming side with a mask, immersing in the electrodeposition liquid consisting of red pigment and resin, and using the signal wiring path Apply voltage, current
The time was controlled to deposit the film on the transparent electrode.
Then, it is the same as Example 1 except that the red colored layer having a thickness of 1 μm was formed by washing with water, baking, and curing.
【0054】実施例1と同様、この透明電極の着色層の
表面に入射光を当てて測定した分光反射特性を図19に
実線で示す。また、特定波長での反射率および3次元座
標(L,a,b)を表1に示す。 −実施例3− 電着時の赤色顔料が緑色顔料であり、厚み1μmの緑色
着色層を形成するようにした他は、実施例2と同様であ
る。Similar to Example 1, the spectral reflection characteristics measured by applying incident light to the surface of the colored layer of the transparent electrode are shown by the solid line in FIG. Table 1 shows the reflectance at the specific wavelength and the three-dimensional coordinates (L, a, b). -Example 3- It is the same as Example 2 except that the red pigment at the time of electrodeposition was a green pigment and a green colored layer having a thickness of 1 m was formed.
【0055】分光反射特性を図20に、特定波長での反
射率および3次元座標(L,a,b)を表1に示す。 −実施例4− 電着時の赤色顔料が青色顔料であり、厚み1μmの青色
着色層を形成するようにした他は、実施例1と同様であ
る。FIG. 20 shows the spectral reflection characteristics, and Table 1 shows the reflectance at the specific wavelength and the three-dimensional coordinates (L, a, b). -Example 4- It is the same as Example 1 except that the red pigment at the time of electrodeposition was a blue pigment and a blue colored layer having a thickness of 1 m was formed.
【0056】分光反射特性は図21に、特定波長での反
射率および3次元座標(L,a,b)を表1に示す。 −実施例5− 透明電極の形成前に赤色顔料を含むインクで厚み8μm
の赤色着色層を形成し、その上に透明電極を形成して、
透明電極の上には着色層を形成しないようにした他は、
実施例2と同様である。FIG. 21 shows the spectral reflection characteristics, and Table 1 shows the reflectance and three-dimensional coordinates (L, a, b) at specific wavelengths. —Example 5— Thickness of 8 μm with ink containing red pigment before formation of transparent electrode
Forming a red colored layer of, and forming a transparent electrode on it,
Other than not forming a colored layer on the transparent electrode,
This is the same as the second embodiment.
【0057】分光反射特性を図22に、特定波長での反
射率および3次元座標(L,a,b)を表1に示す。 −実施例6− 印刷時の赤色顔料が緑色顔料であり、厚み10μmの緑
色着色層を形成するようにした他は、実施例5と同様で
ある。FIG. 22 shows the spectral reflection characteristics, and Table 1 shows the reflectance and three-dimensional coordinates (L, a, b) at specific wavelengths. -Example 6- It is the same as Example 5 except that the red pigment at the time of printing was a green pigment and a green colored layer having a thickness of 10 μm was formed.
【0058】分光反射特性を図23に、特定波長での反
射率および3次元座標(L,a,b)を表1に示す。 −実施例7− 印刷時の赤色顔料が青色顔料であり、厚み10μmの青
色着色層を形成するようにした他は、実施例5と同様で
ある。FIG. 23 shows the spectral reflection characteristics, and Table 1 shows the reflectance at the specific wavelength and the three-dimensional coordinates (L, a, b). —Example 7— The same as Example 5, except that the red pigment at the time of printing is a blue pigment and a blue colored layer having a thickness of 10 μm is formed.
【0059】分光反射特性は図24に、また、特定波長
での反射率および3次元座標(L,a,b)を表1に示
す。 −実施例8− 絶縁基板として、アルミナ基板に変えて下記のものを用
いた他は実施例1と同じである。FIG. 24 shows the spectral reflection characteristics, and Table 1 shows the reflectance at a specific wavelength and the three-dimensional coordinates (L, a, b). -Example 8- It is the same as Example 1 except having used the following as an insulating substrate instead of an alumina substrate.
