JPH0523150A - Deaeration method and method and apparatus for producing carbon dioxide water - Google Patents
Deaeration method and method and apparatus for producing carbon dioxide waterInfo
- Publication number
- JPH0523150A JPH0523150A JP3201262A JP20126291A JPH0523150A JP H0523150 A JPH0523150 A JP H0523150A JP 3201262 A JP3201262 A JP 3201262A JP 20126291 A JP20126291 A JP 20126291A JP H0523150 A JPH0523150 A JP H0523150A
- Authority
- JP
- Japan
- Prior art keywords
- water
- carbon dioxide
- cooling
- temperature
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 110
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 37
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 18
- 238000007872 degassing Methods 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000000498 cooling water Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000007789 gas Substances 0.000 abstract description 12
- 239000011148 porous material Substances 0.000 abstract 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract 1
- 229910001882 dioxygen Inorganic materials 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 abstract 1
- 238000007796 conventional method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 239000008400 supply water Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Non-Alcoholic Beverages (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、溶存酸素量を1.0
ppm より少なくした処理水を、常温より低く冷却し、こ
れを用いて炭酸水を製造することを目的とした脱気方法
及び炭酸水製造法並びに炭酸水製造装置に関する。BACKGROUND OF THE INVENTION The present invention has a dissolved oxygen content of 1.0.
The present invention relates to a degassing method, a carbonated water production method, and a carbonated water production apparatus, which are intended to produce carbonated water by cooling treated water less than ppm to a temperature lower than room temperature.
【0002】[0002]
【従来の技術】従来知られている脱気処理としては、真
空雰囲気または二酸化炭素雰囲気中で脱気処理方式、二
酸化炭素を注入し置換させる方式がある。前者には、充
填塔式、濡れ壁式、スプレー式およびジェット式があ
る。2. Description of the Related Art Conventionally known deaeration treatments include a deaeration treatment method in a vacuum atmosphere or a carbon dioxide atmosphere, and a method of injecting and replacing carbon dioxide. The former includes packed tower type, wet wall type, spray type and jet type.
【0003】また、従来一般に使用されている炭酸水製
造装置は、図2のように、水処理装置から送られてくる
原処理水を供給し、脱気機で脱気した後、冷却器で冷却
し、ついで炭酸水製造機で二酸化炭素を混合溶解した
後、タンクに貯蔵する一連の装置の結合によるものであ
る。前記脱気機は、前記脱気方式の何れかが用いられて
おり、原処理水中には空気15〜30Ncc/l (酸素5〜
10Ncc/l )が溶解されている。前記冷却器には、冷却
装置が連結され、炭酸水製造機には、シロップとの定比
率混合機が連結されている。In addition, as shown in FIG. 2, the conventional carbonated water producing apparatus generally supplies the raw treated water sent from the water treatment apparatus, degasses it with a deaerator, and then cools it with a cooler. It is a combination of a series of devices which are cooled and then mixed and dissolved with carbon dioxide in a carbonated water producing machine and then stored in a tank. The deaerator uses one of the deaerating methods, and the raw treated water contains air 15 to 30 Ncc / l (oxygen 5 to 5
10 Ncc / l) is dissolved. A cooling device is connected to the cooler, and a constant-ratio mixer with syrup is connected to the carbonated water producing machine.
【0004】[0004]
【発明により解決すべき課題】前記従来の脱気処理方式
によれば、処理水の溶存酸素量は0.7〜1.4Ncc/l
(1〜2ppm )が実用的である。例えば、前記従来の方
式を使用して、溶存酸素量を更に低下させる為には、多
大の設備費用が必要であって、製造原価の高騰を招く為
に、実用的でないとされていた。然し乍ら、溶存酸素量
が1〜2ppm 程度では、製造時に処理水温を5℃付近に
冷却調温しないと、炭酸水の安定化が得られない問題点
があった。そこで、冷却装置は比較的大きくする必要が
あった。また、溶存酸素量が多いと、二酸化炭素のガス
ボリュームが小さくなる傾向にあるので、好ましい炭酸
水を造り難くなる問題点があった。そこで、製品の安定
化の為に、従来は大きな製品貯蔵タンク(1m3 〜2m
3 )が必要とされていた。According to the above conventional deaerating method, the amount of dissolved oxygen in the treated water is 0.7 to 1.4 Ncc / l.
