JPH05231966A - Magnetostrictive torque sensor - Google Patents
Magnetostrictive torque sensorInfo
- Publication number
- JPH05231966A JPH05231966A JP7032792A JP7032792A JPH05231966A JP H05231966 A JPH05231966 A JP H05231966A JP 7032792 A JP7032792 A JP 7032792A JP 7032792 A JP7032792 A JP 7032792A JP H05231966 A JPH05231966 A JP H05231966A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- carbon steel
- torque sensor
- rotating shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁性体の逆磁歪効果を利
用した非接触式トルクセンサに関するもので、特に、ロ
ボット、工作機械などに使用するモータのトルクを検出
するトルクセンサである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type torque sensor utilizing the inverse magnetostrictive effect of a magnetic material, and more particularly to a torque sensor for detecting the torque of a motor used in robots, machine tools and the like.
【0002】[0002]
【従来の技術】回転駆動系を有するロボットやマニピュ
レータおよび工作機械の制御に、非接触でかつ小型のト
ルクセンサが要求されている。このようなトルクセンサ
には種々の方式があるが、非接触で小型化に有利な方式
としては磁歪式トルクセンサがある。これは、磁性体に
力が印加されると磁性体の透磁率が変わるという逆磁歪
効果を利用してトルク検出を行うものである。磁性体か
らなる回転軸の透磁率の変化は回転軸1の周囲に一定ギ
ャップを保って巻いてあるコイルまたはコイルを巻いた
磁気ヘッド(図示せず)のインピーダンス変化として検
出する。磁性体回転軸の材質には安価な機械構造用炭素
鋼が望ましいが、この炭素鋼はトルクに対する磁気特性
の変化が小さいため、出力として取り出すことは困難で
ある。従って、この回転軸の周上に磁性アモルファス箔
や磁性膜を接着やスパッタリングなどにより形成し、こ
の箔や膜の磁気特性の変化を検出するものがある。2. Description of the Related Art A non-contact and small torque sensor is required for controlling a robot having a rotary drive system, a manipulator, and a machine tool. There are various types of torque sensors, but a magnetostrictive torque sensor is a non-contact type that is advantageous for size reduction. This is to detect torque by utilizing the inverse magnetostriction effect that the magnetic permeability of the magnetic body changes when a force is applied to the magnetic body. A change in magnetic permeability of the rotating shaft made of a magnetic material is detected as an impedance change of a coil wound around the rotating shaft 1 with a constant gap or a magnetic head (not shown) wound with the coil. Inexpensive carbon steel for mechanical structure is desirable as the material of the magnetic body rotating shaft, but it is difficult to extract it as an output because this carbon steel has a small change in magnetic characteristics with respect to torque. Therefore, there is a method in which a magnetic amorphous foil or a magnetic film is formed on the circumference of the rotating shaft by adhesion, sputtering, or the like, and a change in the magnetic characteristics of the foil or film is detected.
【0003】[0003]
【発明が解決しようとする課題】ところが、機械構造用
炭素鋼の周上にアモルファス箔を接着する方法では接着
剤の信頼性の問題があり、又、磁性膜をスパッタリング
により形成する方法では、再現性が悪く、安定した磁気
特性を得ることが難しいという問題があった。本発明は
これらの問題点を改善したもので、機械構造用炭素鋼の
トルクに対する出力特性を大きくし、ノイズに強い安定
した測定のできる磁歪式トルクセンサを提供することを
目的とする。However, there is a problem of reliability of the adhesive in the method of adhering the amorphous foil on the circumference of the carbon steel for machine structure, and in the method of forming the magnetic film by sputtering, However, there is a problem in that it is difficult to obtain stable magnetic characteristics due to poor properties. The present invention has improved these problems, and an object of the present invention is to provide a magnetostrictive torque sensor that increases the output characteristics of the carbon steel for machine structure with respect to torque and is stable against noise and capable of stable measurement.
