[go: up one dir, main page]

JPH05231321A - Operating method for heat pump - Google Patents

Operating method for heat pump

Info

Publication number
JPH05231321A
JPH05231321A JP4069994A JP6999492A JPH05231321A JP H05231321 A JPH05231321 A JP H05231321A JP 4069994 A JP4069994 A JP 4069994A JP 6999492 A JP6999492 A JP 6999492A JP H05231321 A JPH05231321 A JP H05231321A
Authority
JP
Japan
Prior art keywords
compressor
oil
inverter
frequency
run
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4069994A
Other languages
Japanese (ja)
Other versions
JP3073303B2 (en
Inventor
Hisashi Hattori
久司 服部
Katsutoshi Kitagawa
勝敏 北川
Masahiko Sasakura
正彦 佐々倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04069994A priority Critical patent/JP3073303B2/en
Publication of JPH05231321A publication Critical patent/JPH05231321A/en
Application granted granted Critical
Publication of JP3073303B2 publication Critical patent/JP3073303B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent poor lubrication and seizing due to the lack of lubrication oil by forcibly make an inverter driven compressor run at a low frequency for a fixed time and then make it run at the required frequency again in the case where it run at a high frequency for the specified time or longer. CONSTITUTION:While heating operation is conducted, the high temperature and pressure gaseous refrigerant discharged from the inverter drive compressor 1 of an outdoor unit 22 flows into an oil separator 17 through a discharge pipe 14, for being separated from oil. The separated oil returns to a compressor 1 through an oil returning pipe 19 and the fixed throttle 20 attached to the returning pipe 19. In addition, the refrigerant gas flows into the utilization side heat exchanger 6 of an indoor unit 23 radiates heat to the air in the room becoming high pressure liquid refrigerant. The inverter 21 of a compressor 1 is controlled by a controller 25 based on the detection signal of a pressure sensor 27. In this case, after the compressor 1 continuously runs at a high frequency for a specified time or longer (Step (5) Yes), it is forcibly made to run at a low frequency for a fixed time [Steps (6) and (7)], and then, it runs at a required frequency (3) again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機、冷凍機、除
湿機、温水機等のヒートポンプの運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a heat pump such as an air conditioner, a refrigerator, a dehumidifier and a water heater.

【0002】[0002]

【従来の技術】図2に従来の空気調和機の冷媒回路が示
されている。暖房運転時、室外ユニット22のインバータ
駆動圧縮機1から吐出された高温・高圧のガス冷媒は、
実線矢印で示すように、吐出管14を経てオイルセパレー
タ17に入り、ここで冷媒ガス中に含まれる油が分離され
る。分離された油は返油管19及びこれに介装された固定
絞り20を経て圧縮機1に戻り、その密閉容器1C内底部に
貯溜される。油を分離した冷媒ガスは四方弁2、管接手
3、内外接続ガス管4、管接手5を経て室内ユニット23
の利用側熱交換器6に入り、ここで室内空気に放熱する
ことによって凝縮液化して高圧の液冷媒となる。この液
冷媒は膨張機構7で絞られることにより断熱膨張して低
圧の液ガス二相冷媒となる。この液ガス二相冷媒は管接
手9、内外接続液管10、管接手11を経て室外ユニット22
に戻り、その逆止弁12を経て熱源側熱交換器14に入り、
ここで外気から吸熱することによって蒸発気化して低圧
のガス冷媒となる。そして、このガス冷媒は四方弁2、
吸入管16、アキュムレ−タ18を経て圧縮機1の密閉容器
1C内に吸入される。
2. Description of the Related Art FIG. 2 shows a refrigerant circuit of a conventional air conditioner. During heating operation, the high temperature and high pressure gas refrigerant discharged from the inverter-driven compressor 1 of the outdoor unit 22 is
As indicated by the solid arrow, the oil enters the oil separator 17 through the discharge pipe 14, and the oil contained in the refrigerant gas is separated therein. The separated oil returns to the compressor 1 via the oil return pipe 19 and the fixed throttle 20 interposed therein, and is stored in the inner bottom of the closed container 1C. The refrigerant gas from which the oil has been separated passes through the four-way valve 2, the pipe joint 3, the inside / outside connecting gas pipe 4, and the pipe joint 5, and then the indoor unit 23.
Enters the use side heat exchanger 6 and radiates heat to indoor air to be condensed and liquefied to become a high-pressure liquid refrigerant. This liquid refrigerant is adiabatically expanded by being squeezed by the expansion mechanism 7 to become a low-pressure liquid gas two-phase refrigerant. This liquid gas two-phase refrigerant passes through the pipe joint 9, the inside / outside connecting liquid pipe 10, and the pipe joint 11, and then the outdoor unit 22.
Return to the heat source side heat exchanger 14 through the check valve 12,
Here, by absorbing heat from the outside air, it is evaporated and vaporized into a low-pressure gas refrigerant. And this gas refrigerant is a four-way valve 2,
Airtight container of compressor 1 through suction pipe 16 and accumulator 18.
Inhaled into 1C.