(1-2 ppm) is practical. For example, in order to further reduce the amount of dissolved oxygen by using the above-mentioned conventional method, a large amount of equipment cost is required, and it is said to be impractical because it causes a rise in manufacturing cost. However, when the amount of dissolved oxygen is about 1 to 2 ppm, there is a problem that the carbonated water cannot be stabilized unless the temperature of the treated water is adjusted to about 5 ° C. during production. Therefore, it is necessary to make the cooling device relatively large. Further, when the amount of dissolved oxygen is large, the gas volume of carbon dioxide tends to be small, so that there is a problem that it is difficult to form a preferable carbonated water. Therefore, in order to stabilize the product, conventionally, a large product storage tank (1 m 3 to 2 m
3 ) was needed.
【0005】[0005]
【課題を解決する為の手段】然るにこの発明は、粒径の
小さい(例えば60μ以下)の多孔質体に処理水を通過
させて脱気することにより、溶存酸素量を1ppm より少
なくすることに成功し、前記従来の問題点を解決したの
である。However, according to the present invention, the amount of dissolved oxygen is reduced to less than 1 ppm by allowing treated water to pass through a porous body having a small particle size (for example, 60 μm or less) for degassing. It succeeded and solved the above-mentioned conventional problems.
【0006】即ち、脱気に関する発明は、減圧雰囲気下
で、微小径の多孔質体に、原処理水を通過させることを
特徴とした脱気方法である。That is, the invention relating to degassing is a degassing method characterized by allowing raw treated water to pass through a porous body having a minute diameter in a reduced pressure atmosphere.
【0007】また、炭酸水を製造する発明は、溶存酸素
量を1.0ppm より少なくした水を常温以下の温度に調
温し、これに適量の二酸化炭素を供給することを特徴と
した炭酸水製造法である。次に冷却水温度を、常温〜0
℃としたものである。The invention for producing carbonated water is characterized in that water having a dissolved oxygen content of less than 1.0 ppm is adjusted to a temperature below room temperature and an appropriate amount of carbon dioxide is supplied to this. It is a manufacturing method. Next, the temperature of the cooling water is from room temperature to 0.
It was measured in ° C.
【0008】また装置の発明は、原処理水を通過すべき
多孔質体を有する脱気水製造装置と、該脱気水製造装置
を通過した処理水を常温以下に冷却する冷却装置と、該
冷却装置を経た処理水に、二酸化炭素を加えて均一溶解
させる二酸化炭素溶解装置とを結合したことを特徴とす
る炭酸水製造装置である。次に処理水の温度を、5℃〜
15℃としたものである。The invention of the apparatus further includes a deaerated water producing apparatus having a porous body through which the raw treated water should pass, a cooling apparatus for cooling the treated water passing through the deaerated water producing apparatus to room temperature or below, It is a carbonated water production apparatus characterized in that a carbon dioxide dissolving device for adding carbon dioxide to the treated water that has passed through the cooling device to dissolve it uniformly is combined. Next, the temperature of the treated water is 5 ° C
It is set to 15 ° C.
【0009】他の装置の発明は、円筒管内に供給水揚水
ポンプ、弁、二酸化炭素供給ラインを連結された多孔質
体と液面制御装置を備え、同円筒管外部に酸素濃度測定
器、酸素濃度測定器の指示により同円筒管出口の水を循
環することのできるポンプ、弁が前記多孔質の供給口に
連結された循環ラインを備え、前記酸素濃度計の指示に
より、前記循環ラインのポンプ、弁を止めて脱気水を送
液する弁、ポンプを備えた送液ラインを備え、前記円筒
管内に酸素、窒素を供給水から分離する多孔質体を備
え、前記円筒管に真空ポンプをの吸入管を連結したこと
を特徴とする炭酸水製造装置である。また、前記脱気水
を所定の温度に冷却し、温度制御できる冷却機構を備
え、かつ冷却器に供給するポンプと冷却水の温度を測定
し、冷却水量を調節する弁を備えたことを特徴とするも
のである。次に、円筒管内に二酸化炭素供給ラインと、
前記冷却脱気水の供給管を連結したエジェクターと、二
酸化炭素と冷却水を混合させる混合器と、円筒管内の液
面を制御する装置と、液面制御装置の指示により二酸化
炭素と冷却水の混合液の供給量を調節する弁を連結した
多孔質体、円筒管底部より炭酸濃度を測定する機構、測
定機構の指示により炭酸水を前記エジェクター入口に戻
し循環することにより均一な炭酸水を製造することを特
