[go: up one dir, main page]

JPH05223015A - Combustion control device for engine - Google Patents

Combustion control device for engine

Info

Publication number
JPH05223015A
JPH05223015A JP4022462A JP2246292A JPH05223015A JP H05223015 A JPH05223015 A JP H05223015A JP 4022462 A JP4022462 A JP 4022462A JP 2246292 A JP2246292 A JP 2246292A JP H05223015 A JPH05223015 A JP H05223015A
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
air
exhaust gas
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4022462A
Other languages
Japanese (ja)
Other versions
JP3151273B2 (en
Inventor
Hiromitsu Matsumoto
広満 松本
Chizuko Imai
智津子 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP02246292A priority Critical patent/JP3151273B2/en
Priority to US07/994,191 priority patent/US5329912A/en
Publication of JPH05223015A publication Critical patent/JPH05223015A/en
Application granted granted Critical
Publication of JP3151273B2 publication Critical patent/JP3151273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To restrain the generation of detrimental components which cause atmospheric pollution while improving the fuel consumption by providing ternary catalyst for purifying exhaust gas in an exhaust passage, and by providing a fuel supply means for feeding a mixture having a stoichiometric air-fuel ratio into a combustion chamber so as to open its introduction port at a position around an intake port. CONSTITUTION:A spark plug 9 is provided in a substantially center part of a combustion chamber, and a ternary catalyst 19 for purifying exhaust gas in an exhaust passage 17. Of three intake ports 5a to 5c communicated with the combustion chamber, the center one 5b is opened toward the position of the spark plug 9. A fuel supply means 15 for feeding a mixture having a stoichiometric airfuel ratio is provided in an intake-air passage 11b communicated with the center intake port 5b. Two intake-air passages 11a, 11c on opposite sides of the center intake-air passage 11b are formed with introduction ports 21, respectively, for introducing at least a part of exhaust gas which is inert components at least during low load operation. With this arrangement, the quantity of unburnt fuel components can be reduced, thereby it is possible to prevent incomplete combustion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、三本の吸気バルブを有
するガソリンエンジンに係り、特にその燃費を改善しつ
つ、大気汚染の原因となる有害物質の発生を抑えるため
の燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasoline engine having three intake valves, and more particularly to a combustion control device for suppressing the generation of harmful substances which cause air pollution while improving the fuel consumption thereof.

【0002】[0002]

【従来の技術】自動車用エンジンの排気中には、多種多
様の有害成分が含まれており、この中で特に大気汚染に
対する影響が大きいとして規制の対象となっているの
は、炭化水素(HC)、一酸化炭素(CO)および窒素
酸化物(NOx)の三種類である。
2. Description of the Related Art Exhaust gas from an automobile engine contains a wide variety of harmful components. Of these, hydrocarbons (HC ), Carbon monoxide (CO), and nitrogen oxides (NOx).

【0003】そして、従来では、この排気中に含まれる
三種類の有害成分を浄化するため、吸気として理論空燃
比の混合気を用いるとともに、エンジンの排気通路に三
元触媒を設け、排気中に含まれる未燃焼成分の酸化反応
と、窒素酸化物の還元反応を同時に行うようにした触媒
浄化方式が広く採用されている。
Conventionally, in order to purify the three kinds of harmful components contained in the exhaust gas, a mixture having a stoichiometric air-fuel ratio is used as the intake air, and a three-way catalyst is provided in the exhaust passage of the engine to introduce the exhaust gas into the exhaust gas. A catalyst purification system has been widely adopted in which the oxidation reaction of unburned components contained and the reduction reaction of nitrogen oxides are simultaneously performed.

