JPH05230243A - Method for producing ceramic-coated molded body - Google Patents
Method for producing ceramic-coated molded bodyInfo
- Publication number
- JPH05230243A JPH05230243A JP7208392A JP7208392A JPH05230243A JP H05230243 A JPH05230243 A JP H05230243A JP 7208392 A JP7208392 A JP 7208392A JP 7208392 A JP7208392 A JP 7208392A JP H05230243 A JPH05230243 A JP H05230243A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- molded body
- polymer
- ceramic layer
- semi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 17
- 229920005989 resin Polymers 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000005524 ceramic coating Methods 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 7
- 238000005299 abrasion Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 28
- 150000002500 ions Chemical class 0.000 description 12
- 238000010884 ion-beam technique Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- -1 polysiloxane Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000002468 ceramisation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
Abstract
(57)【要約】
【構成】 珪素を骨格に持つ高分子を含む樹脂成型体
(含むフィルム、電線)表面に、1MeV以上の荷電粒
子を打ち込み、成形体表面にセラミックス層乃至半セラ
ミックス層を直接生成させる、セラミックス被覆樹脂成
形体の製法。
【効果】 このセラミックス層は耐熱性、耐摩粍性、耐
薬品性等と言った諸特性に優れ、高分子母材との密着性
も非常に優れているので、電線被覆、フィルム、成形体
等に応用が可能。(57) [Summary] [Structure] Charged particles of 1 MeV or more are implanted on the surface of a resin molded body (containing film, electric wire) containing a polymer having a silicon skeleton, and a ceramic layer or semi-ceramic layer is directly formed on the surface of the molded body. A method for producing a ceramics-coated resin molded product. [Effect] This ceramic layer has excellent properties such as heat resistance, abrasion resistance, and chemical resistance, and also has excellent adhesion to the polymer base material. Can be applied to.
Description
【0001】[0001]
【産業上の利用分野】本発明は、珪素を骨格に持つ高分
子を含む樹脂成形体表面に、荷電粒子を打ち込み、成形
物表面にセラミックス層乃至半セラミックス層を直接生
成させることを特徴とする、セラミックス被覆樹脂成形
体の製造方法に関するものである。FIELD OF THE INVENTION The present invention is characterized in that charged particles are injected into the surface of a resin molded product containing a polymer having silicon as a skeleton to directly form a ceramic layer or a semi-ceramic layer on the surface of the molded product. The present invention relates to a method for manufacturing a ceramics-coated resin molded body.
【0002】[0002]
【従来の技術】セラミックス成形体は、粉末をプレス
し、プレス加工品を高温で焼結することにより製造して
いる。成形体にセラミックコーティングする場合には、
溶射法、化学的蒸着法(CVD法)或いはスパッタリン
グ法などがある。2. Description of the Related Art Ceramic molded bodies are manufactured by pressing powder and sintering the pressed product at a high temperature. When ceramic coating on the molded body,
There are a thermal spraying method, a chemical vapor deposition method (CVD method), a sputtering method and the like.
【0003】また、ポリシルセスオキサンを主成分とし
て含む樹脂膜に100KeVのエネルギーのプロトンビ
ームを1×1014コ/cm2 照射し、樹脂膜の表面効果
を上げる試みがなされている( 例えば、特公昭59−1
4263号公報)。Further, an attempt has been made to improve the surface effect of the resin film by irradiating the resin film containing polysilsesoxane as the main component with a proton beam having an energy of 100 KeV at 1 × 10 14 co / cm 2. , Tokusho Sho 59-1
4263).
【0004】[0004]
【発明が解決しようとする課題】焼結により得られるセ
ラミックス体等の成形体は、非常に硬く、熱的にも安定
であるが、その製造工程故に生産性が悪く、複雑な形の
成形体を得ることは難しい。また、セラミックコーティ
ングの場合では、複雑な成形体への適用も可能である。
しかし、母材とコーティング層の密着に対して、母材が
金属やセラミックスなどの無機物である場合なら、ダイ
ナミックミキシング法で密着は確保されるが、母材が高
分子の場合にはこれらでは対処できない。A molded body such as a ceramic body obtained by sintering is extremely hard and thermally stable, but has poor productivity due to its manufacturing process and has a complicated shape. Hard to get. Further, in the case of ceramic coating, it can be applied to a complicated molded body.