【0004】[0004]
【課題を解決するための手段】このため本発明はスパッ
タリング法やイオンプレーティング法、レーザ蒸着法な
どの真空技術を用い、250℃〜550℃の温度で、機
械構造用炭素鋼からなる回転軸の所定表面に回転軸の材
質より熱膨張係数が大きく、引張り強さが20kg/m
m2 以上の非磁性材からなる銅、銅合金およびアルミニ
ウム合金のいずれか一つの膜を0.1〜30μmの厚さ
に被覆した回転軸構造をもつ磁歪式トルクセンサとして
いる。また、膜のパターンをシェブロン状に形成してい
る。For this reason, the present invention uses a vacuum technique such as a sputtering method, an ion plating method, or a laser vapor deposition method at a temperature of 250 ° C. to 550 ° C. to form a rotating shaft made of carbon steel for machine structural use. Has a coefficient of thermal expansion greater than that of the material of the rotating shaft and a tensile strength of 20 kg / m.
The magnetostrictive torque sensor has a rotating shaft structure in which any one film of copper, copper alloy and aluminum alloy made of a non-magnetic material of m 2 or more is coated to a thickness of 0.1 to 30 μm. Further, the film pattern is formed in a chevron shape.
【0005】[0005]
【作用】磁気特性におよぼす機械構造用炭素鋼の極表面
状態の影響は明らかではないが、種々の実験結果から、
現在のところ以下のように考えられる。機械構造用炭素
鋼より熱膨張係数の大きな材料からなる膜を高温で被覆
すると冷却中に熱膨張係数の差により機械構造用炭素鋼
に圧縮応力がかかり、磁気特性に変化を引き起こす。膜
の強度が小さいとこの変化が不十分になる。膜厚が薄す
ぎると同じように不十分となり、逆に厚すぎると、測定
時に表皮効果により機械構造用炭素鋼に磁界が流れなく
なり出力が小さくなる。膜形成温度については高温ほど
機械構造用炭素鋼の高温強度が小さくなるので効果は大
きいが、550℃以上になると膜との間で拡散が起こる
ため、効果がなくなる。また、膜のパターン形状をシェ
ブロン状にすることにより、回転軸表面の圧縮応力をさ
らに大きくでき、出力特性もさらに向上させることがで
きる。[Operation] The effect of the extreme surface condition of carbon steel for mechanical structure on the magnetic properties is not clear, but from various experimental results,
At present, it can be considered as follows. When a film made of a material having a thermal expansion coefficient higher than that of the carbon steel for mechanical structure is coated at a high temperature, a compressive stress is applied to the carbon steel for mechanical structure during cooling due to the difference in the thermal expansion coefficient, causing a change in magnetic properties. If the strength of the film is low, this change will be insufficient. Similarly, if the film thickness is too thin, it becomes insufficient. On the contrary, if the film thickness is too thick, the magnetic field does not flow through the carbon steel for machine structure during measurement due to the skin effect, and the output becomes small. Regarding the film formation temperature, the higher the temperature, the higher the high-temperature strength of the carbon steel for machine structural use, so the effect is great. However, at a temperature of 550 ° C. or higher, the effect is lost because diffusion occurs with the film. Further, by making the pattern shape of the film chevron-like, the compressive stress on the surface of the rotating shaft can be further increased, and the output characteristics can be further improved.
【0006】[0006]
【実施例】以下、本発明を実施例に基づいて詳細に説明
する。図1は本発明に用いた第1の実施例を示す磁歪式
トルクセンサの構成図で、機械加工した回転軸に直接、
膜を形成している。図2は本発明の第2の実施例を示す
図であり、回転軸に溝加工をほどこした上に膜を形成し
ている。図において1は回転軸、2は磁場の印加および
透磁率の変化を検出するコイル、3は膜、4は溝であ
る。回転軸1は機械構造用炭素鋼のS35CとS45C
(熱膨張係数は10〜11×10-6/℃である)とし、
膜3の材質は非磁性のTi合金、Cr、Al−Cu、C
u、Cu−Al、ジュラルミンとした。膜材質の熱膨張
係数と引張強さは表1のとおりである。EXAMPLES The present invention will be described in detail below based on examples. FIG. 1 is a block diagram of a magnetostrictive torque sensor showing a first embodiment used in the present invention.