【0004】一方、最近、一気筒当り複数の吸気バルブ
を有するエンジンにおいて、このエンジンが低負荷の運
転状態では、理論空燃比よりも遥かに薄い混合気を用い
て稀薄燃焼させ、燃費を改善するようにしたものが知ら
れている。この稀薄燃焼エンジンでは、二つの吸気バル
ブを通じて吸入空気を吸い込むとともに、一つの吸気バ
ルブから吸い込まれる吸入空気中に燃料を噴射してお
り、この燃料が噴射される吸気バルブと対向した位置に
点火プラグが設けられている。このため、一つの燃焼室
内でも点火プラグの周囲に濃い混合気の層が形成され、
この濃い混合気に点火プラグを介して点火されるように
なっている。
On the other hand, recently, in an engine having a plurality of intake valves per cylinder, when the engine is operating under a low load, lean combustion is performed by using an air-fuel mixture much thinner than the theoretical air-fuel ratio to improve fuel economy. It is known to do so. In this lean burn engine, intake air is sucked in through two intake valves, and fuel is injected into the intake air sucked in from one intake valve. A spark plug is placed at a position facing the intake valve where this fuel is injected. Is provided. For this reason, a layer of a rich air-fuel mixture is formed around the spark plug even in one combustion chamber,
The rich mixture is ignited via a spark plug.

【0005】[0005]

【発明が解決しようとする課題】ところで、この種の稀
薄燃焼エンジンの場合、二つの吸気バルブは同時に開閉
されるので、これら吸気バルブを通じて燃焼室内に流れ
込む吸入空気量は、略同等となっている。このため、燃
焼室全体の空燃比が22〜23の場合でも、点火プラグ
の近傍には、理論空燃比よりも極めて過濃な混合気領域
が存在する虞れがあり、これが原因で排気行程が終了す
るまでに、燃焼室に吸入された混合気の全てを燃焼させ
ることが困難となる場合があり得る。
By the way, in the case of the lean burn engine of this type, since the two intake valves are opened and closed at the same time, the intake air amount flowing into the combustion chamber through these intake valves is substantially equal. .. Therefore, even when the air-fuel ratio of the entire combustion chamber is 22 to 23, there is a possibility that a mixture region extremely richer than the stoichiometric air-fuel ratio exists in the vicinity of the spark plug, which causes the exhaust stroke. By the end, it may be difficult to burn all of the air-fuel mixture sucked into the combustion chamber.

【0006】すると、未燃焼あるいは不完全燃焼の燃料
成分が、燃焼ガスと共にそのまま排出されてしまい、そ
の分、COやHCの排出濃度が増加するとともに、三元
触媒の負担が大きくなるといった問題がある。
As a result, the unburned or incompletely burned fuel components are discharged as they are with the combustion gas, and as a result, the emission concentrations of CO and HC increase, and the burden on the three-way catalyst increases. is there.

【0007】また、稀薄燃焼エンジンのように、酸素過
剰の状態で燃焼させるものでは、排気中にCOやHCを
酸化させるに充分な量の酸素が残存しており、三元触媒
でNOxを分解しなくとも酸素が容易に得られることに
なる。しかも、NOxの発生量は、空燃比が理論空燃比
よりも薄い16〜18といった稀薄領域で最大なるの
で、燃焼の過程で発生したNOxは、三元触媒で分解さ
れることなくそのまま排出されてしまう。
Further, in a lean burn engine that burns in an excessive oxygen state, a sufficient amount of oxygen remains in the exhaust gas to oxidize CO and HC, and NOx is decomposed by a three-way catalyst. Oxygen can be easily obtained without doing so. Moreover, the amount of NOx generated becomes maximum in a lean region where the air-fuel ratio is 16-18, which is thinner than the stoichiometric air-fuel ratio. Therefore, NOx generated in the combustion process is discharged as it is without being decomposed by the three-way catalyst. I will end up.

【0008】したがって、上記従来の稀薄燃焼エンジン
では、燃費に関しては改善できるものの、排気中に含ま
れる有害物質を三元触媒にて効率良く浄化することが困
難であった。
Therefore, in the conventional lean burn engine described above, although it is possible to improve the fuel consumption, it is difficult to efficiently remove the harmful substances contained in the exhaust gas with the three-way catalyst.

【0009】本発明は、このような事情にもとづいてな
されたもので、特に低負荷での運転域において、燃費を
改善しつつ大気汚染の原因となる有害成分の発生を抑制
でき、しかも、三元触媒を有害成分の浄化用として有効
に活用できるエンジンの燃焼制御装置の提供を目的とす
る。
The present invention has been made under these circumstances, and particularly in a low-load operating region, it is possible to improve the fuel efficiency and suppress the generation of harmful components that cause air pollution. An object of the present invention is to provide a combustion control device for an engine that can effectively utilize the original catalyst for purifying harmful components.