【0060】エポキシ樹脂含浸ガラスクロスプリプレグ
を6枚重ね、その上に、エポキシ樹脂100重量部に酸
化チタン(白色無機粉末:富士チタン社製)230重量
部添加した樹脂組成物を含浸した厚み約150μmのガ
ラスクロスプリプレグ2枚を重ね、所定温度で硬化させ
白色表面の絶縁基板を作製した。分光反射特性は図18
と同様である。特定波長での反射率および3次元座標
(L,a,b)を表1に示す。Six pieces of epoxy resin-impregnated glass cloth prepreg were superposed, and a resin composition in which 230 parts by weight of titanium oxide (white inorganic powder: manufactured by Fuji Titanium Co., Ltd.) was added to 100 parts by weight of the epoxy resin was impregnated with a thickness of about 150 μm. The two glass cloth prepregs were laminated and cured at a predetermined temperature to produce an insulating substrate having a white surface. The spectral reflection characteristics are shown in FIG.
Is the same as. Table 1 shows the reflectance at the specific wavelength and the three-dimensional coordinates (L, a, b).
【0061】−実施例9− 絶縁基板が実施例8で用いた基板である他は実施例2と
同様である。分光反射特性や特定波長での反射率および
3次元座標(L,a,b)は実施例2の場合と殆ど同じ
であった。 −実施例10− 絶縁基板として、市販のガラスエポキシ基板をベース基
板とし、その上に市販の白色塗料〔NAXーマイティラ
ック(白)日本ペイント社製〕を厚み20μm塗布し白
色表面としたものを用いた他は、実施例1と同じであ
る。Example 9 The same as Example 2 except that the insulating substrate is the substrate used in Example 8. The spectral reflection characteristics, the reflectance at a specific wavelength, and the three-dimensional coordinates (L, a, b) were almost the same as in the case of Example 2. -Example 10- As an insulating substrate, a commercially available glass epoxy substrate was used as a base substrate, and a commercially available white paint [NAX-Mightylac (white) Nippon Paint Co., Ltd.] was applied thereon to a thickness of 20 μm to give a white surface. Other than that, it is the same as in Example 1.
【0062】分光反射特性は図18と同様である。特定
波長での反射率および3次元座標(L,a,b)を表1
に示す。 −実施例11− 絶縁基板が実施例10で用いた基板である他は実施例2
と同様である。分光反射特性や特定波長での反射率およ
び3次元座標(L,a,b)は実施例2の場合と殆ど同
じであった。The spectral reflection characteristics are the same as in FIG. Table 1 shows the reflectance and three-dimensional coordinates (L, a, b) at specific wavelengths.
Shown in. -Example 11-Example 2 except that the insulating substrate is the substrate used in Example 10
Is the same as. The spectral reflection characteristics, the reflectance at a specific wavelength, and the three-dimensional coordinates (L, a, b) were almost the same as in the case of Example 2.
【0063】−比較例1− 絶縁基板として、実施例10で用いたガラスエポキシ基
板を白色コートすることなく用いた他は、実施例1と同
様である。なお、ガラスエポキシ基板の表面の色は淡青
緑色であった。分光反射特性を図18に破線で示す。ま
た、特定波長での反射率および3次元座標(L,a,
b)を表1に示す。-Comparative Example 1-The same as Example 1 except that the glass epoxy substrate used in Example 10 was used as an insulating substrate without being white-coated. The surface color of the glass epoxy substrate was pale blue-green. Spectral reflection characteristics are shown by a broken line in FIG. In addition, the reflectance at a specific wavelength and the three-dimensional coordinates (L, a,
b) is shown in Table 1.
【0064】−比較例2− 絶縁基板として、実施例10で用いたガラスエポキシ基
板を白色コートすることなく用いた他は、実施例2と同
様である。分光反射特性は図19に破線で示す。また、
特定波長での反射率および3次元座標(L,a,b)を
表1に示す。Comparative Example 2 The same as Example 2 except that the glass epoxy substrate used in Example 10 was used as the insulating substrate without white coating. Spectral reflection characteristics are shown by broken lines in FIG. Also,
Table 1 shows the reflectance at the specific wavelength and the three-dimensional coordinates (L, a, b).
【0065】なお、実施例1〜11と同様にして、構成
例Bの形態の液晶素子も作製してみたところ、構成例A
の場合と同じ結果が得られた。A liquid crystal element having the form of Structural Example B was manufactured in the same manner as in Examples 1 to 11, and Structural Example A was obtained.
The same result was obtained as in.
【0066】[0066]
【表1】 [Table 1]
【0067】実施例の液晶素子を駆動したところ、画面
上には、白、赤、緑、青の各色の表示が鮮明に現れた。When the liquid crystal element of the example was driven, white, red, green and blue colors were clearly displayed on the screen.