徴とするものである。The invention of another device is provided with a porous body in which a feed water pump, a valve, and a carbon dioxide supply line are connected in a cylindrical pipe, and a liquid level control device, and an oxygen concentration measuring device and oxygen are provided outside the cylindrical pipe. A pump capable of circulating water at the outlet of the cylindrical tube according to the instruction of the concentration measuring device, a valve having a circulation line connected to the porous supply port, and a pump of the circulation line according to the instruction of the oxygen concentration meter. A valve for stopping the valve to feed degassed water, a liquid feed line equipped with a pump, a porous body for separating oxygen and nitrogen from the feed water in the cylindrical pipe, and a vacuum pump for the cylindrical pipe. The apparatus for producing carbonated water is characterized in that the suction pipes are connected. Further, the degassed water is cooled to a predetermined temperature, a cooling mechanism is provided for controlling the temperature, and a pump for supplying the cooling device and a valve for measuring the temperature of the cooling water and adjusting the amount of the cooling water are also provided. It is what Next, a carbon dioxide supply line in the cylindrical tube,
An ejector connected to the cooling degassed water supply pipe, a mixer for mixing carbon dioxide and cooling water, a device for controlling the liquid level in the cylindrical pipe, and carbon dioxide and cooling water according to an instruction from the liquid level control device. A porous body with a valve connected to control the supply amount of the mixed solution, a mechanism for measuring the carbonic acid concentration from the bottom of the cylindrical tube, and carbonated water is returned to the ejector inlet according to the instructions of the measuring mechanism to produce a uniform carbonated water. It is characterized by doing.
【0010】前記のように、この発明は減圧雰囲気下で
原処理水を微小径(例えば60μ以下)の多孔質体に通
過させることにより、原処理水(溶存気体量10ppm 〜
数10ppm 、溶存酸素量2ppm 以上)の溶存気体量を5
ppm 以下(溶存酸素量を1ppm より少なく)にすること
ができる。As described above, according to the present invention, raw treated water (amount of dissolved gas of 10 ppm to
Dissolved gas amount of several tens of ppm, dissolved oxygen amount of 2 ppm or more)
It can be kept below ppm (the amount of dissolved oxygen is less than 1 ppm).
【0011】従来、溶存酸素量を1ppm 以下にするに
は、多大の設備と費用を要したが、この発明によれば比
較的低廉、かつ簡単にできる。実験の結果によれば、前
記多孔質体の粒径は、60μ以下が好ましい。例えば粒
径30μ、真空度500mmHgで、一回のパスで溶存酸素
量が0.5ppm となった。Conventionally, a large amount of equipment and cost were required to reduce the amount of dissolved oxygen to 1 ppm or less, but according to the present invention, the cost can be relatively low and simple. According to the result of the experiment, the particle size of the porous body is preferably 60 μm or less. For example, with a particle size of 30 μm and a vacuum degree of 500 mmHg, the amount of dissolved oxygen was 0.5 ppm in one pass.
【0012】前記のように、溶存酸素量の減少は、処理
水の冷却温度が常温付近でもよくなり、当然のこと乍ら
溶存窒素量も減少するので、ガスボリューム(水1リッ
トルに対する二酸化炭素の溶解量)も大きくなり、強い
炭酸水ができる。As described above, the amount of dissolved oxygen can be reduced even when the cooling temperature of the treated water is near room temperature, and naturally the amount of dissolved nitrogen is also reduced, so that the gas volume (of carbon dioxide per 1 liter of water is reduced). (Dissolved amount) also becomes large and strong carbonated water is produced.
【0013】この発明においては、処理水と二酸化炭素
とをエジェクターに入れて混合すると共に、多孔質体を
通過させるので、安定した炭酸水が得られる。従って、
従来必要とされていた製品貯蔵タンクが不必要となっ
た。In the present invention, treated water and carbon dioxide are put into an ejector and mixed, and at the same time, they are passed through the porous body, so that stable carbonated water can be obtained. Therefore,
The product storage tank that was previously needed is no longer needed.
【0014】[0014]
【作用】この発明によれば、原処理水が減圧雰囲気下で
多孔質体を通過することにより、容易に低溶存気体の処
理水となる。According to the present invention, since the raw treated water passes through the porous body under a reduced pressure atmosphere, the treated water having a low dissolved gas can be easily obtained.
【0015】この発明によれば、処理水と二酸化炭素と
の混合水を多孔質体に通過させることにより、安定した
炭酸水となる。According to the present invention, stable carbonated water is obtained by passing the mixed water of treated water and carbon dioxide through the porous body.