【0010】[0010]

【課題を解決するための手段】そこで、請求項1におい
ては、燃焼室の略中央に点火プラグを設け、この燃焼室
に、点火プラグの周囲に位置して、吸気バルブによって
個別に開閉される三つの吸気口を設け、これら吸気口に
夫々吸気通路を連通させるとともに、上記燃焼室に連な
る排気通路には、排気浄化用の三元触媒を設けたエンジ
ンにおいて、
In view of the above, according to the present invention, an ignition plug is provided substantially in the center of the combustion chamber, and the ignition plug is located in the combustion chamber around the ignition plug and individually opened and closed by intake valves. In an engine in which three intake ports are provided, the intake passages are respectively communicated with these intake ports, and an exhaust passage communicating with the combustion chamber is provided with a three-way catalyst for exhaust gas purification,

【0011】上記燃焼室に連なる三つの吸気口のうち、
中央の吸気口を上記点火プラグの位置の方向に向けて開
口させ、この中央の吸気口に連なる一本の吸気通路に、
上記燃焼室に理論空燃比の混合気を供給するための燃料
供給手段を設けるとともに、上記中央の吸気通路を挾ん
だ両側の吸気通路には、少なくとも低負荷運転時に不活
性成分である排気の一部を導入するための導入口を設け
たことを特徴としている。請求項2においては、排気の
一部を吸気通路に導くための導入口を、吸気口の近傍に
おいてこの吸気口を指向して開口させたことを特徴とし
ている。
Of the three intake ports connected to the combustion chamber,
The central intake port is opened in the direction of the position of the above-mentioned spark plug, and in one intake passage connected to the central intake port,
A fuel supply means for supplying the air-fuel mixture of the stoichiometric air-fuel ratio to the combustion chamber is provided, and the intake passages on both sides of the central intake passage are provided with exhaust gas which is an inactive component at least during low load operation. It is characterized by having an inlet for introducing some of them. According to a second aspect of the present invention, an introduction port for guiding a part of the exhaust gas to the intake passage is opened near the intake port by directing the intake port.

【0012】また、請求項3においては、導入口を有す
る両側の吸気通路に対応した吸気バルブの開時期を、中
央の吸気通路に対応した吸気バルブの開時期よりも早く
設定したことを特徴としている。
Further, according to a third aspect of the present invention, the opening timing of the intake valves corresponding to the intake passages on both sides having the introduction port is set earlier than the opening timing of the intake valves corresponding to the central intake passage. There is.

【0013】[0013]

【作用】請求項1および2に記載された構成によれば、
少なくとも低負荷での運転域において、排気の一部は、
導入口を通じて両側の二つの吸気通路に導入され、この
排気は吸気バルブが閉じている期間中に吸気通路内に充
填される。この場合、導入口は吸気口の近傍に開口され
ているので、上記吸気通路に還流された排気は、吸気口
の開口端から順次上流側に向って蓄えられていくことに
なる。そして、吸入行程で吸気バルブが開かれると、燃
焼室内には上記吸気通路に充填された排気が流れ込むと
ともに、中央の吸気通路を通じて理論空燃比の混合気が
流れ込む。この中央の吸気通路が連なる吸気口は、点火
プラグによる火花点火位置に向けて開口されているの
で、この点火プラグの付近に理論空燃比の混合気が確実
に導かれ、火花点火位置に着火容易な混合気層を形成す
ることができる。
According to the configurations described in claims 1 and 2,
At least in the low load range, some of the exhaust is
It is introduced into the two intake passages on both sides through the introduction port, and this exhaust gas is filled in the intake passage during the period when the intake valve is closed. In this case, since the inlet is opened in the vicinity of the intake port, the exhaust gas recirculated to the intake passage is sequentially stored from the open end of the intake port toward the upstream side. Then, when the intake valve is opened in the intake stroke, the exhaust gas filled in the intake passage flows into the combustion chamber, and the air-fuel mixture having the theoretical air-fuel ratio flows into the combustion chamber through the central intake passage. The intake port connecting the central intake passage is open toward the spark ignition position by the spark plug, so that the air-fuel mixture of the stoichiometric air-fuel ratio is surely introduced near this spark plug, and ignition at the spark ignition position is easy. It is possible to form a mixed gas layer.

