JPH05228371A - Exhaust gas purifying catalyst - Google Patents
Exhaust gas purifying catalystInfo
- Publication number
- JPH05228371A JPH05228371A JP4031956A JP3195692A JPH05228371A JP H05228371 A JPH05228371 A JP H05228371A JP 4031956 A JP4031956 A JP 4031956A JP 3195692 A JP3195692 A JP 3195692A JP H05228371 A JPH05228371 A JP H05228371A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- test
- metal
- gas purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 45
- 239000005909 Kieselgur Substances 0.000 claims abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000005342 ion exchange Methods 0.000 claims abstract description 13
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 13
- 150000003624 transition metals Chemical class 0.000 claims abstract description 13
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011148 porous material Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 abstract description 38
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 14
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 12
- 239000010457 zeolite Substances 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 abstract 1
- 238000000746 purification Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 12
- 239000010949 copper Substances 0.000 description 6
- 229910052878 cordierite Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- -1 X-type Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、排気ガス浄化用触媒に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst.
【0002】[0002]
【従来の技術】自動車の排気ガス浄化用触媒として、C
O(一酸化炭素)及びHC(炭化水素)の酸化と、NO
x(窒素酸化物)の還元とを同時に行なう三元触媒が一
般に知られている。この三元触媒は、例えばハニカム構
造のコージェライト製担体の表面にγ−アルミナによる
担持層を形成し、該担持層にPt(白金)及びRh(ロ
ジウム)を担持させてなるもので、エンジンの空燃比
(A/F)を理論空燃比14.7付近に制御したとき
に、高い浄化効率が得られる。2. Description of the Related Art C is used as a catalyst for purifying exhaust gas of automobiles.
O (carbon monoxide) and HC (hydrocarbon) oxidation, NO
A three-way catalyst that simultaneously reduces x (nitrogen oxide) is generally known. This three-way catalyst comprises, for example, a support layer of γ-alumina formed on the surface of a cordierite carrier having a honeycomb structure, and Pt (platinum) and Rh (rhodium) supported on the support layer. A high purification efficiency is obtained when the air-fuel ratio (A / F) is controlled to be close to the theoretical air-fuel ratio of 14.7.
【0003】そして、上記触媒において、上記担持層
に、ゼオライトによる2〜10オングストロームの微細
孔と、カーボン粉末等の加熱分解による0.1〜10μ
マクロ細孔とを形成し、高SV下でのCO、HC、NO
xの浄化率を向上させる、という提案はある(特開平1
−135542号公報参照)。In the above catalyst, the supporting layer has fine pores of 2 to 10 angstroms formed by zeolite, and 0.1 to 10 μm formed by thermal decomposition of carbon powder or the like.
Forming macropores, CO, HC, NO under high SV
There is a proposal to improve the purification rate of x (JP-A-1
-135542 publication).
【0004】これに対して、自動車の分野では上記空燃
比を高くしてエンジンの低燃費化を図るという要請があ
る。その場合、排気ガスは酸素過剰の所謂リーン雰囲気
となるため、上記三元触媒では、COやHCは酸化浄化
することができても、NOxの還元浄化ができなくな
る。On the other hand, in the field of automobiles, there is a demand to increase the air-fuel ratio to reduce the fuel consumption of the engine. In this case, since the exhaust gas has a so-called lean atmosphere with excess oxygen, the three-way catalyst cannot oxidize and purify CO and HC, but cannot reduce and purify NOx.
【0005】そこで、近年は、遷移金属をイオン交換で
担持させてなるゼオライト触媒の研究が進められてい
る。このゼオライト触媒の場合、リーン雰囲気において
も、NOxを直接、あるいは共存する還元剤(例えば、
CO,HC等)により、N2 とO2 とに接触分解させる
ことができる。Therefore, in recent years, research on a zeolite catalyst in which a transition metal is supported by ion exchange has been advanced. In the case of this zeolite catalyst, even in a lean atmosphere, a reducing agent that directly or coexists with NOx (for example,
CO, HC, etc.) can be catalytically decomposed into N 2 and O 2 .
【0006】[0006]
【発明が解決しようとする課題】しかし、上記ゼオライ
ト触媒の場合、NOx浄化能が排気ガス温度や排気ガス
中のHC濃度によって変化し、活性が低くなりがちであ
る、さらに、耐熱性も低い、という問題がある。However, in the case of the above zeolite catalyst, the NOx purification capacity tends to change depending on the exhaust gas temperature and the HC concentration in the exhaust gas, and the activity tends to be low, and further, the heat resistance is low. There is a problem.