【0003】冷房運転時、圧縮機1から吐出されたガス
冷媒は、破線矢印で示すように、吐出管14、オイルセパ
レータ17、四方弁2を経て熱源側熱交換器15で放熱する
ことにより凝縮して高圧の液冷媒となり、膨張機構13で
絞られることより低圧の液ガス二相冷媒となる。そし
て、この液ガス二相冷媒は管接手11、内外接続液管10、
管接手9、逆止弁8を経て利用側熱交換器6で吸熱する
ことにより蒸発して低圧のガス冷媒となる。このガス冷
媒は管接手5、内外接続ガス管4、管接手3、四方弁
2、吸入管16、アキュムレ−タ18を経て圧縮機1に戻
る。
During the cooling operation, the gas refrigerant discharged from the compressor 1 is condensed by radiating heat in the heat source side heat exchanger 15 through the discharge pipe 14, the oil separator 17, the four-way valve 2 as shown by the dashed arrow. Then, it becomes a high-pressure liquid refrigerant, and when it is throttled by the expansion mechanism 13, it becomes a low-pressure liquid gas two-phase refrigerant. And, this liquid gas two-phase refrigerant is a pipe joint 11, an inside / outside connecting liquid pipe 10,
The heat is absorbed by the utilization side heat exchanger 6 through the pipe joint 9 and the check valve 8 to evaporate and become a low-pressure gas refrigerant. This gas refrigerant returns to the compressor 1 via the pipe joint 5, the inside / outside connecting gas pipe 4, the pipe joint 3, the four-way valve 2, the suction pipe 16, and the accumulator 18.

【0004】圧縮機1の密閉容器1C内には圧縮機構1Aと
モータ1Bが内蔵され、その底部には潤滑油1Dが貯溜され
ている。このモータ1Bには電源26からインバータ21を介
して電流が供給される。吸入管16に設けられた圧力セン
サ27によって検知された冷媒ガスの吸入圧力は信号線28
を介してコントローラ24に入力され、コントローラ24は
この吸入圧力、即ち、空調負荷に対応してインバータ駆
動圧縮機1の要求周波数を決定する。この要求周波数は
信号線25を介してインバータ24に出力され、インバータ
24は決定された要求周波数の電流をモータ1Bに供給す
る。
A compressor 1A and a motor 1B are built in an airtight container 1C of the compressor 1, and lubricating oil 1D is stored at the bottom thereof. A current is supplied to the motor 1B from the power supply 26 via the inverter 21. The suction pressure of the refrigerant gas detected by the pressure sensor 27 provided in the suction pipe 16 indicates the signal line 28.
Is input to the controller 24 through the controller 24, and the controller 24 determines the required frequency of the inverter-driven compressor 1 according to the suction pressure, that is, the air conditioning load. This required frequency is output to the inverter 24 via the signal line 25, and
24 supplies the current of the determined required frequency to the motor 1B.

【0005】[0005]

【発明が解決しようとする課題】上記従来の空気調和機
においては、その高負荷時、インバータ駆動圧縮機1を
高周波数で高速運転すると、圧縮機1から冷媒ガスに伴
われて持ち出される油の量がオイルセパレータ17から返
油管19、固定絞り20を経て圧縮機1に戻される油量より
増大する。従って、圧縮機1の高速運転が長時間継続す
ると、密閉容器1C内底部に貯溜されている潤滑油1Dの油
面が次第に低下して圧縮機1の潤滑不良又はこれに基く
焼付事故を惹起するおそれがあった。
In the above-described conventional air conditioner, when the inverter-driven compressor 1 is operated at a high frequency and a high speed under high load, the oil taken out from the compressor 1 with the refrigerant gas is removed. The amount is larger than the amount of oil returned from the oil separator 17 to the compressor 1 via the oil return pipe 19 and the fixed throttle 20. Therefore, if the high-speed operation of the compressor 1 continues for a long time, the oil level of the lubricating oil 1D stored in the bottom of the closed container 1C gradually decreases, causing poor lubrication of the compressor 1 or a seizure accident based on it. There was a fear.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、その要旨とすると
ころは、インバータ駆動圧縮機と、これから吐出された
冷媒ガスに含まれる油を分離するオイルセパレータと、
このオイルセパレータで分離された油を固定絞りを介し
て上記インバータ駆動圧縮機に戻す返油管を備えたヒー
トポンプの運転方法において、上記インバータ駆動圧縮
機の高周波数による運転が所定時間継続したときは、一
旦、上記インバータ駆動圧縮機を強制的に低周波数によ
り一定時間運転し、しかる後、要求周波数による運転に
復帰させることを特徴とするヒートポンプの運転方法に
ある。
The present invention has been invented to solve the above problems, and its gist is to provide an inverter-driven compressor and an oil contained in a refrigerant gas discharged from the inverter-driven compressor. An oil separator to separate the
In the operating method of the heat pump including the oil return pipe for returning the oil separated by the oil separator to the inverter-driven compressor through the fixed throttle, when the operation at the high frequency of the inverter-driven compressor continues for a predetermined time, A heat pump operating method is characterized in that the inverter-driven compressor is forcibly operated once at a low frequency for a certain period of time, and then returned to the operation at a required frequency.