【0016】[0016]
【実施例1】次の条件で脱気処理した。Example 1 A degassing treatment was performed under the following conditions.
【0017】
多孔質体粒径 30ミクロン
供給水 10L/min
二酸化炭素 0.25L/min
真空度 500mmHg
供給水中の溶存酸素量は10ppm (窒素量50ppm )で
あったが、本発明を用いると溶存酸素量は0.5ppm
(溶存窒素量は2.5ppm )に減少した。従来技術の真
空法では溶存酸素量は2.0ppm(溶存窒素量は1.0p
pm )であった。Porous body particle size 30 micron Supply water 10 L / min Carbon dioxide 0.25 L / min Vacuum degree 500 mmHg Dissolved oxygen amount in the supply water was 10 ppm (nitrogen amount 50 ppm). The amount is 0.5ppm
(Dissolved nitrogen amount was reduced to 2.5 ppm). In the conventional vacuum method, the amount of dissolved oxygen is 2.0 ppm (the amount of dissolved nitrogen is 1.0 p
pm).
【0018】[0018]
【実施例2】次の条件で脱気処理した。Example 2 A degassing process was performed under the following conditions.
【0019】 多孔質体粒径 30ミクロン 供給水 10L/min 二酸化炭素 0.25L/min 真空度 500mmHg 上記により、実施例1と同一の結果を得た。[0019] Porous body particle size 30 microns Supply water 10 L / min Carbon dioxide 0.25L / min Vacuum degree 500mmHg From the above, the same results as in Example 1 were obtained.
【0020】[0020]
【実施例3】所定の条件により、従来法と発明法を実施
した所、表1の結果を得た。Example 3 The results of Table 1 were obtained when the conventional method and the invention method were carried out under predetermined conditions.
【0021】[0021]
【表1】 [Table 1]
【0022】前記のように、この発明により製造した炭
酸水は、溶存酸素量、溶存窒素量が著しく少ない為に、
安定性がよく、味覚に優れ、ガスボリュームも大きいこ
とが確認された。As described above, the carbonated water produced according to the present invention has a remarkably small amount of dissolved oxygen and dissolved nitrogen.
It was confirmed that the stability was good, the taste was excellent, and the gas volume was large.
【0023】[0023]
【実施例4】所定の条件により、従来法と発明法を実施
した所、表2の結果を得た。この実施例は混合水も多孔
質体を通過させた。[Example 4] The results of Table 2 were obtained when the conventional method and the invention method were carried out under predetermined conditions. In this example, the mixed water was also passed through the porous body.
【0024】[0024]
【表2】 [Table 2]
【0025】前記のように、発明法による炭酸水はきわ
めて優れた諸性質を保有している。As described above, the carbonated water prepared by the method of the invention has various excellent properties.
【0026】[0026]
【実施例5】所定の条件により、従来法と発明法を実施
した所、表3の結果を得た。Example 5 When the conventional method and the invention method were carried out under predetermined conditions, the results shown in Table 3 were obtained.
【0027】[0027]
【表3】 [Table 3]
【0028】前記によれば、実施例4よりガスボリュー
ムが若干劣るけれども、味覚、安定性は同一であった。According to the above, although the gas volume was slightly inferior to that of Example 4, the taste and stability were the same.
【0029】[0029]
【実施例6】この発明の装置と、従来法の装置とを比較
すれば、表4のようになる。[Embodiment 6] Table 4 shows a comparison between the apparatus of the present invention and the apparatus of the conventional method.
【0030】[0030]
【表4】 [Table 4]
【0031】前記のように、この発明の場合には温度管
理が容易で、貯蔵タンク不必要となり、設置面積も著し
く少なくてすむ。全般的に製造が容易であり、ガスボリ
ュームの調整も容易にできる利点がある。As described above, in the case of the present invention, temperature control is easy, a storage tank is not required, and the installation area can be remarkably reduced. Generally, there is an advantage that the manufacturing is easy and the gas volume can be easily adjusted.
【0032】[0032]
【実施例7】この発明の実施装置を図1について説明す
る。[Embodiment 7] An embodiment of the invention will be described with reference to FIG.