However, when the base material is an inorganic substance such as metal or ceramics, the dynamic mixing method ensures the close contact between the base material and the coating layer, but when the base material is a polymer, these are handled. Can not.
【0005】従来のセラミックコーティング法では半セ
ラミックス(高分子とセラミックスとの中間的な構造を
持つ)を成膜することはできないために、屈曲性を持っ
たセラミックス被覆成形体を得ることはできない。ポリ
シルセスキオキサンにプロトン照射した前記先行技術で
は、荷電粒子のエネルギーが低く、改質層の厚みが十分
でなく、又照射量が非常に少なくセラミック状態には至
っていないため、母材の物性がそのまま影響するために
十分に耐熱性、硬度等が改善されていない。The conventional ceramic coating method cannot form a semi-ceramic film (having an intermediate structure between a polymer and a ceramics), so that it is not possible to obtain a ceramic-coated compact having flexibility. In the above-mentioned prior art in which polysilsesquioxane is irradiated with protons, the energy of charged particles is low, the thickness of the modified layer is not sufficient, and the irradiation amount is very small and the ceramic state is not reached. However, the heat resistance, hardness, etc. have not been sufficiently improved.
【0006】[0006]
【課題を解決するための手段】本発明は、珪素を骨格に
持つ高分子を含む樹脂成形体表面に、1MeV以上の荷
電粒子を打ち込み、成形体表面にセラミックス層乃至半
セラミックス層を直接生成させることにより、上記課題
を解決することができることを見出し、本発明を完成す
るに至った。According to the present invention, charged particles of 1 MeV or more are implanted on the surface of a resin molded body containing a polymer having silicon as a skeleton to directly form a ceramic layer or a semi-ceramic layer on the surface of the molded body. As a result, they have found that the above problems can be solved, and have completed the present invention.
【0007】すなわち、本発明は; 珪素を骨格に持つ高分子を含む樹脂成型体表面に、
1MeV以上の荷電粒子を打ち込み、成形体表面にセラ
ミックス層乃至半セラミックス層を直接生成させること
を特徴とするセラミックス被覆樹脂成形体の製造方法で
あり、また 珪素を骨格に持つ高分子を含む樹脂からなる絶縁層
に持つ電線に、1MeV以上の荷電粒子を打ち込み、絶
縁層全体若しくは表面を直接セラミックス化若しくは半
セラミックス化したことを特徴とする、セラミック被覆
電線の製造方法を提供する。That is, the present invention is: a resin molded body surface containing a polymer having silicon as a skeleton,
A method for producing a ceramic-coated resin molded body, which comprises directly charging a ceramic body or a semi-ceramic layer on the surface of the molded body by implanting charged particles of 1 MeV or more, and from a resin containing a polymer having a silicon skeleton. Provided is a method for producing a ceramic-coated electric wire, which comprises implanting charged particles of 1 MeV or more into an electric wire included in an insulating layer to directly make the entire insulating layer or the surface into a ceramic or a semi-ceramic.
【0008】さらに、本発明は、以下の実施の態様をも
包含する。 珪素の骨格を持つ高分子を含む高分子フィルムに、
1MeV以上の荷電粒子を打ち込み、フィルムの表面及
びフィルム全体を直接セラミックス化若しくは半セラミ
ックス化することを特徴とする、セラミックフィルムの
製造方法。 イオンビームを照射する工程とイオンビーム照射前
か後か、または前後両方に熱処理を前記〜に記載の
成形体に行うことを特徴とするセラミックス被覆樹脂成
形体の製造方法。Furthermore, the present invention also includes the following embodiments. A polymer film containing a polymer with a silicon skeleton,
A method for producing a ceramic film, which comprises directly charging the surface of the film and the entire film into a ceramic or a semi-ceramic by implanting charged particles of 1 MeV or more. A method for producing a ceramics-coated resin molded product, which comprises subjecting the molded product to the heat treatment before, after, or both before and after the step of irradiating with an ion beam and the ion beam.