【0014】このことから、一つの燃焼室内には、再循
環された排気の流れと、理論空燃比の混合気の流れが形
成され、これら二つの流れは、圧縮行程に至っても燃焼
室内で大きく攪拌されることなく略層状のまま圧縮され
た後、点火プラグを介して点火される。
Therefore, a recirculated exhaust gas flow and a stoichiometric air-fuel mixture flow are formed in one combustion chamber, and these two flows are large in the combustion chamber even after reaching the compression stroke. After being compressed in a substantially layered state without being agitated, it is ignited through an ignition plug.

【0015】よって、燃焼室内の混合気は、略理論空燃
比の状態で圧縮された後、点火されるので、燃焼室内で
の火炎伝ぱが安定して行われるとともに、従来の稀薄燃
焼エンジンように過濃な混合気領域が燃焼室内に形成さ
れる虞れもない。したがって、未燃焼の燃料成分が減じ
られるとともに、不完全燃焼も防止することができ、排
気通路へのHCやCOの排出量が少なくなる。
Therefore, the air-fuel mixture in the combustion chamber is ignited after being compressed in a state of a substantially stoichiometric air-fuel ratio, so that flame propagation in the combustion chamber is stably performed and the air-fuel mixture is generated like a conventional lean-burn engine. There is no fear that a rich mixture region will be formed in the combustion chamber. Therefore, unburned fuel components are reduced, incomplete combustion can be prevented, and HC and CO emissions to the exhaust passage are reduced.

【0016】また、燃焼室内に混合気と共に供給される
のは、不活性成分である排気が大部分であるから、排気
中に含まれる酸素成分が減小する。このため、NOxを
三元触媒で分解することが可能となり、この三元触媒を
有害成分の浄化用として有効に活用できる。
Since most of the exhaust gas, which is an inert component, is supplied into the combustion chamber together with the air-fuel mixture, the oxygen component contained in the exhaust gas is reduced. Therefore, NOx can be decomposed by the three-way catalyst, and the three-way catalyst can be effectively used for purification of harmful components.

【0017】さらに、混合気の燃焼が多量の排気再循環
のもとで行われるので、吸気圧力の上昇によるポンピン
グ損失の低減が可能となり、その分、燃費を改善するこ
とができる。
Further, since the air-fuel mixture is burned under a large amount of exhaust gas recirculation, pumping loss due to rise in intake pressure can be reduced, and fuel consumption can be improved accordingly.

【0018】請求項3に記載された構成によれば、少な
くとも低負荷での運転域において、排気の一部は導入口
を通じて両側の吸気通路に導入され、この排気は吸気バ
ルブが閉じている期間中に吸気通路内に充填される。そ
れとともに、この排気が還流される吸気通路に対応した
吸気バルブは、中央の吸気通路に対応した吸気バルブよ
りも早く開くので、排気行程中における燃焼室と両側の
吸気通路との連通が、上死点前の早い時期から行われる
ことになり、排気行程の末期において、燃焼室内に残留
している高圧の既燃ガスが、吸気口を通じて吸気通路内
に逆流する。
According to the third aspect of the present invention, at least in a low load operation range, a part of the exhaust gas is introduced into the intake passages on both sides through the introduction port, and the exhaust gas is in a period in which the intake valve is closed. It is filled in the intake passage. At the same time, the intake valve corresponding to the intake passage through which the exhaust gas recirculates opens earlier than the intake valve corresponding to the central intake passage, so that the communication between the combustion chamber and the intake passages on both sides during the exhaust stroke is increased. Since it is performed from an early stage before the dead point, at the end of the exhaust stroke, the high-pressure burned gas remaining in the combustion chamber flows back into the intake passage through the intake port.

【0019】このことから、両側の二つの吸気通路内に
は、排気と既燃ガスが還流されるので、両側の吸気通路
内に蓄えられる不活性成分を充分なものとすることがで
き、吸気バルブが開かれた際に、これら二本の吸気通路
から燃焼室内に新気が流入するのを極力抑えることがで
きる。
From this fact, since the exhaust gas and the burnt gas are recirculated in the two intake passages on both sides, the inactive component stored in the intake passages on both sides can be made sufficient, and When the valve is opened, fresh air can be suppressed from flowing into the combustion chamber from these two intake passages as much as possible.

