[go: up one dir, main page]

JPH05223526A - Plate thickness measuring device - Google Patents

Plate thickness measuring device

Info

Publication number
JPH05223526A
JPH05223526A JP2355392A JP2355392A JPH05223526A JP H05223526 A JPH05223526 A JP H05223526A JP 2355392 A JP2355392 A JP 2355392A JP 2355392 A JP2355392 A JP 2355392A JP H05223526 A JPH05223526 A JP H05223526A
Authority
JP
Japan
Prior art keywords
temperature
plate thickness
measuring device
measured
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2355392A
Other languages
Japanese (ja)
Inventor
Utayoshi Eguchi
詠美 江口
Naoki Takahashi
直紀 高橋
Shigeyasu Ueno
恵尉 上野
Yasuyuki Nakajima
靖之 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2355392A priority Critical patent/JPH05223526A/en
Publication of JPH05223526A publication Critical patent/JPH05223526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To eliminate the influence of a temperature and to measure a plate thickness with high accuracy by a method wherein the temperature is measured and calibrated in a noncontact-system plate thickness measuring apparatus. CONSTITUTION:In a measuring apparatus, both sides of a plate material 1 are irradiated with a light beam and a plate thickness is measured by using reflected light. In the measuring apparatus, the temperature of members 3, 4, 10 which support a measuring instrument, that of a specimen stand 5 and that of the outside air are measured, the deformation due to thermal expansion of each part is estimated, and its accurate plate thickness is presumed. Thereby, the plate thickness can be measured with high accuracy irrespective of a change in the temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は板材の厚み測定装置に係
り、例えば磁気ヘッドの支持ばね等に用いる板ばねの素
材の厚みを測定するのに好適な、測定装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate material thickness measuring device, and more particularly to a measuring device suitable for measuring the thickness of a material of a plate spring used as a support spring of a magnetic head or the like.

【0002】[0002]

【従来の技術】磁気ヘッドの支持ばねのようにミクロン
オーダーの精度を要求される板金の曲げ加工では、素材
の板厚の誤差が加工精度に大きく影響する。そのため、
米国特許第4603567号に示されるように、加工精
度を向上するためには、素材の板厚を計測し、その結果
に応じて、曲げ角度等の成形条件を制御することが有効
である。
2. Description of the Related Art In bending a sheet metal such as a support spring of a magnetic head, which requires precision on the order of microns, an error in the thickness of a material has a great influence on the processing precision. for that reason,
As shown in U.S. Pat. No. 4,603,567, it is effective to measure the plate thickness of the material and control the forming conditions such as the bending angle according to the result in order to improve the processing accuracy.

【0003】従来の板厚計測装置としては、特開昭62
−245110号公報の様な、変位測定装置を2個組み
合わせて用いるものがある。この変位測定装置は、非測
定物に、レーザ光を当て、反射光の位置を見ることによ
って測定物の位置を測定するものである。前記特許には
板厚の測定方法については記されていないが、板厚を測
定するためには、板材の両側にこのような変位測定装置
を設置して、板厚が既知である板材と、非測定物の変位
の差によって、非測定物の板厚を計算するという方法が
一般的に取られている。この方法は、試料に接触しない
状態で測定を行うことができるため、接触圧の変動によ
る誤差等がなく、高精度に板厚を測定することができ
る。
A conventional plate thickness measuring device is disclosed in Japanese Patent Laid-Open No. Sho 62-62.
Some Japanese Patent Publication No. 245110 uses a combination of two displacement measuring devices. This displacement measuring device measures the position of a measurement object by irradiating a non-measurement object with laser light and observing the position of reflected light. Although the patent does not describe a method for measuring the plate thickness, in order to measure the plate thickness, such displacement measuring devices are installed on both sides of the plate material, and the plate material has a known plate thickness, A method of calculating the plate thickness of the non-measurement object based on the difference in displacement of the non-measurement object is generally used. Since this method can perform the measurement without contacting the sample, the plate thickness can be measured with high accuracy without an error due to the fluctuation of the contact pressure.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術による板
厚測定装置では、板材の厚みを測定しているときに、温
度変化があると、測定器を固定しているフレームや試料
台が熱膨張して、測定値に変化があった。従って、高精
度に測定するためには、温度を一定に制御された特別室
の中で測定を行わなければならなかった。
In the plate thickness measuring device according to the above-mentioned prior art, when the thickness of the plate material is measured, if there is a temperature change, the frame or the sample table to which the measuring device is fixed is thermally expanded. Then, there was a change in the measured value. Therefore, in order to measure with high accuracy, the measurement had to be performed in a special room in which the temperature was controlled to be constant.