【0009】以下本発明を詳細に説明する。本発明のセ
ラミックス被覆樹脂成形体(含むフィルム)又は電線を
構成する珪素を骨格に持つ高分子を含む樹脂としては、
荷電粒子の打ち込みによりセラミック質被覆層をその場
で形成できるものなら特に制限されないが、好適にはポ
リシロキサン、例えばポリジメチルシロキサンを挙げる
ことができる。The present invention will be described in detail below. Examples of the resin containing a polymer having a silicon skeleton as a constituent of the ceramic-coated resin molded product (including film) or the electric wire of the present invention include:
There is no particular limitation as long as the ceramic coating layer can be formed in situ by implanting charged particles, but polysiloxane, for example, polydimethylsiloxane can be preferably used.
【0010】本発明の方法に用いるイオン種に特に制限
はないが、質量が大きなイオンほどセラミックス化に至
る照射線量が少なくてすむ。その荷電粒子としては、例
えばO-4、H+ 、He+ 、Ar+ 、N+ などのイオン粒
子や酸素、ケイ素、ボロンなどのイオンが挙げられる。
イオンビームの照射量はイオンのエネルギー量に大きく
左右されるが、エネルギー3MeVのN+ では、半セラ
ミックス状態で1×1012コ/cm2 以上となり、セラ
ミックス状態では1×1015コ/cm2 以上が必要とな
る。イオンエネルギーは、1MeV以上でなければなら
ない。There are no particular restrictions on the ion species used in the method of the present invention, but the larger the mass of the ion, the smaller the irradiation dose required for ceramization. Examples of the charged particles include ionic particles such as O -4 , H + , He + , Ar + and N +, and ions such as oxygen, silicon and boron.
The irradiation amount of the ion beam largely depends on the energy amount of the ions, but with N + having an energy of 3 MeV, it is 1 × 10 12 co / cm 2 or more in the semi-ceramic state and 1 × 10 15 co / cm 2 in the ceramic state. The above is required. The ion energy must be above 1 MeV.
【0011】本発明の方法によると、高分子表面に直接
セラミック層を生成させるようにしたので、高分子層と
セラミックス層の明らかな境目がなく組成が高分子から
セラミックスへと連続的に変化している、いわゆる傾斜
材料を生成させることができる。このために、セラミッ
クス層と高分子母材の密着性は極めて強固なものとな
る。According to the method of the present invention, since the ceramic layer is formed directly on the surface of the polymer, there is no apparent boundary between the polymer layer and the ceramic layer, and the composition continuously changes from the polymer to the ceramic. It is possible to produce so-called graded materials. For this reason, the adhesion between the ceramic layer and the polymer base material becomes extremely strong.
【0012】本発明においては、イオンの打ち込み量を
制御する事により、セラミックスと高分子の中間的な性
質を持つ半セラミックスを生成させることも可能であ
り、半セラミックスではある程度伸びを持つことから、
本発明の方法で得られた成形体は、屈曲部材への適応も
可能になる。またセラミックス層、半セラミックス層の
厚みは、プロトンビームを1MeVで加速すると、10
μm以上となり改質層の物性が充分に発揮される。改質
層の物性が充分に発揮されるためには、10μm程度の
厚みが必要であるので、プロトンで1MeVが、またよ
り質量の大きい荷電粒子では数MeVが必要となる。In the present invention, it is also possible to produce a semi-ceramic having intermediate properties between ceramics and a polymer by controlling the ion implantation amount. Since the semi-ceramic has some elongation,
The molded body obtained by the method of the present invention can be applied to a bending member. The thickness of the ceramic layer and the semi-ceramic layer is 10 when the proton beam is accelerated by 1 MeV.
When the thickness is at least μm, the physical properties of the modified layer are sufficiently exhibited. In order for the physical properties of the modified layer to be fully exhibited, a thickness of about 10 μm is required, and therefore 1 MeV is required for protons and several MeV is required for charged particles having a larger mass.