【0068】[0068]
【発明の効果】以上に詳しく説明したように、この発明
にかかる液晶素子は、画素用の透明電極と信号配線路や
接続端子を絶縁基板の同一面上ではなく、表裏面に分離
して形成するようにしているので、信号配線路や給電配
線路を隣接する透明電極間に通さなくてもよく、画素の
高密度化を大いに図ることができるだけでなく、透明電
極が絶縁基板における白色系表面の上に形成されてお
り、白色系表面は透明電極形や着色層形成着色の後も白
色系としての物性失ってはおらず、表示色が明るく適切
な色となり、視認性が高くなる。As described above in detail, in the liquid crystal element according to the present invention, the transparent electrodes for the pixels and the signal wiring paths and the connection terminals are formed separately on the front and back surfaces of the insulating substrate, not on the same surface. Therefore, it is not necessary to pass the signal wiring path and the power feeding wiring path between the adjacent transparent electrodes, and it is possible not only to greatly increase the density of pixels but also to make the transparent electrodes a white surface on the insulating substrate. The white-based surface does not lose its physical properties as a white-based even after the transparent electrode type or the colored layer forming coloring, and the display color is bright and appropriate, and the visibility is high.
【0069】着色層を設ける場合、表示目的に合った適
切な種類の色を発現する着色剤を選択することで、より
視認性の高い表示を行えるようになるという利点もあ
る。絶縁基板の透明電極形成面にはスルホールと接続し
ている導電ランドがあって透明電極が前記導電ランドの
上に形成されていたり、スルホール用の孔には透明電極
形成面側に先広がりのテーパが付けられていて、透明電
極が前記テーパの部分でスルホール配線路に接触するよ
うに形成されていたりする場合には、透明電極とスルホ
ール配線路との接触が確実なものとなるため、液晶素子
の信頼性が向上するという利点がある。When the colored layer is provided, there is also an advantage that a display with higher visibility can be performed by selecting a colorant that expresses an appropriate kind of color suitable for the display purpose. On the transparent electrode formation surface of the insulating substrate, there is a conductive land connected to the through hole and the transparent electrode is formed on the conductive land, or in the hole for the through hole, a taper that spreads toward the transparent electrode formation surface side. When the transparent electrode is formed so as to come into contact with the through-hole wiring path at the tapered portion, the liquid crystal element can be surely contacted with the transparent electrode and the through-hole wiring path. Has the advantage of improving reliability.
【図1】この発明の液晶素子の基本構成例をあらわす断
面図である。FIG. 1 is a cross-sectional view showing a basic configuration example of a liquid crystal element of the present invention.
【図2】図1の液晶素子の透明電極と信号配線路を示す
平面図である。FIG. 2 is a plan view showing a transparent electrode and a signal wiring path of the liquid crystal element of FIG.
【図3】この発明の液晶素子の他の基本構成例をあらわ
す断面図である。FIG. 3 is a cross-sectional view showing another basic configuration example of the liquid crystal element of the present invention.
【図4】図3の液晶素子の透明電極形成面をあらわす平
面図である。FIG. 4 is a plan view showing a transparent electrode formation surface of the liquid crystal element of FIG.
【図5】図3の液晶素子の接続端子形成面をあらわす平
面図である。FIG. 5 is a plan view showing a connection terminal formation surface of the liquid crystal element of FIG.
【図6】絶縁基板のスルホール用の孔開け工程をあらわ
す断面図である。FIG. 6 is a sectional view showing a step of forming a through hole in an insulating substrate.
【図7】絶縁基板のランド用の凹み形成工程をあらわす
断面図である。FIG. 7 is a cross-sectional view showing a step of forming a recess for a land of an insulating substrate.
【図8】絶縁基板のスルホール形成工程をあらわす断面
図である。FIG. 8 is a cross-sectional view showing a step of forming a through hole in an insulating substrate.
【図9】絶縁基板の銅膜パターン化工程の前半をあらわ
す断面図である。FIG. 9 is a cross-sectional view showing the first half of a copper film patterning process for an insulating substrate.
【図10】絶縁基板の銅膜パターン化工程の後半をあらわ
す断面図である。FIG. 10 is a cross-sectional view showing the latter half of the copper film patterning process for the insulating substrate.
【図11】画素用の透明電極形成工程をあらわす断面図で
ある。FIG. 11 is a cross-sectional view showing a step of forming a transparent electrode for a pixel.