【0005】従って、測定器の設置場所が限定され、例
えば生産ライン上に設置するようなことができず、低い
精度で使用するか、ライン外で計測しその結果を生産ラ
イン用の制御装置に入力するという煩雑な操作を行わな
ければならなかった。
Therefore, the installation location of the measuring device is limited, for example, it cannot be installed on the production line, and it is used with low accuracy or is measured outside the line and the result is used as a control device for the production line. I had to do the complicated operation of inputting.

【0006】また、米国特許によるばね成形装置におい
ては、ライン上に板厚測定装置を設置しているが、板厚
測定方法及び装置については詳しくは述べられていな
い。この成形装置では、板厚の測定結果に応じて成形条
件を変えているため、ある程度の成形精度の向上は計ら
れているものの、1回の成形で必要精度を満たすことが
できず、2度曲げや曲げ戻しなどによる調整を行わなけ
ればならなかった。
Further, in the spring forming device according to the US patent, the plate thickness measuring device is installed on the line, but the plate thickness measuring method and device are not described in detail. With this molding device, the molding conditions are changed according to the measurement results of the plate thickness, so although the molding accuracy has been improved to some extent, the required accuracy cannot be satisfied with one molding, and the molding accuracy cannot be met twice. Adjustments such as bending and unbending had to be made.

【0007】従って、本発明の目的は、温度変化による
精度の劣化を小さくし、生産ラインのように温度管理の
されていない場所でも使用することのできる板厚測定器
を提供することである。
Therefore, an object of the present invention is to provide a plate thickness measuring instrument which can reduce deterioration of accuracy due to temperature change and can be used even in a place where temperature control is not carried out such as a production line.

【0008】本発明の他の目的は、生産ライン上に上記
板厚測定器を設置し、ライン上で高精度に板厚を測定す
ることにより、短時間で高精度なばね成形を行うことの
できる、成形装置を提供することである。
Another object of the present invention is to install the above-mentioned plate thickness measuring instrument on a production line and measure the plate thickness on the line with high accuracy to perform highly accurate spring forming in a short time. It is to provide a molding device capable of performing the above.

【0009】[0009]

【課題を解決するための手段】温度変化による精度の劣
化を防ぐために、測定器各部の温度を測定し、その結果
を基に板厚測定器から得られた出力値を補正して、温度
の変化による測定値の変化を除去する。
[Means for Solving the Problems] In order to prevent deterioration of accuracy due to temperature changes, the temperature of each part of the measuring instrument is measured, and the output value obtained from the plate thickness measuring instrument is corrected based on the result, Eliminates changes in measured values due to changes.

【0010】また、ばね成形を短時間で高精度に行うた
めに、成形を行う前に上記板厚測定装置により、ライン
上で素材の板厚を測定する。
Further, in order to perform the spring forming with high accuracy in a short time, the plate thickness of the material is measured on the line by the plate thickness measuring device before the forming.

【0011】[0011]

【作用】温度測定を行い、その結果を用いて板厚出力の
更正を行うことにより、温度変化による膨張の影響をな
くし、高精度な板厚測定を行うことができる。
By measuring the temperature and using the result to calibrate the plate thickness output, it is possible to eliminate the influence of expansion due to temperature changes and to perform highly accurate plate thickness measurement.

【0012】さらに、温度による更正を行うことのでき
る板厚測定装置を板ばねの成形ライン上に設け、この結
果により成形条件を変えることにより、短時間で高精度
なばね成形を行うことができる。
Further, a plate thickness measuring device capable of performing temperature correction can be provided on the plate spring forming line, and by changing the forming conditions according to the result, highly accurate spring forming can be performed in a short time. ..