【0007】すなわち、本発明の課題は、上記ゼオライ
トのようなミクロの細孔を有する結晶質多孔体である金
属含有シリケート系の触媒の耐熱性を高めながら、その
活性の向上を図ることにある。That is, an object of the present invention is to improve the activity of a metal-containing silicate catalyst, which is a crystalline porous material having microscopic pores such as the above-mentioned zeolite, while improving its heat resistance. ..
【0008】[0008]
【課題を解決するための手段及びその作用】本発明者
は、このような課題に対し、鋭意研究に努めた結果、上
記金属含有シリケートに遷移金属がイオン交換担持され
てなる触媒材料と、イオン交換サイトを持たない無機多
孔質とを組み合わせると、上記課題を解決できることを
見出だしたものである。MEANS TO SOLVE THE PROBLEMS AND ACTIONS OF THE PROBLEMS As a result of intensive research on the above problems, the present inventor has found that a catalyst material in which a transition metal is supported on the above metal-containing silicate by ion exchange and an ion. It has been found that the above problem can be solved by combining with an inorganic porous material having no exchange site.
【0009】すなわち、上記課題を解決する手段は、金
属含有シリケートに遷移金属がイオン交換によって担持
されてなる触媒層が担体表面に形成されている排気ガス
浄化用触媒であって、上記触媒層にはイオン交換サイト
を持たない無機多孔質粉末が分散混入されていることを
特徴とするものである。That is, the means for solving the above-mentioned problems is an exhaust gas purifying catalyst in which a catalyst layer comprising a metal-containing silicate carrying a transition metal by ion exchange is formed on the surface of a carrier. Is characterized in that an inorganic porous powder having no ion exchange site is dispersed and mixed.
【0010】上記排気ガス浄化用触媒においては、無機
多孔質粉末によって触媒層に多数のマクロ孔が形成さ
れ、該触媒層内部へのガス拡散効果が高まり、NOx浄
化率が向上する。また、上記無機多孔質粉末は、触媒の
耐熱性向上にも寄与する。この耐熱性向上の理由は明ら
かではないが、当該無機多孔質の熱伝導率が低いことが
一因になっていると考えられる。In the above exhaust gas purifying catalyst, a large number of macropores are formed in the catalyst layer by the inorganic porous powder, the gas diffusion effect inside the catalyst layer is enhanced, and the NOx purification rate is improved. Further, the inorganic porous powder also contributes to the improvement of the heat resistance of the catalyst. The reason for this improvement in heat resistance is not clear, but it is considered that this is partly due to the low thermal conductivity of the inorganic porous material.
【0011】上記金属含有シリケート本体としては、結
晶の骨格を形成する金属としてAlを用いたアルミノシ
リケート(ゼオライト)が好適であり、その他に上記A
lに代えてあるいはAlと共にCe、Mn、Tb、Cu
など他の金属を骨格形成材料として用いたものも好まし
く採用することができる。ゼオライトとしては、A型、
X型、Y型、ZSM−5等の合成ゼオライトが好適であ
り、さらに、モルデナイトも好ましく使用し得る。As the metal-containing silicate body, an aluminosilicate (zeolite) using Al as a metal forming a crystal skeleton is preferable, and in addition to the above A.
Ce, Mn, Tb, Cu instead of 1 or together with Al
Those using other metal as a skeleton-forming material can also be preferably adopted. As zeolite, type A,
Synthetic zeolites such as X-type, Y-type and ZSM-5 are suitable, and mordenite can also be preferably used.
【0012】上記金属含有シリケートにイオン交換によ
って担持せしめる遷移金属は、当該触媒の活性種とな
る。この遷移金属としては、Cuが好適であり、その他
にCo、Cr、Ni、Mn、Fe等も好ましく使用し得
る。また、異なる2種以上の遷移金属を組み合わせて使
用することもできる。The transition metal supported on the metal-containing silicate by ion exchange serves as an active species of the catalyst. As the transition metal, Cu is preferable, and in addition, Co, Cr, Ni, Mn, Fe and the like can be preferably used. Also, two or more different transition metals can be used in combination.
【0013】上記触媒層を担持せしめる担体としては、
コーディライト製のハニカム構造のものが好適である
が、他の無機多孔質体を用いることもできる。As a carrier for supporting the above catalyst layer,
A honeycomb structure made of cordierite is suitable, but other inorganic porous materials can also be used.