【0033】脱気槽1に原処理水の給送管2と、真空ポ
ンプ3の吸引管4を連結し、前記脱気槽1内の送水管2
の先端には、多孔質体5aを連結し、前記脱気槽1の下
部には処理水の送水管6の基端を連結し、前記送水管6
には送水用のポンプ7a、冷却器8を介し、エジェクタ
ー9と混合器10に連結し、混合器10の吐出管11は
炭酸水タンク12内の多孔質体5bに連結し、炭酸水タ
ンク12の下部には炭酸水の供給管14を連結してあ
る。図中13a、13bは流量計、15a、15bは電
極棒16、17よりなる液面制御装置、18a、18
b、18cは圧力計、19は真空計、7b、7c、7
d、7e、7fは各種ポンプ、20a、20b、20c
は減圧弁、21a、21bは酸素測定器、22a、22
bは温度計、23a、23bは温度指示計である。A feed pipe 2 for the raw treated water and a suction pipe 4 of a vacuum pump 3 are connected to the degassing tank 1, and the water feeding pipe 2 in the degassing tank 1 is connected.
The porous body 5a is connected to the tip of the water supply pipe 6, and the base end of the water supply pipe 6 of the treated water is connected to the lower part of the degassing tank 1.
Is connected to an ejector 9 and a mixer 10 via a water pump 7a and a cooler 8, and a discharge pipe 11 of the mixer 10 is connected to a porous body 5b in a carbonated water tank 12, A carbonated water supply pipe 14 is connected to the lower part of the. In the figure, 13a and 13b are flowmeters, 15a and 15b are liquid level control devices composed of electrode rods 16 and 17, and 18a and 18b.
b and 18c are pressure gauges, 19 is a vacuum gauge, 7b, 7c and 7
d, 7e, 7f are various pumps, 20a, 20b, 20c
Is a pressure reducing valve, 21a and 21b are oximeters, 22a and 22
Reference numeral b is a thermometer, and 23a and 23b are temperature indicators.
【0034】前記実施例において、原処理水(炭酸水製
造用の原水)を矢示24のように脱気槽1内へ給送する
と、原処理水は多孔質体5aから吹き出し、脱気槽1の
下部へ溜る(脱気水25)。前記脱気槽1は真空ポンプ
3によって500mmHg位に減圧されているので、原処理
水中に溶解されている空気(酸素、窒素)の分離したも
のは排出され、溶存酸素量0.5ppm 、溶存窒素量2.
5ppm 位になる。この脱気槽1内の水位は電極棒16で
制御され、電極棒16の下端における水面の離接により
液面制御装置15aの出力で給送管2のバルブ26を開
閉する。前記処理水は、溶存酸素量の測定により、所定
の濃度(例えば0.5ppm )にならない場合には、酸素
測定器の出力により、バルブ27を開くと共に、ポンプ
7cを始動し、循環管28を経て、処理液を矢示29の
ように給送管2に送り、再び多孔質体5aを通過させ
る。In the above-mentioned embodiment, when the raw treated water (raw water for producing carbonated water) is fed into the degassing tank 1 as indicated by the arrow 24, the raw treated water is blown out from the porous body 5a and the degassing tank is discharged. Collect in the lower part of 1 (deaerated water 25). Since the degassing tank 1 is depressurized to about 500 mmHg by the vacuum pump 3, separated air (oxygen, nitrogen) dissolved in the raw treated water is discharged, dissolved oxygen amount 0.5 ppm, dissolved nitrogen. Amount 2.
It becomes about 5ppm. The water level in the degassing tank 1 is controlled by the electrode rod 16, and the valve 26 of the feed pipe 2 is opened and closed by the output of the liquid level control device 15a by the contact and separation of the water surface at the lower end of the electrode rod 16. When the treated water does not reach a predetermined concentration (for example, 0.5 ppm) by measuring the dissolved oxygen amount, the valve 27 is opened and the pump 7c is started by the output of the oxygen measuring device, and the circulation pipe 28 is turned on. After that, the treatment liquid is sent to the feed pipe 2 as indicated by an arrow 29, and again passes through the porous body 5a.