【0013】[0013]

【実施例】本発明の実施例を図1により説明する。2は
板材1の位置を測定するための、レーザ変位計であり、
フレーム3上に2個上下に取り付けてある。フレーム3
は、スタンド4により、ベース10に取り付けてある。
5は試料1をのせるための試料台である。41は、測定
器各部の、温度を測定するための温度センサである。
EXAMPLE An example of the present invention will be described with reference to FIG. 2 is a laser displacement meter for measuring the position of the plate 1,
Two are mounted on the frame 3 one above the other. Frame 3
Is attached to the base 10 by the stand 4.
Reference numeral 5 is a sample table on which the sample 1 is placed. 41 is a temperature sensor for measuring the temperature of each part of the measuring device.

【0014】各レーザ変位計2は、変位計2と試料1の
間の距離を測定することができる。その方法を図2によ
って説明する。変位計2よりレーザビーム21を試料1
に対してある角度をもって照射し、反射光22aを受光
する。試料1と変位計2の距離が異なると、反射光が2
2bとなり受光位置が変わる。従って、この受光位置を
測定することによって、変位計2と試料1の距離を知る
ことができる。板厚を測定するためには、レーザ変位計
2により板材1の両側から測定を行う。このときの、各
変位計2と試料1の間の距離の合計値と、板厚が既知の
更正用板材の場合のものとの差によって、試料1の板厚
を計算することができる。以上の計算は、図1に示す専
用の演算器31によって行う。
Each laser displacement meter 2 can measure the distance between the displacement meter 2 and the sample 1. The method will be described with reference to FIG. Laser beam 21 from displacement meter 2 to sample 1
The reflected light 22a is received by irradiating the light with a certain angle. If the distance between the sample 1 and the displacement meter 2 is different, the reflected light will be 2
2b and the light receiving position changes. Therefore, the distance between the displacement meter 2 and the sample 1 can be known by measuring this light receiving position. In order to measure the plate thickness, the laser displacement meter 2 measures from both sides of the plate material 1. At this time, the plate thickness of the sample 1 can be calculated by the difference between the total value of the distances between the displacement meters 2 and the sample 1 and the case of the plate material for calibrating with a known plate thickness. The above calculation is performed by the dedicated arithmetic unit 31 shown in FIG.

【0015】この方法では、更正用板材を測定した時
と、試料を測定した時の温度が等しい場合は、高精度に
測定を行うことができるが、温度が異なる場合は次のよ
うに誤差を生じる。
According to this method, it is possible to perform the measurement with high accuracy when the temperature at which the plate material for calibration is measured is equal to that at the time when the sample is measured, but when the temperature is different, an error is generated as follows. Occurs.

【0016】まず、温度が上昇すると図3のようにフレ
ーム3が膨張することにより、レーザ変位計2同士が離
れ、見かけ上板厚が小さくなる。その変化は
First, when the temperature rises, the frame 3 expands as shown in FIG. 3, so that the laser displacement meters 2 are separated from each other, and the plate thickness apparently becomes small. The change is

【0017】[0017]

【数1】δ1=αL(K−K0) α:熱膨張率 L:センサの取付位置間距離 K:温度 K0:更正時の温度 と表すことができる。## EQU1 ## δ1 = αL (K−K0) α: coefficient of thermal expansion L: distance between sensor mounting positions K: temperature K0: temperature during calibration