Forming a film. FIG. 2 is a view showing a second embodiment of the present invention, in which a film is formed on the rotary shaft which is grooved. In the figure, 1 is a rotation axis, 2 is a coil for detecting application of a magnetic field and changes in magnetic permeability, 3 is a film, and 4 is a groove. The rotating shaft 1 is S35C and S45C of carbon steel for machine structure
(Coefficient of thermal expansion is 10 to 11 × 10 −6 / ° C.),
The material of the film 3 is non-magnetic Ti alloy, Cr, Al-Cu, C
u, Cu-Al, and duralumin. Table 1 shows the coefficient of thermal expansion and tensile strength of the film material.
【0007】[0007]
【表1】 [Table 1]
【0008】膜3の作製は回転軸1をトリクレン、純
水、アルコールの順に超音波洗浄を施したのち、各種真
空槽(スパッタリング、イオンプレーティング、レー
ザ)内にセットした。5×10-6Torr以下に排気し
たのち、回転軸1を200〜600℃の間の種々の一定
温度に加熱した後、各種の膜を種々の厚さに形成した。
つぎに、トルク出力特性を測定した結果を表2から表4
に示す。膜を形成しない場合の出力は2mVである。The membrane 3 was prepared by ultrasonically cleaning the rotary shaft 1 in the order of trichlene, pure water and alcohol, and then setting it in various vacuum chambers (sputtering, ion plating, laser). After evacuation to 5 × 10 −6 Torr or less, the rotary shaft 1 was heated to various constant temperatures between 200 and 600 ° C., and then various films were formed to have various thicknesses.
Next, Table 2 to Table 4 show the results of measuring the torque output characteristics.
Shown in. The output without a film is 2 mV.
【0009】[0009]
【表2】 [Table 2]
【0010】[0010]
【表3】 [Table 3]
【0011】表2〜表3から分かるとおり、回転軸1の
熱膨張係数より大きい値をもち、引張り強さが20kg
/mm2 以上のCu、Cu−Al、ジュラルミンの膜は
膜厚が0.1〜30μm、形成温度が300〜550℃
の範囲においてトルク出力は従来法より大きくなること
が分かる。これに対して、熱膨張係数が小さいか、また
は、引張強さの小さいAl−Cu、Ti合金、Crなど
の膜では出力が小さく全く効果がなかった(表4)。図
3は本発明の第3の実施例を示す図で膜のパターンをシ
ェブロン状に形成したものである。膜材質にジュラルミ
ンを用い、10μmの膜厚でパターンの数を変えて成形
している。トルク出力特性を測定した結果を図4に示
す。連続した膜に比べて出力は良好になっていることが
分かる。なお、この実施例ではシェブロン状のものにつ
いてのみ示したが、膜が不連続の場合でも同様の結果が
得られることは明らかである。本実施例は回転軸につい
て示したが平面上の歪を検出するセンサでも同様の効果
が得られることは明らかである。As can be seen from Tables 2 and 3, the rotary shaft 1 has a larger coefficient of thermal expansion and a tensile strength of 20 kg.
The film of Cu, Cu-Al, and duralumin of 1 mm2 / mm 2 or more has a film thickness of 0.1 to 30 µm and a forming temperature of 300 to 550 ° C
It can be seen that the torque output becomes larger than that of the conventional method in the range of. On the other hand, a film having a small thermal expansion coefficient or a small tensile strength, such as Al-Cu, Ti alloy, or Cr, had a small output and no effect (Table 4). FIG. 3 is a diagram showing a third embodiment of the present invention in which a film pattern is formed in a chevron shape. Duralumin is used as the material of the film, and the film is formed by changing the number of patterns with a film thickness of 10 μm. The results of measuring the torque output characteristics are shown in FIG. It can be seen that the output is better than that of the continuous film. Although only the chevron shape is shown in this example, it is clear that similar results can be obtained even when the film is discontinuous. Although the present embodiment has been described with respect to the rotation axis, it is clear that the same effect can be obtained with a sensor that detects strain on a plane.