【0035】かくて所定の酸素濃度となった処理水は、
ポンプ7aにより矢示30のように冷却器8に送られ
る。冷却器8内の冷却水31は、調温器32により。常
時定温(例えば10℃)に保たれている。そこで、定温
の処理水がエジェクター9において二酸化炭素を吹き込
まれ、ついで混合器10により混合される。この場合
に、二酸化炭素の流量は、流量計13bと、減圧弁20
a、20b、20cなどにより制御される。このように
して混合物は矢示33のように供給され、多孔質体5b
から炭酸水タンク12内へ吹き出される。この炭酸水の
炭酸濃度は、炭酸濃度測定器23bで測定し、所定の濃
度に達しない場合には、その出力によりバルブ34を開
き、ポンプ7dを始動して矢示35のように、炭酸水を
再び前記エジェクター9に送り込み、再び二酸化炭素と
混合させる。従って、このような循環により所定濃度の
炭酸水とすることができる。そこでバルブ36を開き、
製品を別の場所へ移送する。前記のように、炭酸濃度測
定により循環処理する為に、所定の炭酸濃度の炭酸水を
容易に得ることができる。従って、同一炭酸濃度の製品
を容易に連続製造することができる。The treated water having the predetermined oxygen concentration is
It is sent to the cooler 8 as indicated by the arrow 30 by the pump 7a. The cooling water 31 in the cooler 8 is supplied by the temperature controller 32. It is always kept at a constant temperature (for example, 10 ° C). Then, carbon dioxide is blown into the treated water at a constant temperature in the ejector 9 and then mixed by the mixer 10. In this case, the flow rate of carbon dioxide is measured by the flow meter 13b and the pressure reducing valve 20.
a, 20b, 20c, etc. In this way, the mixture is supplied as shown by the arrow 33, and the porous body 5b is obtained.
Is blown into the carbonated water tank 12. The carbonate concentration of this carbonated water is measured by the carbonate concentration measuring device 23b, and when it does not reach a predetermined concentration, the valve 34 is opened by the output thereof, the pump 7d is started, and the carbonated water is indicated by the arrow 35. Is again sent to the ejector 9 and mixed again with carbon dioxide. Therefore, carbonated water having a predetermined concentration can be obtained by such circulation. So open the valve 36,
Transfer the product to another location. As described above, carbonated water having a predetermined carbonic acid concentration can be easily obtained because the carbonic acid concentration is circulated for measurement. Therefore, products having the same carbonic acid concentration can be easily continuously manufactured.
【0036】[0036]
【発明の効果】この発明は、原処理水を多孔質体に通過
させると共に、減圧雰囲気内におくので、溶存酸素濃度
を容易に1ppm より少なくすることができる。従って、
冷却濃度が比較的高く(常温付近)ても十分のガスボリ
ュームを得ることができると共に、炭酸水の安定性がよ
いので、製品安定化の為の貯蔵タンクが不必要になるな
どの諸効果がある。According to the present invention, since the raw treated water is passed through the porous body and is placed in a reduced pressure atmosphere, the concentration of dissolved oxygen can be easily reduced to less than 1 ppm. Therefore,
Even if the cooling concentration is relatively high (near room temperature), a sufficient gas volume can be obtained and the stability of the carbonated water is good, so various effects such as the need for a storage tank for product stabilization are achieved. is there.
【図1】この発明の炭酸水製造装置の系統図FIG. 1 is a system diagram of a carbonated water production apparatus of the present invention.
【図2】従来の炭酸水製造ラインのブロック図FIG. 2 is a block diagram of a conventional carbonated water production line.
1 脱気槽 2 給送管 3 真空ポンプ 4 吸引管 5a、5b 多孔質体 6 送水管 7a、7b、7c、7d、7e、7f ポンプ 8 冷却器 9 エジェクター 10 混合器 11 吐出管 12 炭酸水タンク 13a、13b 流量計 14 供給管 15a、15b 液面制御装置 16、17 電極棒 18a、18b、18c 圧力計 19 真空計 20a、20b、20c 減圧弁 21a 酸素測定器 21b 炭酸濃度測定器 22a、22b 温度計 23a、23b 温度指示計 1 degassing tank 2 feeding pipes 3 vacuum pump 4 suction tube 5a, 5b Porous body 6 water pipe 7a, 7b, 7c, 7d, 7e, 7f Pump 8 cooler 9 ejector 10 mixer 11 discharge pipe 12 Carbonated water tank 13a, 13b Flowmeter 14 Supply pipe 15a, 15b Liquid level control device 16, 17 electrode rod 18a, 18b, 18c Pressure gauge 19 vacuum gauge 20a, 20b, 20c Pressure reducing valve 21a Oximeter 21b Carbon dioxide concentration measuring instrument 22a, 22b thermometer 23a, 23b Temperature indicator
Claims (8)
原処理水を通過させることを特徴とした脱気方法。1. A porous body having a small diameter, in a reduced pressure atmosphere,
A degassing method characterized by passing raw treated water.
水を常温以下の温度に調温し、これに適量の二酸化炭素
を供給することを特徴とした炭酸水製造法。2. A method for producing carbonated water, which comprises adjusting the temperature of water having a dissolved oxygen content of less than 1.0 ppm to a temperature below room temperature and supplying an appropriate amount of carbon dioxide thereto.