【0018】また、試料と次のような問題もある。温度
は、測定環境中で一定とはならず、外気温に対してレー
ザ変位計は発熱のため、温度が1〜数度高くなってい
る。その結果、フレームやスタンド上で温度差を生じ
る。温度分布としては、変位計の発熱源に接触している
部分が最も高く、ベースに近くなるに従って温度が低く
なる。そのため、温度の高い部分では膨張が大きく、低
い部分では小さくなる。例えば図4に示すようにスタン
ド4の変形により、変位計2が持ち上がる形で、フレー
ム3が傾く。また、フレーム先端部においては、発熱源
の位置が、外側あるいは内側に近いかによって個々の変
位計の位置が移動したり、傾いたりする。また、周囲環
境によっては、試料台が、発熱源を持つ他の装置と連続
している場合等、試料台に傾きを生じる場合もある。あ
るいは、変位計,ベース,試料台という連続した系の中
に、熱膨張係数の異なる部材が挾まれている場合等は、
温度差がなくても膨張の大きさが異なるため、傾きや相
対位置の変化を生じる。相対位置の変化を生じた場合
は、変位計同士の間隔が変わらなければ問題はないが、
変位計同士の相対位置が変化した場合は、フレームが膨
張した時と同じ原理により、誤差を生じる。
There are also the following problems with the sample. The temperature is not constant in the measurement environment, and the laser displacement meter generates heat with respect to the outside air temperature, so the temperature is increased by 1 to several degrees. As a result, a temperature difference occurs on the frame and the stand. As for the temperature distribution, the portion in contact with the heat source of the displacement gauge has the highest temperature, and the temperature becomes lower as it approaches the base. Therefore, the expansion is large in the high temperature part and small in the low temperature part. For example, as shown in FIG. 4, when the stand 4 is deformed, the displacement gauge 2 is lifted and the frame 3 is tilted. In addition, at the tip of the frame, the position of each displacement meter moves or tilts depending on whether the position of the heat source is close to the outside or the inside. Further, depending on the surrounding environment, the sample table may be tilted, such as when the sample table is continuous with another device having a heat source. Or, if members with different thermal expansion coefficients are sandwiched in a continuous system consisting of a displacement meter, base, and sample stage,
Even if there is no temperature difference, the magnitude of expansion is different, so that the inclination and the relative position change. When the relative position changes, there is no problem if the distance between the displacement gauges does not change,
When the relative positions of the displacement gauges change, an error occurs due to the same principle as when the frame expands.

【0019】また、測定器と試料の相対角度の変化があ
ると、次の原理により見かけ上の板厚が変化する。
When the relative angle between the measuring instrument and the sample changes, the apparent plate thickness changes according to the following principle.

【0020】図5のように、試料1が傾くと、板厚方向
に対して斜めの方向に計測してしまうため、見かけ上板
厚が大きくなる。その誤差は、
As shown in FIG. 5, when the sample 1 is tilted, the measurement is performed in a direction oblique to the plate thickness direction, so that the plate thickness is apparently increased. The error is

【0021】[0021]

【数2】δ2=T(1/COSθ−1) T:板厚の真値 θ:傾き となる。## EQU00002 ## .delta.2 = T (1 / COS .theta.-1) T: true value of plate thickness .theta .: inclination.

【0022】また、図6のように測定器の光軸23即ち
測定点を通りレーザビームと反射光の2等分軸がずれて
いると、傾いたときの上側測定点と下側測定点の上下の
ずれかたが異なるため、誤差が生じる。その誤差は
Further, as shown in FIG. 6, if the laser beam and the bisecting axis of the reflected light pass through the optical axis 23 of the measuring device, that is, the measuring point, the upper measuring point and the lower measuring point are tilted. Since the vertical displacement differs, an error occurs. The error is

【0023】[0023]

【数3】δ3=DSIN(θ) D:光軸のずれとなる。## EQU00003 ## .delta.3 = DSIN (.theta.) D: deviation of the optical axis.

【0024】従って、温度変化による出力値の誤差は、
次のように表現される。
Therefore, the error of the output value due to the temperature change is
It is expressed as follows.

【0025】[0025]

【数4】 δ=δ1+δ2+δ3 =T(1/COSθ−1)+DSIN(θ)+αL(K−K0) ここでθは温度による関数となり、熱源がレーザ変位計
のみで、各部材に同一の材質を使用している場合は、
Δ = δ1 + δ2 + δ3 = T (1 / COSθ-1) + DSIN (θ) + αL (K-K0) where θ is a function of temperature, the heat source is only a laser displacement meter, and the same material is used for each member. If you are using

【0026】[0026]

【数5】θ=a(K−K0) a:定数 と近似できる。(5) θ = a (K−K0) a: can be approximated to a constant.

【0027】従って、測定値と、温度を用いて、板厚は
次のように表現される。
Therefore, using the measured value and the temperature, the plate thickness is expressed as follows.