【0013】本発明において半セラミックスとは、有機
結合をある程度残したセラミックスを指し、熱膨張係
数、硬度、耐熱性、耐溶剤性、耐薬品性等の諸特性がセ
ラミックスと高分子の中間的な性質を示すものを指す。
本発明において、イオンビームを照射する工程とイオン
ビーム照射前か後かに、または前後両方に熱処理をする
と、あらかじめ、もしくは残存している熱的に弱い結合
を飛ばし、より安定なセラミック膜の形成に有効であ
る。該熱処理は100℃〜450℃程度に加熱処理が有
効であり、これにより耐熱性、機械的強度などをより向
上させることができる。In the present invention, the semi-ceramic refers to a ceramic in which organic bonds are left to some extent, and various characteristics such as coefficient of thermal expansion, hardness, heat resistance, solvent resistance, chemical resistance, etc. are intermediate between those of ceramics and polymers. Refers to a property.
In the present invention, when the step of irradiating the ion beam and the heat treatment before or after the ion beam irradiation, or both before and after the ion beam irradiation, the thermally weak bonds existing in advance or remaining are blown, and a more stable ceramic film is formed. Is effective for. The heat treatment is effectively a heat treatment at about 100 ° C. to 450 ° C., which can further improve heat resistance, mechanical strength and the like.
【0014】本発明において、セラミックス層或いは半
セラミックス層は10μm以上の改質層であれば、充分
に改質層の物性が反映されるために、耐熱性、耐溶剤
性、耐薬品性等の諸特性が充分に改善される。本発明の
方法に適用される成形体としては特に制限されないが、
各種電気・電子部品や電線などの電気絶縁層の形成に、
絶縁性フィルムの形成に有効である。In the present invention, if the ceramic layer or the semi-ceramic layer is a modified layer having a thickness of 10 μm or more, the physical properties of the modified layer are sufficiently reflected, so that the heat resistance, solvent resistance, chemical resistance, etc. Various characteristics are sufficiently improved. The molded body applied to the method of the present invention is not particularly limited,
For the formation of electrical insulation layers such as various electric and electronic parts and electric wires
It is effective for forming an insulating film.
【0015】[0015]
【作用】本発明によると、珪素を骨格に持つ高分子表面
にセラミックス層或いは半セラミックス層を直接形成さ
せることができる。その理由は、珪素を骨格に持つ高分
子は、熱によってもある程度表面硬度が上昇する。更に
温度を上げセラミックス化を図ろうとしても、高温処理
品では十分な硬度が得られず、分解のみが起こる。According to the present invention, the ceramic layer or the semi-ceramic layer can be directly formed on the surface of the polymer having silicon as a skeleton. The reason is that the surface hardness of a polymer having silicon in its skeleton increases to some extent even by heat. Even if the temperature is further raised to obtain ceramics, the high temperature treated product does not have sufficient hardness, and only decomposition occurs.
【0016】しかし、さらにイオンビーム照射を上記珪
素を骨格に持つ高分子表面に適用すると、イオンが単位
体積当たりに落とすエネルギーが加熱処理とは比較して
遙かに大きいため、イオンの軌跡の回りの結合は一旦切
断され引き続いて再結合し、該イオンが落としたエネル
ギーが大きいために、イオンの軌跡の回りは溶融状態に
なり、再結合の際には、熱的に安定な結合のみが生成
し、有機結合は分解するからである。However, when the ion beam irradiation is further applied to the surface of the polymer having silicon as a skeleton, the energy dropped by the ion per unit volume is much larger than that of the heat treatment, and therefore the trajectory of the ion is reduced. The bond of is once cut and then recombined, and because the energy dropped by the ion is large, it becomes a molten state around the trajectory of the ion, and only a thermally stable bond is generated at the time of recombination. However, the organic bond is decomposed.