【図12】スルホール配線板の他の構成例をあらわす断面
図である。FIG. 12 is a cross-sectional view showing another configuration example of the through-hole wiring board.
【図13】スルホール配線板の他の構成例をあらわす断面
図である。FIG. 13 is a cross-sectional view showing another configuration example of the through-hole wiring board.
【図14】着色層付きスルホール配線板の構成例をあらわ
す断面図である。FIG. 14 is a cross-sectional view showing a configuration example of a through-hole wiring board with a colored layer.
【図15】着色層付きスルホール配線板の他の構成例をあ
らわす断面図である。FIG. 15 is a cross-sectional view showing another configuration example of a through-hole wiring board with a colored layer.
【図16】この発明の液晶素子の液晶層不透明状態時の様
子をあらわす断面図である。FIG. 16 is a cross-sectional view showing a state of the liquid crystal element of the present invention when the liquid crystal layer is in an opaque state.
【図17】この発明の液晶素子の液晶層透明状態時の様子
をあらわす断面図である。FIG. 17 is a cross-sectional view showing a state of the liquid crystal element of the present invention when the liquid crystal layer is in a transparent state.
【図18】実施例と比較例の透明電極面の分光反射特性を
示すグラフである。FIG. 18 is a graph showing spectral reflection characteristics of transparent electrode surfaces of Examples and Comparative Examples.
【図19】実施例と比較例の着色層表面の分光反射特性を
示すグラフである。FIG. 19 is a graph showing the spectral reflection characteristics of the colored layer surface of Examples and Comparative Examples.
【図20】実施例の着色層表面の分光反射特性を示すグラ
フである。FIG. 20 is a graph showing the spectral reflection characteristics of the colored layer surface of the example.
【図21】実施例の着色層表面の分光反射特性を示すグラ
フである。FIG. 21 is a graph showing the spectral reflection characteristics of the colored layer surface of the example.
【図22】実施例の電極表面の分光反射特性を示すグラフ
である。FIG. 22 is a graph showing the spectral reflection characteristics of the electrode surface of the example.
【図23】実施例の電極表面の分光反射特性を示すグラフ
である。FIG. 23 is a graph showing the spectral reflection characteristics of the electrode surface of the example.
【図24】実施例の電極表面の分光反射特性を示すグラフ
である。FIG. 24 is a graph showing the spectral reflection characteristics of the electrode surface of the example.
【図25】従来の液晶素子の画素電極と信号配線路を示す
平面図である。FIG. 25 is a plan view showing a pixel electrode and a signal wiring path of a conventional liquid crystal element.
1 透明基板 2 透明共通電極 3 ポリマー複合液晶層(液晶層) 4 透明電極 5 絶縁基板 6 信号配線路 8 スルホール配線路 10 接続端子 15 着色層 1 Transparent Substrate 2 Transparent Common Electrode 3 Polymer Composite Liquid Crystal Layer (Liquid Crystal Layer) 4 Transparent Electrode 5 Insulating Substrate 6 Signal Wiring Path 8 Through Hole Wiring Path 10 Connection Terminal 15 Coloring Layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩浜 英二 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Shiohama 1048 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd.
Claims (4)
面に信号配線路および接続端子の少なくとも一方がそれ
ぞれ形成され、前記透明電極と信号配線路および接続端
子の少なくとも一方とが前記絶縁基板を貫通する導電路
により互いに接続されているとともに、前記絶縁基板の
前記透明電極の対向側には透明電極基板が液晶層を介し
て設置されてなる液晶素子であって、前記絶縁基板の片
面のうち少なくとも透明電極形成域が白色系表面である
ことを特徴とする液晶素子。1. A transparent electrode is formed on one surface of an insulating substrate, and at least one of a signal wiring path and a connection terminal is formed on the opposite surface of the insulating substrate, and the transparent electrode and at least one of the signal wiring path and the connection terminal are the insulating substrate. A liquid crystal element which is connected to each other by a conductive path penetrating the transparent substrate, and a transparent electrode substrate is provided on the opposite side of the transparent electrode of the insulating substrate via a liquid crystal layer, At least a transparent electrode forming area of the liquid crystal element has a white surface.
たは裏面に着色層が形成されている請求項1記載の液晶
素子。2. The liquid crystal element according to claim 1, wherein a colored layer is formed on the front surface or the back surface of the transparent electrode formed on the insulating substrate.