【0028】[0028]

【数6】T=Tm−δ(K,K0) Tm:演算器による板厚出力 δ(K,K0):温度による測定系固有の関数 熱源が多数にわたる場合や材質の異なる部材を用いてい
る場合は、それに応じて式を多項にすれば良い。
[Equation 6] T = Tm-δ (K, K0) Tm: Thickness output by calculator δ (K, K0): Function peculiar to the measurement system due to temperature When multiple heat sources are used or different materials are used In this case, the expression should be polynomial accordingly.

【0029】図1に示すように、レーザ変位計2の出力
は、一端演算器31に取り込まれ、受光位置より板厚の
計算が行われる。この値は温度による誤差を含んでい
る。一方、温度センサの出力は、温度測定器42に取り
込まれる。板厚演算器31の出力と温度測定器42の出
力は、パソコン32に転送され、上式により板厚の温度
による更正値を計算する。
As shown in FIG. 1, the output of the laser displacement meter 2 is taken into the calculator 31 at one end, and the plate thickness is calculated from the light receiving position. This value includes an error due to temperature. On the other hand, the output of the temperature sensor is captured by the temperature measuring device 42. The output of the plate thickness calculator 31 and the output of the temperature measuring device 42 are transferred to the personal computer 32, and the correction value by the temperature of the plate thickness is calculated by the above formula.

【0030】この実施例によれば、温度変化による板厚
測定器の出力の変化を補正することにより、温度の影響
を受けず高精度に板厚を測定することができる。
According to this embodiment, by correcting the change in the output of the plate thickness measuring device due to the temperature change, it is possible to measure the plate thickness with high accuracy without being affected by the temperature.

【0031】次に本発明の他の実施例を説明する。上述
の実施例では、温度が異なる可能性のある全ての点にお
いて、温度を測定していた。2ヵ所の温度を測定するこ
とにより他の位置での温度を推測すれば測定点を少なく
することができる。例えば、熱源となる光源近くの温度
と外気温を測定することによって、フレームやスタンド
の温度分布を推測する。この温度分布は各部材の熱伝達
率や熱源の正確な位置がわかれば理論的に求めることも
可能であるが、形状が複雑な場合などは実験によって求
め、使用時には実験結果に基づいて予測を行う。
Next, another embodiment of the present invention will be described. In the above example, the temperature was measured at all points where the temperature could be different. The number of measurement points can be reduced by estimating the temperature at other positions by measuring the temperature at two locations. For example, the temperature distribution of the frame or the stand is estimated by measuring the temperature near the light source which is a heat source and the outside air temperature. This temperature distribution can be theoretically obtained if the heat transfer coefficient of each member and the exact position of the heat source are known, but if the shape is complicated, it is obtained by experiment, and at the time of use, prediction is made based on the experimental results. To do.

【0032】この実施例によれば、温度の測定点を少な
くすることができ、最小では、熱源またはその付近とベ
ースまたは外気の温度を測定すれば済む。従って、温度
センサを取り付けるのが困難な場所でも温度を推測する
ことにより、温度による変形を予測することが可能であ
る。
According to this embodiment, it is possible to reduce the number of temperature measurement points, and at a minimum, it is sufficient to measure the temperature of the heat source or its vicinity and the temperature of the base or the outside air. Therefore, it is possible to predict the deformation due to temperature by estimating the temperature even in a place where it is difficult to attach the temperature sensor.

【0033】また、本発明による更に他の実施例では、
外気もしくは熱源の一方の温度を測定し、温度の時間に
よる変化により、他方の温度を予測する。この場合、熱
源の温度変化が外気温の変化をもたらす場合は熱源を、
外気温の変化が熱源の温度変化をもたらす場合は外気温
を測定する。熱源が、変位計のみである場合は、変位計
と外気との温度差は高々数°であり、装置立ち上げ時を
除いては変位計自体による温度変化は生じないため、外
気温を測定すれば良い。測定した温度に対し、熱量の伝
達の時間が必要とされるため、他方の温度は遅れて変化
する。温度の時間的変化の度合いにより、この遅れを予
測する。この実施例では更に測定点の数を減らすことが
できる。
In yet another embodiment according to the present invention,
The temperature of either the outside air or the heat source is measured, and the temperature of the other is predicted by the change of the temperature with time. In this case, if the temperature change of the heat source causes the change of the outside temperature,
If changes in the outside air temperature cause changes in the temperature of the heat source, measure the outside air temperature. If the heat source is only a displacement gauge, the temperature difference between the displacement gauge and the outside air is at most several degrees, and there is no temperature change due to the displacement gauge itself except when the equipment is started up. Good. Since the time for heat transfer is required for the measured temperature, the other temperature changes with a delay. This delay is predicted by the degree of temperature change over time. In this embodiment, the number of measuring points can be further reduced.