【0014】しかして、上記触媒層に分散混入する無機
多孔質粉末としては、ケイソウ土が好適であり、その細
孔径は8〜100オングストロームが好適である。8オ
ングストローム未満では期するガス拡散効果が得られ
ず、100オングストロームを越えるような大径では、
金属含有シリケートの一次粒子が無機多孔質粉末の細孔
に入ってしまうからである。上記細孔径のより好ましい
値は10±2オングストロームである。また、無機多孔
質粉末としては、モンモリロナイトのようなの他の無機
多孔質材を用いることもできる。As the inorganic porous powder dispersed and mixed in the catalyst layer, diatomaceous earth is preferable, and the pore diameter thereof is preferably 8 to 100 angstrom. If it is less than 8 angstroms, the desired gas diffusion effect cannot be obtained, and if it exceeds 100 angstroms,
This is because the primary particles of the metal-containing silicate enter the pores of the inorganic porous powder. A more preferable value of the pore size is 10 ± 2 angstrom. Further, as the inorganic porous powder, other inorganic porous materials such as montmorillonite can be used.
【0015】また、上記無機多孔質粉末の混入量は、遷
移金属でイオン交換されたメタロシリケートに対し、重
量比率で1/2.5〜1/4.5となるようにすること
が望ましい。上記無機多孔質の混入量が1/2.5より
も少ないと、所期のガス拡散効果が得られず、同混入量
が1/4.5よりも多くなると、上記メタロシリケート
による触媒作用が無機多孔質によって阻害されてくる。Further, it is desirable that the mixing amount of the inorganic porous powder be 1 / 2.5-1.4.5 in weight ratio with respect to the metallosilicate ion-exchanged with the transition metal. If the mixing amount of the inorganic porous material is less than 1 / 2.5, the desired gas diffusion effect cannot be obtained, and if the mixing amount is more than 1 / 4.5, the catalytic action by the metallosilicate is Inhibited by inorganic porosity.
【0016】[0016]
【発明の効果】従って、本発明によれば、金属含有シリ
ケートに遷移金属をイオン交換担持せしめてなる触媒層
に無機多孔質粉末が分散混入されているから、NOx浄
化率を高めながら、触媒の耐熱性、耐久性を高めること
ができる。Therefore, according to the present invention, since the inorganic porous powder is dispersed and mixed in the catalyst layer in which the transition metal is ion-exchanged and supported on the metal-containing silicate, the NOx purification rate can be increased while the catalyst Heat resistance and durability can be improved.
【0017】また、上記無機多孔質粉末としてケイソウ
土を用いたものによれば、その熱伝導率が低いことによ
り、上記耐熱性の向上の点で有利になり、また、無機多
孔質粉末の細孔径を8〜100オングストロームにした
ものによれば、所期のガス拡散効果を得てNOx浄化率
の向上を図ることができる。The diatomaceous earth used as the inorganic porous powder is advantageous in improving the heat resistance due to its low thermal conductivity, and the fineness of the inorganic porous powder is excellent. When the pore size is 8 to 100 angstroms, the desired gas diffusion effect can be obtained and the NOx purification rate can be improved.
【0018】[0018]
【実施例】以下、本発明の実施例を説明する。 <テスト1>以下の方法により供試材(触媒)Aを作成
した。すなわち、Na型合成ゼオライトZSM−5(S
iO2 /Al2 O3 =30)のNaイオンを酢酸銅水溶
液(0.1mol/l)によりCuイオンに交換し、得
られた触媒材料を洗浄し乾燥させた。そして、孔径が約
10オングストロームの細孔を有するケイソウ土と、上
記触媒材料とを重量比で1:3.5の割合となるように
混合し、これにバインダ(水和アルミナ)を混合し、さ
らに水を加えてスラリーを得た。上記触媒材料の粒径は
1〜2μmであり、ケイソウ土の粒径は2〜3μmであ
った。そうして、このスラリーをコーディライト製ハニ
カム担体にウォッシュコートして触媒層を形成し、その
後、焼成した。EXAMPLES Examples of the present invention will be described below. <Test 1> A test material (catalyst) A was prepared by the following method. That is, Na-type synthetic zeolite ZSM-5 (S
The Na ion of iO 2 / Al 2 O 3 = 30) was exchanged for Cu ion by an aqueous solution of copper acetate (0.1 mol / l), and the obtained catalyst material was washed and dried. Then, diatomaceous earth having pores with a pore diameter of about 10 Å and the above catalyst material are mixed in a weight ratio of 1: 3.5, and a binder (hydrated alumina) is mixed therein, Further water was added to obtain a slurry. The particle size of the catalyst material was 1-2 μm, and the particle size of diatomaceous earth was 2-3 μm. Then, this slurry was wash-coated on a honeycomb carrier made of cordierite to form a catalyst layer, and then fired.