2記載の炭酸水製造法。3. The method for producing carbonated water according to claim 2, wherein the cooling water temperature is from room temperature to 0 ° C.
脱気水製造装置と、該脱気水製造装置を通過した処理水
を常温以下に冷却する冷却装置と、該冷却装置を経た処
理水に、二酸化炭素を加えて均一溶解させる二酸化炭素
溶解装置とを結合したことを特徴とする炭酸水製造装
置。4. A degassed water producing apparatus having a porous body through which the raw treated water should pass, a cooling device for cooling the treated water passing through the degassed water producing apparatus to room temperature or below, and the cooling device. An apparatus for producing carbonated water, characterized in that a carbon dioxide dissolving apparatus for adding carbon dioxide to the treated water to uniformly dissolve the treated water is combined.
求項4記載の炭酸水製造装置。5. The carbonated water producing apparatus according to claim 4, wherein the temperature of the treated water is 5 ° C. to 15 ° C.
化炭素供給ラインを連結された多孔質体と、液面制御装
置を備え、同円筒管外部に酸素濃度測定器、酸素濃度測
定器の指示により同円筒管出口の水を循環することので
きるポンプ、弁が前記多孔質の供給口に連結された循環
ラインを備え、前記酸素濃度計の指示により、前記循環
ラインのポンプ、弁を止めて脱気水を送液する弁、ポン
プを備えた送液ラインを備え、前記円筒管内に酸素、窒
素を供給水から分離する多孔質体を備え、前記円筒管に
真空ポンプの吸入管を連結したことを特徴とする炭酸水
製造装置。6. A cylindrical body is provided with a porous body having a feed water pump, a valve and a carbon dioxide supply line connected to the inside, and a liquid level control device, and an oxygen concentration measuring device and an oxygen concentration measuring device are provided outside the cylindrical pipe. A pump that can circulate water at the outlet of the cylindrical pipe according to the instruction, a valve provided with a circulation line connected to the porous supply port, and the pump and valve of the circulation line are stopped according to the instruction of the oxygen concentration meter. Equipped with a valve for feeding degassed water by means of a pump, a liquid feed line with a pump, a porous body for separating oxygen and nitrogen from the feed water in the cylindrical pipe, and a suction pipe of a vacuum pump connected to the cylindrical pipe An apparatus for producing carbonated water, characterized in that
制御できる冷却機構を備え、かつ冷却器に供給するポン
プと冷却水の温度を測定し、冷却水量を調節する弁を備
えたことを特徴とする請求項6記載の炭酸水製造装置。7. A cooling mechanism for cooling the degassed water to a predetermined temperature and controlling the temperature, a pump for supplying a cooling device, and a valve for measuring the temperature of the cooling water and adjusting the amount of the cooling water. The carbonated water production apparatus according to claim 6, wherein.
記冷却脱気水の供給管を連結したエジェクターと、二酸
化炭素と冷却水を混合させる混合器と、円筒管内の液面
を制御する装置と、液面制御装置の指示により二酸化炭
素と冷却水の混合液の供給量を調節する弁を連結した多
孔質体、円筒管底部より炭酸濃度を測定する機構、測定
機構の出力により炭酸水を、前記エジェクター入口に戻
し循環し、均一な炭酸水を製造することを特徴とした請
求項6記載の炭酸水製造装置。8. A carbon dioxide supply line in a cylindrical pipe, an ejector connecting the cooling degassed water supply pipe, a mixer for mixing carbon dioxide and cooling water, and a device for controlling the liquid level in the cylindrical pipe. , A porous body connected with a valve for adjusting the supply amount of a mixed liquid of carbon dioxide and cooling water according to the instruction of the liquid level control device, a mechanism for measuring the carbonic acid concentration from the bottom of the cylindrical tube, carbonated water by the output of the measuring mechanism, The carbonated water producing apparatus according to claim 6, wherein the carbonated water is uniformly circulated by returning to the ejector inlet and circulating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3201262A JPH0523150A (en) | 1991-07-16 | 1991-07-16 | Deaeration method and method and apparatus for producing carbon dioxide water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3201262A JPH0523150A (en) | 1991-07-16 | 1991-07-16 | Deaeration method and method and apparatus for producing carbon dioxide water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0523150A true JPH0523150A (en) | 1993-02-02 |
Family