【0020】[0020]

【実施例】以下本発明を、図面に示す一実施例にもとづ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in the drawings.

【0021】図1は、自動車用の四気筒ガソリンエンジ
ンを示しており、図中符号1はシリンダヘッドである。
シリンダヘッド1のシリンダブロック2との合面には、
四つの燃焼凹部3が形成されている。燃焼凹部3は、シ
リンダブロック2内に収容したピストン(図示せず)と
の間に燃焼室4を構成しており、この燃焼室4は、図2
に示すように、ペントルーフ形をなしている。
FIG. 1 shows a four-cylinder gasoline engine for automobiles, in which reference numeral 1 is a cylinder head.
On the mating surface of the cylinder head 1 and the cylinder block 2,
Four combustion recesses 3 are formed. The combustion recess 3 forms a combustion chamber 4 between itself and a piston (not shown) housed in the cylinder block 2.
As shown in, it has a pent roof shape.

【0022】燃焼凹部3には、三つの吸気口5a,5
b,5cと二つの排気口6a,6bが形成されている。
吸気口5a,5b,5cと排気口6a,6bは、燃焼室
4の中心を通り、かつクランク軸(図示せず)と平行を
なす線X1 に対し向い合って配置されている。これら吸
気口5a,5b,5cは、三つの吸気バルブ7によって
個別に開閉され、排気口6a,6bは、二つの排気バル
ブ8によって個別に開閉されるようになっている。
The combustion recess 3 has three intake ports 5a, 5a.
b, 5c and two exhaust ports 6a, 6b are formed.
The intake ports 5a, 5b, 5c and the exhaust ports 6a, 6b are arranged facing each other with respect to a line X 1 passing through the center of the combustion chamber 4 and parallel to the crankshaft (not shown). These intake ports 5a, 5b, 5c are individually opened and closed by three intake valves 7, and the exhaust ports 6a, 6b are individually opened and closed by two exhaust valves 8.

【0023】そして、本実施例の場合、両側の吸気口5
a,5cを開閉する吸気バルブ7は、中央の吸気口5c
を開閉する吸気バルブ7よりも上死点前4°ないし10
°(クランク角度)くらい早いタイミングで開き始め、
下死点後4°ないし10°(クランク角度)くらい早い
タイミングで閉じるようになっている。
In the case of this embodiment, the intake ports 5 on both sides are provided.
The intake valve 7 that opens and closes a and 5c has a central intake port 5c.
4 ° to 10 before top dead center than the intake valve 7 that opens and closes
Start opening at an early timing of about ° (crank angle),
It is designed to close 4 ° to 10 ° (crank angle) early after bottom dead center.

【0024】燃焼室4には、点火プラグ9が配置されて
いる。点火プラグ9は、吸気口5a,5b,5cと排気
口6a,6bとによって囲まれた燃焼凹部3の中心部に
位置されている。そして、この点火プラグ9は、図1に
示すように、三つの吸気口5a,5b,5cのうち、中
央の吸気口5bの延長上に位置されている。このため、
中央の吸気口5bは、上記点火プラグの位置、つまり燃
焼室4内での火花点火位置の方向に向けて開口されてい
る。
A spark plug 9 is arranged in the combustion chamber 4. The spark plug 9 is located at the center of the combustion recess 3 surrounded by the intake ports 5a, 5b, 5c and the exhaust ports 6a, 6b. As shown in FIG. 1, the spark plug 9 is located on an extension of the central intake port 5b among the three intake ports 5a, 5b, 5c. For this reason,
The central intake port 5b is opened toward the position of the spark plug, that is, the direction of the spark ignition position in the combustion chamber 4.