【0007】[0007]

【実施例】本発明の制御フローチャートが図1に示され
ている。なお、冷媒回路は図2に示す従来のものと同様
である。ステップで、空気調和機の運転が開始される
と、ステップで、センサ27により空調負荷が検出され
る。次いで、ステップで、圧縮機1が所定の周波数範
囲、例えば、35〜95HZ の範囲内で空調負荷に対応して
決定された要求周波数で運転される。ステップで、要
求周波数が所定値、例えば、70HZ 以上か否かが判別さ
れ、否の場合には、圧縮機1は要求周波数で運転される
が、然りの場合には、ステップで所定時間、例えば、
9分が経過したか否かが確かめられる。所定時間が経過
すると、ステップで、圧縮機1が予め定められた低周
波数、例えば、50HZ で運転される。次いで、ステップ
で一定時間、例えば、1分が経過したか否かが判別さ
れ、一定時間が経過すると、ステップに移行して圧縮
機1は要求周波数で運転される。
DESCRIPTION OF THE PREFERRED EMBODIMENT A control flow chart of the present invention is shown in FIG. The refrigerant circuit is the same as the conventional one shown in FIG. When the operation of the air conditioner is started in step, the air conditioning load is detected by the sensor 27 in step. Then, in step, the compressor 1 is the predetermined frequency range, for example, is operated at the requested frequency determined in response to the air-conditioning load within a 35~95H Z. In step, the request frequency is a predetermined value, for example, it is determined whether 70H Z above, in the case of not, but the compressor 1 is operated at the request frequency, in the case of Yea a predetermined time in step , For example,
You can see if 9 minutes have passed. When the predetermined time has elapsed, in step, the low frequency the compressor 1 is predetermined, for example, it is operated at 50H Z. Next, in step, it is judged whether or not a fixed time, for example, one minute has passed. When the fixed time has passed, the process moves to step and the compressor 1 is operated at the required frequency.

【0008】しかして、圧縮機1が70HZ 以上の高周波
数で運転されることにより圧縮機1の密閉容器1C内の潤
滑油1Dは次第に減少するが、圧縮機1が50HZ で運転さ
れると、吐出冷媒ガスに伴われて流出する油量が返油管
19を通って戻される油量より少なくなるので、圧縮機1
の密閉容器1Cの潤滑油1Dの量が増加する。従って、圧縮
機1を70HZ 以上で9分間運転した後、圧縮機1を50H
Z で1分間運転することにより圧縮機1内の油量が回復
するので、以後、圧縮機1を要求周波数による運転に復
帰させることが可能となる。
[0008] Thus, the lubricating oil 1D in the closed casing 1C of the compressor 1 by the compressor 1 is operated at more high frequency 70H Z is decreased gradually, the compressor 1 is operated at 50H Z And the amount of oil that flows out with the discharged refrigerant gas
Since the amount of oil returned through 19 is less, compressor 1
The amount of lubricating oil 1D in the closed container 1C increases. Thus, after the compressor 1 is operated at 70H Z or 9 minutes, the compressor 1 50H
Since the amount of oil in the compressor 1 is recovered by operating for 1 minute at Z , it is possible to return the compressor 1 to the operation at the required frequency thereafter.