【0012】[0012]
【発明の効果】以上述べたように、本発明は、磁性膜の
ように磁気特性を揃える必要がなく、非磁性膜により機
械構造用炭素鋼の磁気特性を向上させたものであるから
特性が安定しており、しかも、出力を大幅に向上させる
ことが出来るので、ノイズに対して強いトルクセンサを
構成できる。As described above, according to the present invention, it is not necessary to make the magnetic properties uniform as in the magnetic film, and the magnetic properties of the carbon steel for machine structural use are improved by the non-magnetic film. Since it is stable and the output can be greatly improved, a torque sensor that is strong against noise can be configured.
【図1】本発明を用いた第1の実施例を示す磁歪式トル
クセンサの断面図FIG. 1 is a sectional view of a magnetostrictive torque sensor showing a first embodiment using the present invention.
【図2】本発明を用いた第2の実施例を示す磁歪式トル
クセンサの断面図FIG. 2 is a sectional view of a magnetostrictive torque sensor showing a second embodiment using the present invention.
【図3】本発明を用いた第3の実施例を示す磁歪式トル
クセンサの断面図FIG. 3 is a sectional view of a magnetostrictive torque sensor showing a third embodiment using the present invention.
【図4】本発明を用いた第3の実施例のトルク出力特性
を示す図FIG. 4 is a diagram showing torque output characteristics of a third embodiment using the present invention.
1 回転軸 2 コイル 3 膜 4 溝 1 rotating shaft 2 coil 3 film 4 groove
【表4】 [Table 4]
Claims (2)
化する強磁性体の回転軸と、この強磁性体の回転軸の透
磁率の変化を検出するために加える磁場印加手段と、透
磁率の変化を非接触で検出する透磁率検出手段とからな
る磁歪式トルクセンサにおいて、 前記強磁性体が機械構造用炭素鋼からなり、その表面に
前記機械構造用炭素鋼より熱膨張係数が大きく、引張り
強さが20kg/mm2 以上を有する非磁性材である
銅、銅合金およびアルミニウム合金のいずれか一つの膜
が真空技術を用いて250℃〜550℃の温度で厚さ
0.1μmから30μmの厚さに形成されていることを
特徴とする磁歪式トルクセンサ。1. A rotating shaft of a ferromagnetic body whose magnetic permeability changes in response to applied torque, magnetic field applying means applied to detect a change in magnetic permeability of the rotating shaft of this ferromagnetic body, and a magnetic field applying means. In a magnetostrictive torque sensor consisting of a magnetic permeability detection means for detecting a change in magnetic susceptibility in a non-contact manner, the ferromagnetic body is made of carbon steel for mechanical structure, and its surface has a coefficient of thermal expansion larger than that of the carbon steel for mechanical structure. A film of any one of copper, a copper alloy and an aluminum alloy, which is a non-magnetic material having a tensile strength of 20 kg / mm 2 or more, using a vacuum technique at a temperature of 250 ° C. to 550 ° C. and a thickness of 0.1 μm. A magnetostrictive torque sensor having a thickness of 30 μm.