【0019】また、他の供試材として、上記ケイソウ土
の代わりに上記Na型合成ゼオライトZSM−5を用
い、このZSM−5と上記触媒材料とを重量比で1:
3.5の割合となるように混合し、これにバインダ(水
和アルミナ)を混合し、水を加えてコージェライト製ハ
ニカム担体にウォッシュコートし、その後、焼成してな
る供試材Bと、上記触媒材料にバインダ(水和アルミ
ナ)を混合し、水を加えてコージェライト製ハニカム担
体にウォッシュコートし、その後、焼成してなる供試材
C(ケイソウ土を含まない)とを準備した。As another test material, the Na-type synthetic zeolite ZSM-5 was used instead of the diatomaceous earth, and the weight ratio of the ZSM-5 and the catalyst material was 1: 1.
The mixture was mixed at a ratio of 3.5, a binder (hydrated alumina) was mixed therewith, water was added to wash-coat the cordierite honeycomb carrier, and then firing, and a test material B, A binder (hydrated alumina) was mixed with the above catalyst material, water was added thereto to wash-coat a cordierite honeycomb carrier, and then fired to prepare a test material C (without diatomaceous earth).
【0020】この場合、上記触媒材料におけるCuイオ
ンの交換率及び乾燥条件、並びに各供試材のウォッシュ
コート後の焼成条件は次の通りである。In this case, the exchange rate of Cu ions in the catalyst material and the drying conditions, and the firing conditions after washcoating of each test material are as follows.
【0021】イオン交換率;100% 乾燥条件 ;200℃×0.5時間 焼成条件 ;500℃×2時間 また、上記各供試材における触媒層の厚さは全て同じで
ある。すなわち、供試材A,Bは供試材Cに比べて、無
機多孔質が混入されているために、そのCuイオン数は
少なくなっている(3.5/4.5倍になっている)。Ion exchange rate: 100% Drying condition: 200 ° C. × 0.5 hours Firing condition: 500 ° C. × 2 hours Further, the thickness of the catalyst layer in each of the above test materials is the same. That is, since the test materials A and B are mixed with the inorganic porous material, the number of Cu ions is smaller than that of the test material C (3.5 / 4.5 times). ).
【0022】なお、上記供試材Aにおいて、スラリーに
おける触媒材料とケイソウ土との混合物の割合は、スラ
リー2.7〜3.1ccに対し混合物が1g程度とする
ことが望ましい。In the sample A, the ratio of the mixture of the catalyst material and diatomaceous earth in the slurry is preferably about 1 g of the mixture for 2.7 to 3.1 cc of the slurry.
【0023】また、本明細書におけるイオン交換率は、
金属含有シリケート(ゼオライト)のイオン交換サイト
に対する遷移金属の交換率であり、遷移金属を2価と
し、金属含有シリケート中に含まれる金属(この場合は
Al)量の1/2の遷移金属担持量をイオン交換率は1
00%として計算したものである。Further, the ion exchange rate in this specification is
It is the exchange rate of the transition metal with respect to the ion exchange site of the metal-containing silicate (zeolite), the transition metal is divalent, and the amount of the transition metal supported is 1/2 of the amount of the metal (Al in this case) contained in the metal-containing silicate. The ion exchange rate is 1
It is calculated as 00%.
【0024】そうして、上記各供試材A〜Cにつき、N
Ox浄化率(N2 転化率)を、A/F=22,SV=5
5000hr-1の条件で調べた。Then, for each of the above test materials A to C, N
Ox purification rate (N 2 conversion rate), A / F = 22, SV = 5
It was examined under the condition of 5000 hr -1 .