【0017】[0017]
【実施例】以下、この発明を実施例により説明するが、
これらは本発明の範囲を制限しない。シロキサンを主成
分に持つ珪素系高分子フィルム(膜厚8μm;商品名又
は化学式と分子量など)にイオン照射を行った。イオン
照射については、イオン種:O4+、エネルギー:10M
eVの条件で行い、照射量、熱処理条件は表1に示す通
りである。セラミックス層、半セラミックス層の膜厚は
10μmである。EXAMPLES The present invention will be described below with reference to examples.
These do not limit the scope of the invention. A silicon-based polymer film containing siloxane as a main component (film thickness 8 μm; trade name or chemical formula and molecular weight, etc.) was irradiated with ions. Regarding ion irradiation, ion species: O 4+ , energy: 10M
The irradiation amount and the heat treatment conditions are as shown in Table 1. The thickness of the ceramic layer and the semi-ceramic layer is 10 μm.
【0018】 耐溶剤性;四塩化炭素(50℃)に2
4時間浸漬した後の膨潤の様子を観察する。 熱減量率;30℃/分で室温から800℃まで昇温
し、質量の変化を調べる。 耐摩粍性;低荷重をかけてターンテーブル上で回転
させ損傷の程度を観察した。 硬度;鉛筆硬度テストを用いた(JIS K540
1:荷重500g)。Solvent resistance: 2 in carbon tetrachloride (50 ° C.)
The state of swelling after immersing for 4 hours is observed. Thermal loss rate: The temperature is raised from room temperature to 800 ° C. at 30 ° C./min, and the change in mass is examined. Abrasion resistance: A low load was applied to rotate on a turntable and the extent of damage was observed. Hardness; Pencil hardness test was used (JIS K540
1: load 500 g).
【0019】その試験結果は表1に示す。The test results are shown in Table 1.
【表1】 [Table 1]
【0020】耐摩粍性に付いては実施例2、3が比較例
に対して約7倍、実施例1については約5倍の耐摩粍性
を示した。硬度については、比較例は3B程度の硬度し
かないが、実施例1では9H程度、実施例2、3では9
H以上の硬度が得られる。Regarding abrasion resistance, Examples 2 and 3 showed about 7 times as much abrasion resistance as Comparative Example, and Example 1 showed about 5 times as much abrasion resistance. Regarding the hardness, the comparative example has a hardness of about 3B, but the hardness is about 9H in Example 1, and 9 in Examples 2 and 3.
A hardness of H or higher can be obtained.
【0021】[0021]
【発明の効果】以上のように、本発明によると、珪素を
骨格に持つ高分子を含む樹脂成形体の表面に、荷電粒子
を打ち込み、成形体表面にセラミックス層乃至半セラミ
ックス層を直接生成させることができる。このセラミッ
クス層は耐熱性、耐摩粍性、耐薬品性等と言った諸特性
に優れており、更に高分子母材との密着性も非常に優れ
ているので、電線被覆、フィルム、上記に挙げた諸特性
を要求するあらゆる成形体に応用が可能である。As described above, according to the present invention, charged particles are injected into the surface of a resin molded product containing a polymer having silicon as a skeleton to directly form a ceramic layer or a semi-ceramic layer on the surface of the molded product. be able to. This ceramic layer is excellent in various properties such as heat resistance, abrasion resistance, chemical resistance, and the like, and also has excellent adhesion to the polymer base material. It can be applied to any molded product that requires various properties.
Claims (2)
体表面に、1MeV以上の荷電粒子を打ち込み、成形体
表面にセラミックス層乃至半セラミックス層を直接生成
させることを特徴とする、セラミックス被覆樹脂成形体
の製造方法。1. A ceramic coating characterized by implanting charged particles of 1 MeV or more on a surface of a resin molded body containing a polymer having silicon as a skeleton to directly form a ceramic layer or a semi-ceramic layer on the surface of the molded body. A method for producing a resin molded body.