化する強磁性体の回転軸と、この強磁性体の回転軸の透
磁率の変化を検出するために加える磁場印加手段と、透
磁率の変化を非接触で検出する透磁率検出手段とからな
る磁歪式トルクセンサにおいて、 前記強磁性体が機械構造用炭素鋼からなり、その表面に
前記機械構造用炭素鋼より熱膨張係数が大きく、引張り
強さが20kg/mm2 以上を有する非磁性材である
銅、銅合金およびアルミニウム合金のいずれか一つの膜
が真空技術を用いて250℃〜550℃の温度で厚さ
0.1μm〜30μmの厚さにシェブロン状に形成され
ていることを特徴とする磁歪式トルクセンサ。2. A rotating shaft of a ferromagnetic body whose magnetic permeability changes in response to applied torque, magnetic field applying means applied to detect a change in magnetic permeability of the rotating shaft of this ferromagnetic body, and In a magnetostrictive torque sensor consisting of a magnetic permeability detection means for detecting a change in magnetic susceptibility in a non-contact manner, the ferromagnetic body is made of carbon steel for mechanical structure, and its surface has a coefficient of thermal expansion larger than that of the carbon steel for mechanical structure. A film of any one of copper, a copper alloy and an aluminum alloy, which is a non-magnetic material having a tensile strength of 20 kg / mm 2 or more, and a thickness of 0.1 μm at a temperature of 250 ° C. to 550 ° C. by using a vacuum technique. A magnetostrictive torque sensor having a chevron shape with a thickness of 30 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032792A JPH05231966A (en) | 1992-02-19 | 1992-02-19 | Magnetostrictive torque sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7032792A JPH05231966A (en) | 1992-02-19 | 1992-02-19 | Magnetostrictive torque sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05231966A true JPH05231966A (en) | 1993-09-07 |
Family
ID=13428236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7032792A Pending JPH05231966A (en) | 1992-02-19 | 1992-02-19 | Magnetostrictive torque sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05231966A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100804486B1 (en) * | 2002-09-17 | 2008-02-20 | 주식회사 만도 | Torque sensor of the steering system |
US10983019B2 (en) | 2019-01-10 | 2021-04-20 | Ka Group Ag | Magnetoelastic type torque sensor with temperature dependent error compensation |
US11486776B2 (en) | 2016-12-12 | 2022-11-01 | Kongsberg Inc. | Dual-band magnetoelastic torque sensor |
US11821763B2 (en) | 2016-05-17 | 2023-11-21 | Kongsberg Inc. | System, method and object for high accuracy magnetic position sensing |
US12025521B2 (en) | 2020-02-11 | 2024-07-02 | Brp Megatech Industries Inc. | Magnetoelastic torque sensor with local measurement of ambient magnetic field |
-
1992
- 1992-02-19 JP JP7032792A patent/JPH05231966A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100804486B1 (en) * | 2002-09-17 | 2008-02-20 | 주식회사 만도 | Torque sensor of the steering system |
US11821763B2 (en) | 2016-05-17 | 2023-11-21 | Kongsberg Inc. | System, method and object for high accuracy magnetic position sensing |
US11486776B2 (en) | 2016-12-12 | 2022-11-01 | Kongsberg Inc. | Dual-band magnetoelastic torque sensor |
US10983019B2 (en) | 2019-01-10 | 2021-04-20 | Ka Group Ag | Magnetoelastic type torque sensor with temperature dependent error compensation |
US12025521B2 (en) | 2020-02-11 | 2024-07-02 | Brp Megatech Industries Inc. | Magnetoelastic torque sensor with local measurement of ambient magnetic field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0970354A1 (en) | Method of making integral magnetoelastic transducer | |
JP4892153B2 (en) | Torque sensor | |
JPH05231966A (en) | Magnetostrictive torque sensor | |
JPH05231967A (en) | Magnetostrictive torque sensor | |
EP2250683B1 (en) | Sensor element | |
JP3440951B2 (en) | Harmonic reducer | |
JP3166937B2 (en) | Magnetostrictive strain sensor | |
JPH01123487A (en) | torque sensor | |
JPH08219908A (en) | Magnetstrictive strain sensor | |
JP3702451B2 (en) | Magnetostrictive torque sensor | |
JPS63182535A (en) | Torque sensor | |
JPH0979922A (en) | Magnetostrictive sensor | |
JPH03282338A (en) | Manufacture of torque sensor | |
JPH0634459A (en) | Magnetostriction detector for magnetostriction type torque sensor and its manufacture | |
JPS63280476A (en) | Strain measurement method | |
JP3166938B2 (en) | Magnetostrictive strain sensor | |
JPH06102111A (en) | Magnetic strain type torque sensor and its fabrication | |
JPS63308980A (en) | Magnetic alloy thin-film | |
JPH04221726A (en) | Manufacture of magnetostriction detector for torque sensor | |
JPS63281032A (en) | Strain measurement method | |
JPH07100987A (en) | Damping metal pipe | |
JPH07113701A (en) | Magnetostrictive strain sensor | |
JPH01148930A (en) | Torque sensor | |
JP2005274191A (en) | Harmony speed reducer | |
JPH09152382A (en) | Magnetostriction type torque sensor |