ID=16438033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3201262A Pending JPH0523150A (en) | 1991-07-16 | 1991-07-16 | Deaeration method and method and apparatus for producing carbon dioxide water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0523150A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004004876A1 (en) * | 2002-07-08 | 2004-01-15 | Mitsubishi Rayon Co.,Ltd. | Apparatus for producing carbonated water and method for producing carbonated water using the same |
JP2008135790A (en) * | 1996-07-05 | 2008-06-12 | Toshiba Corp | Cleaning method and cleaning method of electronic component |
US7907376B2 (en) | 2006-04-04 | 2011-03-15 | Denso Corporation | Load control device and method |
JP2015223150A (en) * | 2014-05-29 | 2015-12-14 | 三菱重工食品包装機械株式会社 | Liquid treatment apparatus |
JP2016158590A (en) * | 2015-03-04 | 2016-09-05 | アサヒ飲料株式会社 | Bottled carbonic acid beverage. manufacturing method of bottled carbonic acid beverage and carbonic acid feeling improvement method of bottled carbonic acid beverage |
-
1991
- 1991-07-16 JP JP3201262A patent/JPH0523150A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008135790A (en) * | 1996-07-05 | 2008-06-12 | Toshiba Corp | Cleaning method and cleaning method of electronic component |
WO2004004876A1 (en) * | 2002-07-08 | 2004-01-15 | Mitsubishi Rayon Co.,Ltd. | Apparatus for producing carbonated water and method for producing carbonated water using the same |
US7445197B2 (en) | 2002-07-08 | 2008-11-04 | Mitsubishi Rayon Co., Ltd. | Apparatus for producing carbonated water and method for producing carbonated water using the same |
US7651074B2 (en) | 2002-07-08 | 2010-01-26 | Mitsubishi Rayon Co., Ltd. | Apparatus for producing carbonated water and method for producing carbonated water using the same |
US7907376B2 (en) | 2006-04-04 | 2011-03-15 | Denso Corporation | Load control device and method |
JP2015223150A (en) * | 2014-05-29 | 2015-12-14 | 三菱重工食品包装機械株式会社 | Liquid treatment apparatus |
JP2016158590A (en) * | 2015-03-04 | 2016-09-05 | アサヒ飲料株式会社 | Bottled carbonic acid beverage. manufacturing method of bottled carbonic acid beverage and carbonic acid feeling improvement method of bottled carbonic acid beverage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7329312B2 (en) | Apparatus for supplying water containing dissolved gas | |
US5843307A (en) | Unit for the treatment of water by ozonization, and a corresponding installation for the production of ozonized water | |
US6955341B2 (en) | Apparatus for dissolving gas into liquid | |
US4259360A (en) | Deoxygenation of liquids | |
US4599239A (en) | Method of preparing nonalcoholic beverages starting with a deaerated low sugar concentration base | |
JP2011062694A (en) | Method for mixing pressurized fluid for semiconductor process tool and apparatus | |
JPH08276121A (en) | Method and apparatus for controlling dissolved gas in liquidand gas/liquid contact body module and usage thereof | |
RU2005128295A (en) | METHOD FOR PRODUCING NITROGEN SURGE AND DEVICE FOR ITS IMPLEMENTATION | |
US20130026110A1 (en) | Systems and Methods for Maximizing Dissolved Gas Concentration of a Single Species of Gas from a Mixture of Multiple Gases | |
US20010027809A1 (en) | Plant for transferring a gas into a liquid | |
US20230416125A1 (en) | High-efficiency airlift pump | |
TW583135B (en) | Pressure vessel systems and methods for dispensing liquid chemical compositions | |
JPH0523150A (en) | Deaeration method and method and apparatus for producing carbon dioxide water | |
US6270059B1 (en) | Process for enriching a liquid with a gas and enriched product | |
JPH08281281A (en) | Ozonized water producing device and production of ozonized water | |
JP2002543960A (en) | Gas-liquid mixing apparatus and method | |
US4801471A (en) | Closed circuit beverage processing with accumulator | |
JP2002018253A (en) | Hydrogen dissolving apparatus | |
JP3174659B2 (en) | Carbonated water production equipment | |
JPH0356091B2 (en) | ||
JPS6135274Y2 (en) | ||
JPS60172340A (en) | Method and apparatus for treating and blending of liquid | |
JP7365751B2 (en) | Dissolved gas replacement device and dissolved gas replacement method | |
JPH057751A (en) | Apparatus for preparing carbonated water | |
US4599164A (en) | Process for pre-concentration treatment of food by-prouducts and installation for carrying out same |