【0025】各燃焼室4の吸気口5a,5b,5cは、
夫々吸気通路11a,11b,11cに連なっている。
吸気通路11a,11b,11cは、互いに独立して設
けられており、これら三本の吸気通路11a,11b,
11cの容積は、行程容積の25%以上に設定されてい
る。三本の吸気通路11a,11b,11cは互いに平
行に配置されており、これら吸気通路11a,11b,
11cの吸気口5a,5b,5cに連なる側の端部は、
図2に示すように、下向きに湾曲されている。そして、
中央の吸気通路11bの湾曲部分の曲率は、両側の吸気
通路11a,11cの湾曲部分の曲率よりも小さくなっ
ている。
The intake ports 5a, 5b, 5c of each combustion chamber 4 are
The intake passages 11a, 11b and 11c are connected to each other.
The intake passages 11a, 11b, 11c are provided independently of each other, and these three intake passages 11a, 11b,
The volume of 11c is set to 25% or more of the stroke volume. The three intake passages 11a, 11b, 11c are arranged in parallel with each other, and these intake passages 11a, 11b,
The end of 11c on the side connected to the intake ports 5a, 5b, 5c is
As shown in FIG. 2, it is curved downward. And
The curvature of the curved portion of the central intake passage 11b is smaller than the curvature of the curved portions of the intake passages 11a and 11c on both sides.

【0026】四つの燃焼室4に連なる吸気通路11a,
11b,11cの上流端は、単一の吸気チャンバ12に
開口されている。吸気チャンバ12は、図示しないエア
クリーナに連なるスロットルボデー13を備えている。
スロットルボデー13内には、スロットルバルブ14が
設けられており、このスロットルバルブ14は、人為的
に開閉操作される。
Intake passages 11a connected to the four combustion chambers 4,
The upstream ends of 11b and 11c are opened to a single intake chamber 12. The intake chamber 12 includes a throttle body 13 connected to an air cleaner (not shown).
A throttle valve 14 is provided in the throttle body 13, and the throttle valve 14 is manually opened / closed.

【0027】燃焼室4に連なる三本の吸気通路11a,
11b,11cのうち、中央の吸気通路11bには、燃
料噴射弁15が設けられている。燃料噴射弁15は、吸
気行程中のあるタイミング、望ましくは吸気バルブ7が
閉じる直前に吸気通路11bを流れる吸入空気中に燃料
を噴射するもので、エンジンが低・中負荷の運転状態の
時には、理論空燃比の混合気が吸気通路11bを通じて
燃焼室4に供給されるようになっている。
Three intake passages 11a connected to the combustion chamber 4
A fuel injection valve 15 is provided in the central intake passage 11b of the 11b and 11c. The fuel injection valve 15 injects fuel into the intake air flowing through the intake passage 11b at a certain timing during the intake stroke, preferably immediately before the intake valve 7 is closed, and when the engine is in a low / medium load operating state, A stoichiometric air-fuel mixture is supplied to the combustion chamber 4 through the intake passage 11b.

【0028】また、各燃焼室4の排気口6a,6bは、
排気通路17に連なっている。排気通路17は、一本に
集合されており、この排気集合部18の下流には、排気
浄化用の三元触媒19が設けられている。
The exhaust ports 6a and 6b of each combustion chamber 4 are
It is connected to the exhaust passage 17. The exhaust passages 17 are gathered into one, and a three-way catalyst 19 for exhaust purification is provided downstream of the exhaust gathering portion 18.

【0029】排気集合部18には、排気の一部を吸気系
に戻すための排気還流路20が接続されている。排気還
流路20は、上記中央の吸気通路11bを挾んだ両側の
二本の吸気通路11a,11cに排気を導入するための
導入口21を備えている。導入口21は、図2に示すよ
うに、吸気口5a,5cの直前において、これら吸気口
5a,5cを指向するような姿勢で開口されている。
An exhaust gas recirculation path 20 for returning a part of the exhaust gas to the intake system is connected to the exhaust gas collecting portion 18. The exhaust gas recirculation passage 20 has an inlet 21 for introducing exhaust gas into the two intake passages 11a and 11c on both sides of the central intake passage 11b. As shown in FIG. 2, the introduction port 21 is opened immediately before the intake ports 5a and 5c in a posture that directs the intake ports 5a and 5c.