【0025】結果は図1に示されている。同図によれ
ば、ケイソウ土を混入した供試材Aと何も混入しない供
試材Cとを比べた場合、前者は450℃未満では後者よ
りもNOx浄化率が若干低下しているものの、450℃
以上では前者の方がCuイオン数は少ないにも拘らず、
同浄化率が5%程度高くなっている。また、上記供試材
Aと、Na型合成ゼオライトZSM−5を混入した供試
材Bとを比べると、前者は後者よりも上記浄化率が50
%近く高くなっている。このことから、触媒層にケイソ
ウ土を混入しても、NOx浄化率の低下はあまりなく、
かえって高温側ではガス拡散効果が得られてNOx浄化
率が向上することがわかる。The results are shown in FIG. According to the figure, when comparing the test material A containing diatomaceous earth and the test material C containing no diatomaceous earth, the former has a NOx purification rate slightly lower than the latter at 450 ° C. or lower, 450 ° C
In the above, although the former has a smaller number of Cu ions,
The purification rate is about 5% higher. Further, when the sample material A and the sample material B mixed with Na-type synthetic zeolite ZSM-5 are compared, the former has a purification rate of 50 than the latter.
It's close to%. From this, even if diatomaceous earth is mixed in the catalyst layer, the NOx purification rate does not decrease much,
On the contrary, it can be seen that the gas diffusion effect is obtained on the high temperature side and the NOx purification rate is improved.
【0026】<テスト2>本例は、触媒層におけるケイ
ソウ土の混入量を変えた供試材イ〜ホ(表1参照)を先
のテスト1における供試材Aと同様の方法によって作成
し、テスト1の場合と同様のNOx浄化率テストを行な
ったものである。なお、供試材ハは先のテスト1におけ
る供試材Aと同一の材料構成である。<Test 2> In this example, test materials I to E (see Table 1) with different amounts of diatomaceous earth mixed in the catalyst layer were prepared by the same method as the test material A in Test 1 above. The same NOx purification rate test as in Test 1 was performed. Note that the test material C has the same material configuration as the test material A in Test 1 above.
【0027】[0027]
【表1】 結果は図2に示されている。同図によれば、比率が1/
2.5〜1/4.5の範囲の供試材ロ〜ニでは、他の供
試材イ,ホよりもNOx浄化率が高くなっており、ケイ
ソウ土の混入量を1/2.5〜1/4.5の重量比率に
すれば、良いことがわかる。[Table 1] The results are shown in Figure 2. According to the figure, the ratio is 1 /
In the sample materials R to D in the range of 2.5 to 1 / 4.5, the NOx purification rate is higher than that of the other sample materials A and E, and the amount of diatomaceous earth mixed is 1 / 2.5. It can be seen that a weight ratio of 1 / 4.5 is good.
【0028】<テスト3>本例は、表2に示すように、
細孔径の異なるケイソウ土を用いてなる供試材ヘ〜ヌを
先のテスト1における供試材Aと同様の方法によって作
成し、テスト1の場合と同様のNOx浄化率テストを行
なったものである。なお、供試材チは先のテスト1にお
ける供試材Aと同一の材料構成である。<Test 3> In this example, as shown in Table 2,
Test materials H to N made of diatomaceous earth having different pore diameters were prepared by the same method as the test material A in Test 1 above, and the same NOx purification rate test as in Test 1 was performed. is there. Note that the test material H has the same material configuration as the test material A in Test 1 above.
【0029】[0029]
【表2】 結果は図3に示されている。同図によれば、細孔径が8
〜12オングストロームの供試材ト〜リでは、他の供試
材ヘ,ヌよりもNOx浄化率が高くなっており、細孔径
を8〜12オングストロームにすれば、良いことがわか
る。[Table 2] The results are shown in Figure 3. According to the figure, the pore size is 8
In the case of the test materials of ~ 12 Å, the NOx purification rate was higher than that of the other test materials, and it was found that the pore diameter of 8-12 Å was good.
【図1】テスト1における各供試材のNOx浄化率を示
すグラフ図FIG. 1 is a graph showing the NOx purification rate of each test material in Test 1.
【図2】テスト2における各供試材のNOx浄化率を示
すグラフ図FIG. 2 is a graph showing the NOx purification rate of each test material in Test 2.
【図3】テスト3における各供試材のNOx浄化率を示
すグラフ図FIG. 3 is a graph showing the NOx purification rate of each test material in Test 3.