【0034】以上の実施例は、測定器単体について示し
たものである。上述の実施例による測定器は、温度変化
による影響を受けずに高精度に板厚測定を行うことがで
きるため、温度管理のされていない、生産ライン上で用
いることが可能である。
The above embodiments are shown for a single measuring instrument. The measuring instrument according to the above-described embodiment can perform plate thickness measurement with high accuracy without being affected by temperature changes, and thus can be used on a production line where temperature control is not performed.

【0035】磁気ヘッドの支持ばねのように曲げ加工に
高い精度を要求される場合、板厚のばらつきが加工精度
に大きく影響する。そこで、板厚を測定し、その値をも
とに曲げ角度や曲げ開始位置、加圧力等の成形条件を変
化させることにより、板厚のばらつきによる、成形品の
ばらつきを小さくすることができる。
When high precision is required for the bending work such as the support spring of the magnetic head, the variation of the plate thickness greatly affects the working precision. Therefore, by measuring the plate thickness and changing the molding conditions such as the bending angle, the bending start position, and the pressing force based on the measured value, it is possible to reduce the variation of the molded product due to the variation of the plate thickness.

【0036】このような生産設備は、前後の工程を同一
ラインで流し、近い場所に集中させることにより、リー
ドタイムを小さくすることができる。しかし、多種の工
程を1ヵ所に集中させると、温度管理が難しくなる。本
発明による。温度補償のされた板厚測定器を用いれば、
このような環境下でも高精度に板厚測定を行うことがで
きる。
In such a production facility, the lead time can be shortened by allowing the front and rear processes to flow on the same line and concentrate them in a close place. However, if various processes are concentrated in one place, temperature control becomes difficult. According to the invention. With a temperature-compensated thickness gauge,
Even under such an environment, the plate thickness can be measured with high accuracy.

【0037】ばね成形ラインにおいて板厚測定器を用い
るには、図7に示すように、成形機の手前で、搬送ライ
ン51上に試料台を設け、測定器を搬送ラインを挾み込
む形で設置する。この場合は、搬送ライン51の上下で
空気の層が遮断されているため、外気温の測定は、上下
で行う。また、測定器のフレーム3の両側でも空気が、
流れにくい為、フレーム3の両側合計4ヵ所に温度セン
サ41を設置するのが好ましい。但し、この4ヵ所で外
気の温度差を生じない場合は、2ヵ所あるいは1ヵ所で
も構わない。この測定器によって測定された板厚を用い
てばね成形における曲げ角度等の成形条件を変化させれ
ば、板厚のばらつきによる、成形品のばらつきをなくし
高精度なばね成形を行うことができる。
In order to use the plate thickness measuring device in the spring forming line, as shown in FIG. 7, a sample stand is provided on the conveying line 51 in front of the forming machine, and the measuring device is inserted in the conveying line. Install. In this case, since the air layers are blocked above and below the transport line 51, the outside air temperature is measured above and below. Also, on both sides of the frame 3 of the measuring instrument, air
Since it is difficult to flow, it is preferable to install the temperature sensors 41 at a total of four places on both sides of the frame 3. However, if there is no difference in the temperature of the outside air at these four locations, it may be two or one. By changing the forming conditions such as the bending angle in the spring forming using the plate thickness measured by this measuring device, it is possible to eliminate the dispersion of the molded product due to the dispersion of the plate thickness and perform highly accurate spring forming.

【0038】この実施例によれば、温度管理のされてい
ないライン上で、高精度に板厚を測定することができ、
短時間で高精度にばね成形を行うことができる。
According to this embodiment, it is possible to measure the plate thickness with high accuracy on a line where the temperature is not controlled,
Spring molding can be performed with high precision in a short time.