【0030】排気還流路20の途中には、吸気系に戻さ
れる排気の流量を制御するためのEGR弁22が設けら
れている。EGR弁22は、吸入空気量に比例する吸気
負圧に応じて開閉されるようになっており、このEGR
弁22の駆動部は、負圧導入路23を介して吸気チャン
バ12に接続されている。この負圧導入路23には、E
GR弁22の駆動部に導かれる吸気負圧を制御するため
の負圧制御弁24が設けられている。この負圧制御弁2
4は、EGR制御装置25からの指令により制御され
る。EGR制御装置25には、エンジン運転中、実際の
エンジンの運転状況を示す各種の信号、例えばエンジン
回転数や冷却水の水温およびスロットル開度を示す信号
が入力されており、このEGR制御装置25は、入力さ
れた各種の信号にもとづいてエンジンの運転状況を判断
し、この判断結果にもとづいて負圧制御弁24を開閉制
御するようになっている。
An EGR valve 22 for controlling the flow rate of exhaust gas returned to the intake system is provided in the exhaust gas recirculation path 20. The EGR valve 22 is opened and closed according to the intake negative pressure proportional to the intake air amount.
The drive unit of the valve 22 is connected to the intake chamber 12 via the negative pressure introduction passage 23. In this negative pressure introduction path 23, E
A negative pressure control valve 24 is provided to control the intake negative pressure introduced to the drive section of the GR valve 22. This negative pressure control valve 2
4 is controlled by a command from the EGR control device 25. To the EGR control device 25, various signals indicating the actual operating condition of the engine during engine operation, such as signals indicating the engine speed, the coolant temperature and the throttle opening, are input. Determines the operating condition of the engine based on various input signals, and controls the opening / closing of the negative pressure control valve 24 based on the result of the determination.

【0031】このため、本実施例のEGR弁22は、エ
ンジンがアイドリング域を除く低・中負荷運転域にある
時に開かれ、吸入空気量の10〜20%の排気が燃焼室
4に還流されるようになっている。次に、上記構成の作
用について説明する。
Therefore, the EGR valve 22 of the present embodiment is opened when the engine is in the low / medium load operating range excluding the idling range, and exhaust gas of 10 to 20% of the intake air amount is recirculated to the combustion chamber 4. It has become so. Next, the operation of the above configuration will be described.

【0032】エンジンが低負荷の状態で運転されている
時、スロットルバルブ14で絞られた吸入空気は、図1
の白抜きの矢印で示すように、吸気チャンバ12を介し
て三本の吸気通路11a,11b,11cに導かれる。
When the engine is operated under a low load, the intake air throttled by the throttle valve 14 is
As indicated by the white arrows, the air is introduced into the three intake passages 11a, 11b, 11c through the intake chamber 12.

【0033】そして、この運転域ではEGR弁22が開
かれているので、図1の黒塗りの矢印で示すように、不
活性成分である排気の一部が、排気還流路20の導入口
21を通じて両側の二本の吸気通路11a,11cに導
入される。この場合、導入口21は吸気口5a,5cの
直前で、これら吸気口5a,5cを指向して開口されて
いるので、図2の(a)に示すように、導入口21から
の排気は吸気口5a,5cに向って流れる。それととも
に、図2の(b)に示すように、排気が環流される吸気
通路11a,11cに対応した吸気バルブ7は、理論空
燃比の混合気が供給される吸気通路11bに対応した吸
気バルブ7よりも早いタイミングで開き始めるので、排
気行程中における燃焼室4と吸気通路11a,11cと
の連通が、上死点前の早い時期から行われることにな
り、燃焼室4内に残留している高圧の既燃ガスが、吸気
口5a,5cを通じて吸気通路11a,11c内に逆流
する。しかも、この吸気通路11a,11cの容積は、
行程容積の25%以上と大きく設定されているので、吸
気バルブ7が閉じている期間中、吸気通路11a,11
cには充分な量の不活性成分が蓄えられることになる。
Since the EGR valve 22 is opened in this operating range, a part of the exhaust gas, which is an inactive component, is introduced into the exhaust gas recirculation passage 20 through the inlet 21 as shown by the black arrow in FIG. Is introduced into the two intake passages 11a and 11c on both sides. In this case, the inlet 21 is opened immediately before the intake ports 5a and 5c so as to be directed toward the intake ports 5a and 5c, so that the exhaust gas from the introduction port 21 does not flow as shown in FIG. It flows toward the intake ports 5a and 5c. At the same time, as shown in FIG. 2B, the intake valve 7 corresponding to the intake passages 11a and 11c in which the exhaust gas is recirculated is an intake valve corresponding to the intake passage 11b to which the air-fuel ratio mixture is supplied. Since it starts to open at a timing earlier than 7, the communication between the combustion chamber 4 and the intake passages 11a and 11c during the exhaust stroke is performed from an early stage before top dead center, and remains in the combustion chamber 4. The high-pressure burnt gas that flows therein flows back into the intake passages 11a and 11c through the intake ports 5a and 5c. Moreover, the volumes of the intake passages 11a and 11c are
Since it is set to a large value of 25% or more of the stroke volume, during the period when the intake valve 7 is closed, the intake passages 11a, 11a
A sufficient amount of inactive ingredients will be stored in c.