なし None
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 一也 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Komatsu 3-3 Shinchi, Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation
Claims (3)
換によって担持されてなる触媒層が担体表面に形成され
ている排気ガス浄化用触媒であって、 上記触媒層にはイオン交換サイトを持たない無機多孔質
粉末が分散混入されていることを特徴とする排気ガス浄
化用触媒。1. An exhaust gas purifying catalyst in which a catalyst layer comprising a metal-containing silicate carrying a transition metal by ion exchange is formed on the surface of a carrier, wherein the catalyst layer has no ion exchange site. An exhaust gas purifying catalyst characterized in that porous powder is dispersed and mixed.
請求項1に記載の排気ガス浄化用触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the inorganic porous powder is diatomaceous earth.
オングストロームである請求項1又は請求項2に記載の
排気ガス浄化用触媒。3. The pore size of the inorganic porous powder is 8 to 100.
The exhaust gas-purifying catalyst according to claim 1 or 2, which is angstrom.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4031956A JPH05228371A (en) | 1992-02-19 | 1992-02-19 | Exhaust gas purifying catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4031956A JPH05228371A (en) | 1992-02-19 | 1992-02-19 | Exhaust gas purifying catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05228371A true JPH05228371A (en) | 1993-09-07 |
Family
ID=12345414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4031956A Withdrawn JPH05228371A (en) | 1992-02-19 | 1992-02-19 | Exhaust gas purifying catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05228371A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015110822A1 (en) * | 2014-01-23 | 2015-07-30 | Johnson Matthey Public Limited Company | Catalytic extruded, solid honeycomb body |
-
1992
- 1992-02-19 JP JP4031956A patent/JPH05228371A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015110822A1 (en) * | 2014-01-23 | 2015-07-30 | Johnson Matthey Public Limited Company | Catalytic extruded, solid honeycomb body |
CN106102909A (en) * | 2014-01-23 | 2016-11-09 | 庄信万丰股份有限公司 | The solid honeycomb body of catalytic type extrusion |
US20170007991A1 (en) * | 2014-01-23 | 2017-01-12 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
JP2017507776A (en) * | 2014-01-23 | 2017-03-23 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalytically extruded solid honeycomb body |
US9937488B2 (en) * | 2014-01-23 | 2018-04-10 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
US20180207627A1 (en) * | 2014-01-23 | 2018-07-26 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
GB2522435B (en) * | 2014-01-23 | 2018-10-03 | Johnson Matthey Plc | Catalytic extruded solid honeycomb body |
RU2671498C2 (en) * | 2014-01-23 | 2018-11-01 | Джонсон Мэтти Паблик Лимитед Компани | Catalytic extruded, solid honeycomb body |
US10500572B2 (en) * | 2014-01-23 | 2019-12-10 | Johnson Matthey Catalysts (Germany) Gmbh | Catalytic extruded, solid honeycomb body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2660411B2 (en) | Method for reducing and removing nitrogen oxides in exhaust gas | |
JP3098083B2 (en) | Exhaust gas purification catalyst | |
US5306684A (en) | Catalyst for purification of exhaust gases | |
US6309616B1 (en) | Method for adsorbing and removing ethylene and method for purifying an exhaust gas | |
JP2000024505A (en) | Catalyst for selective nitrogen oxide reduction having wide active temperature range | |
JPH05220403A (en) | Exhaust gas purifying catalyst | |
EP0922485A2 (en) | Combustion engine exhaust purifying catalyst | |
JP3794035B2 (en) | Catalyst for exhaust gas purification of internal combustion engine | |
JPH02293050A (en) | Catalyst for purification of exhaust gas | |
JPH05305240A (en) | Exhaust gas purifying catalyst | |
JPH05228371A (en) | Exhaust gas purifying catalyst | |
JP2849585B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH11216359A (en) | Ethylene adsorbent, adsorption removal method and exhaust gas purification method | |
JP3447513B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP3295992B2 (en) | Exhaust gas purification catalyst | |
JP3219815B2 (en) | Exhaust gas purification catalyst | |
JP3361136B2 (en) | Exhaust gas purification catalyst | |
JP3291316B2 (en) | Exhaust gas purification catalyst | |
JPH08141405A (en) | Catalyst for purification of exhaust gas from internal-combustion engine | |
JP2802335B2 (en) | Method for producing exhaust purification catalyst | |
JP3300028B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3242946B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
JP2536104B2 (en) | Exhaust gas purification catalyst | |
JP3363160B2 (en) | Nitrogen oxide removal catalyst | |
JPH09271640A (en) | Removal of nitrogen oxide, nitrogen oxide removing production of catalyst of catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990518 |