【0039】[0039]

【発明の効果】本発明によれば、温度を測定し、その結
果によって、板厚を計算することにより、温度変化によ
る測定器の膨張の影響をなくした、高精度な板厚測定を
行うことができる。
According to the present invention, the temperature is measured, and the plate thickness is calculated based on the result of the measurement, so that the plate thickness can be measured with high accuracy by eliminating the influence of the expansion of the measuring instrument due to the temperature change. You can

【0040】また、本発明による板厚測定装置を、板ば
ねの成形ライン上に設けることにより、高精度に測定さ
れた板厚をもとに、成形条件を変化させることが可能と
なり、短時間で高精度なばね成形を行うことが可能とな
る。
Further, by providing the plate thickness measuring device according to the present invention on the plate spring forming line, it becomes possible to change the forming conditions based on the plate thickness measured with high accuracy, and to shorten the time. With this, it becomes possible to perform highly accurate spring forming.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による板厚測定器を示した図である。FIG. 1 is a view showing a plate thickness measuring device according to the present invention.

【図2】本発明による板厚測定器の変位測定方法を示し
た図である。
FIG. 2 is a diagram showing a displacement measuring method of a plate thickness measuring instrument according to the present invention.

【図3】フレームの膨張による測定誤差についての説明
図である。
FIG. 3 is an explanatory diagram of a measurement error due to expansion of a frame.

【図4】測定器の熱変形による傾きを示した図である。FIG. 4 is a diagram showing a tilt due to thermal deformation of a measuring instrument.

【図5】測定器と試料の相対角度の変化による測定誤差
についての説明図である。
FIG. 5 is an explanatory diagram of a measurement error due to a change in relative angle between the measuring device and the sample.

【図6】測定器と試料の相対角度の変化による測定誤差
についての説明図である。
FIG. 6 is an explanatory diagram of a measurement error due to a change in relative angle between the measuring device and the sample.

【図7】測定器を生産ライン上で用いた場合の概略図で
ある。
FIG. 7 is a schematic diagram when the measuring instrument is used on a production line.

【符号の説明】[Explanation of symbols]

1…試料、2…変位計、3…フレーム、23…光軸、4
1…温度センサー。
1 ... Sample, 2 ... Displacement meter, 3 ... Frame, 23 ... Optical axis, 4
1 ... Temperature sensor.

フロントページの続き (72)発明者 中島 靖之 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内Continuation of the front page (72) Inventor Yasuyuki Nakajima 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】板材の両面から光を当てることによって板
材の厚さを検出する測定装置において、測定器を支持す
る部材の少なくとも2ヵ所において温度を測定し、その
結果により測定した板厚の結果を補正することを特徴と
する板厚測定装置。
1. In a measuring device for detecting the thickness of a plate material by shining light from both sides of the plate material, the temperature is measured at at least two positions of a member supporting the measuring device, and the result is the result of the measured plate thickness. A plate thickness measuring device characterized in that
【請求項2】請求項1記載の板厚測定装置において、少
なくとも2ヵ所の温度を計測し、他の部分の温度を測定
することを特徴とする板厚測定装置。
2. The plate thickness measuring device according to claim 1, wherein the temperature of at least two places is measured and the temperature of other parts is measured.
【請求項3】板材の両面から光を当てることによって板
材の厚さを検出する測定装置において、測定器を支持す
る部材の少なくとも1ヵ所において温度を測定し、他の
部分の温度の予測を行い、その結果により測定した板厚
の結果を変更することを特徴する板厚測定装置。
3. A measuring device for detecting the thickness of a plate material by shining light from both sides of the plate material, by measuring the temperature at at least one position of a member supporting the measuring device and predicting the temperature of other parts. A plate thickness measuring device characterized by changing the result of the plate thickness measured according to the result.
【請求項4】板金の塑性加工装置と連続する部分を持つ
ことを特徴とする請求項1記載の板厚測定装置。
4. The plate thickness measuring device according to claim 1, wherein the plate thickness measuring device has a portion continuous with the plastic working device for sheet metal.
【請求項5】請求項1記載の板厚測定装置と連続する部
分を持ち、板厚の測定結果をもとに加工条件を変更する
ことを特徴とする板金の塑性加工装置。
5. A plastic working apparatus for sheet metal, which has a portion continuous with the sheet thickness measuring apparatus according to claim 1, and changes the working conditions based on a result of measuring the sheet thickness.
JP2355392A 1992-02-10 1992-02-10 Plate thickness measuring device Pending JPH05223526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2355392A JPH05223526A (en) 1992-02-10 1992-02-10 Plate thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2355392A JPH05223526A (en) 1992-02-10 1992-02-10 Plate thickness measuring device