配線路であって、前記絶縁基板の透明電極形成面には前
記スルホール配線路と接続している導電ランドが形成さ
れており、透明電極が前記導電ランドの上に形成されて
いる請求項1または2記載の液晶素子。3. A conductive path penetrating the insulating substrate is a through-hole wiring path, and a conductive land connected to the through-hole wiring path is formed on the transparent electrode formation surface of the insulating substrate, and the transparent electrode is The liquid crystal element according to claim 1, which is formed on the conductive land.
線路であって、このスルホール用の孔には透明電極形成
面側に先広がりのテーパが付けられており、透明電極が
前記テーパの部分でスルホール配線路に接触するように
形成されている請求項1から3までのいずれかに記載の
液晶素子。4. An electric path penetrating the insulating substrate is a through-hole wiring path, and the hole for the through-hole is tapered toward the transparent electrode formation surface side, and the transparent electrode is formed in the tapered portion. The liquid crystal element according to claim 1, wherein the liquid crystal element is formed so as to be in contact with the through hole wiring path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035363A JPH05232490A (en) | 1992-02-21 | 1992-02-21 | Liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4035363A JPH05232490A (en) | 1992-02-21 | 1992-02-21 | Liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05232490A true JPH05232490A (en) | 1993-09-10 |
Family
ID=12439816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4035363A Pending JPH05232490A (en) | 1992-02-21 | 1992-02-21 | Liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05232490A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0981066A1 (en) * | 1998-08-20 | 2000-02-23 | Gretag Imaging Ag | Light density control using LCD device |
WO2017142050A1 (en) * | 2016-02-19 | 2017-08-24 | 富士フイルム株式会社 | Plastic cell and method for producing same |
KR20220104944A (en) * | 2021-01-19 | 2022-07-26 | (주)이엔에이치 | Pdlc display |
-
1992
- 1992-02-21 JP JP4035363A patent/JPH05232490A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0981066A1 (en) * | 1998-08-20 | 2000-02-23 | Gretag Imaging Ag | Light density control using LCD device |
WO2017142050A1 (en) * | 2016-02-19 | 2017-08-24 | 富士フイルム株式会社 | Plastic cell and method for producing same |
CN108698384A (en) * | 2016-02-19 | 2018-10-23 | 富士胶片株式会社 | Plastic unit and its manufacturing method |
CN108698384B (en) * | 2016-02-19 | 2020-05-19 | 富士胶片株式会社 | Plastic unit and method for the production thereof |
KR20220104944A (en) * | 2021-01-19 | 2022-07-26 | (주)이엔에이치 | Pdlc display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7167155B1 (en) | Color electrophoretic displays | |
US8593721B2 (en) | Multi-color electrophoretic displays and materials for making the same | |
US20090040594A1 (en) | Multi-color electrophoretic displays and materials for making the same | |
KR960018709A (en) | Color filter substrate for liquid crystal display and its manufacturing method | |
EP1079261B1 (en) | Forming a display having conductive image areas over a light modulating layer | |
GB2074786A (en) | Multi-colour electroluminescent display component | |
US6236442B1 (en) | Method of making liquid crystal display having patterned conductive images | |
JPH05232463A (en) | Liquid crystal element | |
US20050219441A1 (en) | Process and structures for selective deposition of liquid-crystal emulsion | |
US7636139B2 (en) | Colour display device and method of manufacture | |
JPH05232490A (en) | Liquid crystal element | |
US6641873B2 (en) | Method of forming a display using cholesteric material | |
CN117270256B (en) | Decorative panel, display device and method for preparing decorative panel | |
JP2799964B2 (en) | Double-sided EL display | |
US6323928B1 (en) | Method of forming a liquid crystal display with color dielectric layer | |
JPH0519274A (en) | Liquid crystal element | |
US7129911B2 (en) | Segmented display having uniform optical properties | |
US5313293A (en) | Dot-matrix type display device | |
KR20070121212A (en) | Printed circuit board and liquid crystal display including the same | |
CN217881555U (en) | Mini LED insulation resistance welding structure | |
JPS63274929A (en) | Liquid crystal display device | |
JP2000258569A (en) | Indicator for time piece | |
JPH05173116A (en) | Liquid crystal element | |
JP3966158B2 (en) | Electro-optical unit, method of manufacturing electro-optical unit, electro-optical device, and electronic apparatus | |
JPH05142563A (en) | Liquid crystal element |