なる絶縁層を持つ電線に、1MeV以上の荷電粒子を打
ち込み、絶縁層全体若しくは表面を直接セラミックス化
若しくは半セラミックス化したことを特徴とする、セラ
ミック被覆電線の製造法。2. An electric wire having an insulating layer made of a resin containing a polymer having silicon as a skeleton is charged with charged particles of 1 MeV or more, and the entire insulating layer or the surface is directly made into ceramic or semi-ceramic. A method for manufacturing a ceramic-coated electric wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7208392A JPH05230243A (en) | 1992-02-24 | 1992-02-24 | Method for producing ceramic-coated molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7208392A JPH05230243A (en) | 1992-02-24 | 1992-02-24 | Method for producing ceramic-coated molded body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05230243A true JPH05230243A (en) | 1993-09-07 |
Family
ID=13479162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7208392A Pending JPH05230243A (en) | 1992-02-24 | 1992-02-24 | Method for producing ceramic-coated molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05230243A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514469A (en) * | 2012-05-02 | 2015-05-21 | カーディアック ペースメイカーズ, インコーポレイテッド | Pacing lead with ultrathin separation layer formed by atomic layer deposition |
US9737905B2 (en) | 2012-08-29 | 2017-08-22 | Cardiac Pacemakers, Inc. | Enhanced low friction coating for medical leads and methods of making |
-
1992
- 1992-02-24 JP JP7208392A patent/JPH05230243A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514469A (en) * | 2012-05-02 | 2015-05-21 | カーディアック ペースメイカーズ, インコーポレイテッド | Pacing lead with ultrathin separation layer formed by atomic layer deposition |
US9737905B2 (en) | 2012-08-29 | 2017-08-22 | Cardiac Pacemakers, Inc. | Enhanced low friction coating for medical leads and methods of making |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100454618B1 (en) | Hardening Method of Hydrogen Silsesquioxane Resin by Electron Beam | |
Nakahira et al. | Biocompatibility of dense hydroxyapatite prepared using an SPS process | |
JPH0688242A (en) | Surface treating method for metal by atmospheric plasma | |
US4562164A (en) | Insulation of a coil used in electrical apparatus | |
TW350094B (en) | Process for producing semiconductor substrate | |
JPS59224159A (en) | Method of producing high resistance layer having low resistance temperature coefficient | |
Bower et al. | Properties of deposited size‐selected clusters: Reactivity of deposited silicon clusters | |
US3564565A (en) | Process for adherently applying boron nitride to copper and article of manufacture | |
JPH05230243A (en) | Method for producing ceramic-coated molded body | |
Pivin et al. | Ion irradiation of preceramic polymer thin films | |
JPS61295371A (en) | Method for manufacturing aluminum material with aluminum nitride layer | |
JP3124508B2 (en) | Method for modifying nitride surface and nitride surface modified by the method | |
KR101702970B1 (en) | Method for coating material of ceramic on the surface of graphite or C/C composite by the combined techniques of PVD with CVD | |
US3492152A (en) | Method of vacuum vapor depositing a material on a substrate including reconstitution of decomposed portions of the material | |
JPH01282175A (en) | Method for forming a protective film on superconducting materials | |
Hirao et al. | Electrical properties of Si implanted with As through SiO2 films | |
WO1992012274A1 (en) | Method of forming oxide film | |
JP2001106585A (en) | Treating method for improving resistance to oxidation at high temperature of carbon material | |
JPH0314866A (en) | Resin composition for dielectric, and film capacitor | |
JPS6326349A (en) | Formation of cubic boron nitride film | |
KR101628969B1 (en) | Method for coating material of ceramic for reducing oxidation on the surface of graphite or C/C composite and the coating material of ceramic coated graphite or C/C composite thereby | |
von Münch et al. | Production of β-SiC buffer layers for CVD diamond thin films by ion implantation | |
JPH11147956A (en) | Production of film of polydiphenysiloxane | |
Nejim | THE EFFECT OF ION IMPLANTATION ON THE ELECTRICAL AND STRUCTURAL PROPERTIES OF SOME SELECTED POLYMERS (POLYPHENYLENE, THIN FILMS, HUNT POSITIVE RESIST, MYLAR) | |
JPH0553872B2 (en) |