Publications (1)

Publication Number Publication Date
JPH05223526A true JPH05223526A (en) 1993-08-31

Family

ID=12113689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2355392A Pending JPH05223526A (en) 1992-02-10 1992-02-10 Plate thickness measuring device

Country Status (1)

Country Link
JP (1) JPH05223526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263818A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor
JP2009128322A (en) * 2007-11-27 2009-06-11 Toshiba Corp Thickness measuring device
GB2479572A (en) * 2010-04-15 2011-10-19 Paul Roderick Hayes Griffin Thickness guage for measurement of hot metal plate on the procss line
JP2012137498A (en) * 2004-12-16 2012-07-19 Werth Messtechnik Gmbh Coordinate measuring device and method of measuring workpiece geometries with coordinate measuring device
US8711365B2 (en) 2004-12-16 2014-04-29 Werth Messtechnik Gmbh Coordinate measuring device and method for measuring with a coordinate measuring device
JP2015112671A (en) * 2013-12-11 2015-06-22 松本 清 Processing apparatus
KR20190000422A (en) * 2017-06-22 2019-01-03 주식회사 포스코 Measuring apparatus and measuring method for corrosion depth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137498A (en) * 2004-12-16 2012-07-19 Werth Messtechnik Gmbh Coordinate measuring device and method of measuring workpiece geometries with coordinate measuring device
US8711365B2 (en) 2004-12-16 2014-04-29 Werth Messtechnik Gmbh Coordinate measuring device and method for measuring with a coordinate measuring device
JP2007263818A (en) * 2006-03-29 2007-10-11 Jfe Steel Kk Adjusting method for thickness measuring instrument, and device therefor
JP2009128322A (en) * 2007-11-27 2009-06-11 Toshiba Corp Thickness measuring device
GB2479572A (en) * 2010-04-15 2011-10-19 Paul Roderick Hayes Griffin Thickness guage for measurement of hot metal plate on the procss line
JP2015112671A (en) * 2013-12-11 2015-06-22 松本 清 Processing apparatus
KR20190000422A (en) * 2017-06-22 2019-01-03 주식회사 포스코 Measuring apparatus and measuring method for corrosion depth

Similar Documents

Publication Publication Date Title
US3633010A (en) Computer-aided laser-based measurement system
EP1239263B1 (en) Position measuring apparatus and working apparatus using the same
JP2019014035A (en) Monitoring and evaluation method of cnc machine geometry error and accuracy
JP2007263818A (en) Adjusting method for thickness measuring instrument, and device therefor
JPH05223526A (en) Plate thickness measuring device
JP2001108408A (en) Laser interference device
JP4945412B2 (en) Thickness measuring device
KR101679339B1 (en) Linear positioning apparatus and method for compensating error thereof
JP2756544B2 (en) Sheet thickness measurement method
JPH10192764A (en) Coating device
JPH11190617A (en) Three-dimensional measuring apparatus
JP2024005713A (en) Measurement system, control unit, and measurement method
JPH07116737A (en) Instrument for measuring bending angle
KR0151993B1 (en) Thickness measuring device and thickness measuring method using the same
JP3048508B2 (en) Positioning stage apparatus and exposure apparatus using the same
JP2003097943A (en) Method and device for measuring straightness of mobile stage, and three-dimensional shape measuring machine using them
JP2888215B2 (en) Exposure apparatus and measurement method
US20240385539A1 (en) Image capturing apparatus and image capturing method
JPH10239012A (en) Contour shape measuring method and contour shape measuring machine
JP5009560B2 (en) Apparatus for measuring the shape of a thin object to be measured
JPH0719804A (en) Method and device for measuring curve depth of plate-like material
JPH02302606A (en) Thickness measuring apparatus
JP2001201321A (en) Vehicle compartment deformation measuring method
JPS62273722A (en) Electron beam exposure equipment
JPH1058174A (en) Laser beam machine