【0009】[0009]

【発明の効果】本発明においては、インバータ駆動圧縮
機の高周波数による運転が所定時間継続したときは、一
旦、インバータ駆動圧縮機を強制的に低周波数により一
定時間運転し、しかる後、要求周波数による運転に復帰
させるため、圧縮機内の潤滑油の減少に基く圧縮機の潤
滑不良や焼付事故を未然に防止できる。
According to the present invention, when the operation of the inverter-driven compressor at a high frequency continues for a predetermined time, the inverter-driven compressor is forcibly operated at a low frequency for a certain period of time, and then the required frequency is applied. Since the operation is resumed by the above, it is possible to prevent inadequate lubrication of the compressor and seizure accident due to the decrease of the lubricating oil in the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】従来の空気調和機の系統図である。FIG. 2 is a system diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 インバータ駆動圧縮機 17 オイルセパレータ 19 返油管 20 固定絞り 24 コントローラ 21 インバータ 27 負荷センサ 1 Inverter driven compressor 17 Oil separator 19 Oil return pipe 20 Fixed throttle 24 Controller 21 Inverter 27 Load sensor

フロントページの続き (72)発明者 佐々倉 正彦 愛知県西春日井郡西枇杷島町字旭町三丁目 1番地 三菱重工業株式会社エアコン製作 所内Continued Front Page (72) Masahiko Sasaki Inventor Masahiko Sasaki 3-chome, Asahimachi, Nishibiwajima-cho, Nishikasugai-gun, Aichi Mitsubishi Heavy Industries, Ltd. Air Conditioning Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 インバータ駆動圧縮機と、これから吐出
された冷媒ガスに含まれる油を分離するオイルセパレー
タと、このオイルセパレータで分離された油を固定絞り
を介して上記インバータ駆動圧縮機に戻す返油管を備え
たヒートポンプの運転方法において、上記インバータ駆
動圧縮機の高周波数による運転が所定時間継続したとき
は、一旦、上記インバータ駆動圧縮機を強制的に低周波
数により一定時間運転し、しかる後、要求周波数による
運転に復帰させることを特徴とするヒートポンプの運転
方法。
1. An inverter-driven compressor, an oil separator for separating oil contained in refrigerant gas discharged therefrom, and oil returned by the oil separator to the inverter-driven compressor via a fixed throttle. In the method of operating a heat pump provided with an oil pipe, when the operation of the inverter-driven compressor at a high frequency continues for a predetermined time, once, the inverter-driven compressor is forcibly operated for a fixed time at a low frequency, and thereafter, A method for operating a heat pump, characterized by returning to operation at a required frequency.
JP04069994A 1992-02-21 1992-02-21 Operation method of heat pump Expired - Lifetime JP3073303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04069994A JP3073303B2 (en) 1992-02-21 1992-02-21 Operation method of heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04069994A JP3073303B2 (en) 1992-02-21 1992-02-21 Operation method of heat pump

Publications (2)

Publication Number Publication Date
JPH05231321A true JPH05231321A (en) 1993-09-07
JP3073303B2 JP3073303B2 (en) 2000-08-07

Family

ID=13418743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04069994A Expired - Lifetime JP3073303B2 (en) 1992-02-21 1992-02-21 Operation method of heat pump

Country Status (1)

Country Link
JP (1) JP3073303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858541B1 (en) * 2002-07-03 2008-09-16 엘지전자 주식회사 Compressor Control Method of Inverter Air Conditioner
CN108168895A (en) * 2017-12-20 2018-06-15 江西腾勒动力有限公司 Engine lubrication system oil pressure loses experimental rig and method

Also Published As

Publication number Publication date
JP3073303B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US10746449B2 (en) Method for controlling air conditioner
US7870758B2 (en) Ejector cycle
JP2004101053A (en) Air conditioner
US6997001B2 (en) Method of operating a refrigeration cycle
WO2017183068A1 (en) Refrigeration cycle device
Luo et al. Performance Analysis of High-temperature Two-stage Compression Heat Pump with Vapor Injection Dynamic Control.
WO2015076331A1 (en) Air conditioner
JPH05231321A (en) Operating method for heat pump
CN111981641A (en) Air conditioner defrosting control method and air conditioner system
JP2000130866A (en) Air conditioner
JP6926900B2 (en) Air conditioner
JP3360327B2 (en) Air conditioner
CN106801921B (en) Enhanced vapor injection air conditioning system and control method thereof
JPS5912941B2 (en) Air conditioning equipment
JPH0814698A (en) Operation control device for air-conditioner
US6748756B2 (en) HVAC system with periodic override of evaporator control
WO2022210128A1 (en) Air-conditioning device
JP2020076546A (en) Refrigeration cycle device
JP3360311B2 (en) Air conditioner
JPH05231334A (en) Operation controlling method for heat pump
KR100383753B1 (en) Apparatus for starting compressor of air conditioner
JPH06272973A (en) Air conditioner
JPH06137693A (en) Controlling method for starting time operation of annual cooling refrigerating cycle
JP2882554B2 (en) Multi-room air conditioner
JPH01312345A (en) Air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12