【0034】エンジンが吸入行程に至り、上死点付近で
吸気バルブ7が開かれると、両側の吸気通路11a,1
1c内に充填された不活性成分が、吸気口5a,5cか
ら燃焼室4に流れ込むとともに、中央の吸気口5bから
理論空燃比の混合気が燃焼室4に流れ込む。この中央の
吸気口5bは、点火プラグ9による火花点火位置に向け
て開口されているので、この点火プラグ9の付近に理論
空燃比の混合気が確実に導かれることになり、燃焼室4
内の火花点火位置に、着火容易な混合気層を形成するこ
とができる。
When the engine reaches the intake stroke and the intake valve 7 is opened near the top dead center, the intake passages 11a, 1 on both sides are opened.
The inactive component filled in 1c flows into the combustion chamber 4 through the intake ports 5a and 5c, and the stoichiometric air-fuel ratio mixture flows into the combustion chamber 4 through the central intake port 5b. Since the central intake port 5b is opened toward the spark ignition position by the spark plug 9, the air-fuel mixture having the stoichiometric air-fuel ratio is surely guided to the vicinity of the spark plug 9, and the combustion chamber 4
An air-fuel mixture layer that can easily be ignited can be formed at the spark ignition position inside.

【0035】このようなことから、燃焼室4内には、還
流された不活性成分の流れと、理論空燃比の混合気の流
れが形成され、これら二つの流れは、圧縮行程の末期ま
で大きく攪拌されることなく略層状の状態を保ったまま
圧縮される。そして、この圧縮行程の末期において、点
火プラグ9を介して混合気に点火される。
From the above, a flow of the recirculated inert component and a flow of the air-fuel mixture having the stoichiometric air-fuel ratio are formed in the combustion chamber 4, and these two flows are large until the end of the compression stroke. It is compressed without being agitated while maintaining a substantially layered state. Then, at the end of the compression stroke, the air-fuel mixture is ignited via the spark plug 9.

【0036】この場合、吸気口5a,5cから燃焼室4
に流れ込むのは、吸気バルブ7が閉じられている時に吸
気通路11a,11cに蓄えられた不活性成分が大部分
であるから、燃焼室4内の混合気は、略理論空燃比の状
態で圧縮された後に点火される。
In this case, from the intake ports 5a, 5c to the combustion chamber 4
Since most of the inactive components stored in the intake passages 11a and 11c when the intake valve 7 is closed, the air-fuel mixture in the combustion chamber 4 is compressed at a substantially stoichiometric air-fuel ratio. It is ignited after being done.

【0037】しかも、本実施例において、燃料噴射弁1
5は、吸気バルブ7が閉じる直前に燃料を吸気通路11
b内に噴射するので、点火プラグ9に周囲に理論空燃比
の混合気層が確実に形成される。
Moreover, in this embodiment, the fuel injection valve 1
5 indicates that the fuel is introduced into the intake passage 11 immediately before the intake valve 7 is closed.
Since the fuel is injected into b, the air-fuel mixture layer having the stoichiometric air-fuel ratio is reliably formed around the spark plug 9.

【0038】したがって、混合気への点火が確実に行わ
れ、燃焼室4内での火炎の伝ぱが安定して行われること
になり、従来の稀薄燃焼エンジンのように、燃焼室4内
に過濃な混合気の層が形成されることはない。
Therefore, the air-fuel mixture is reliably ignited, and the flame is stably propagated in the combustion chamber 4, so that the combustion chamber 4 is overheated like the conventional lean burn engine. No dense mixture layer is formed.

【0039】このことから、排気行程が終了するまで
に、燃焼室4に吸入された混合気の全てを燃焼させるこ
とが可能となり、未燃焼の燃料成分の発生や不完全燃焼
を防止することができる。このため、排気通路17への
HCやCOの排出量が少なくなり、三元触媒19の負担
が軽減される。
From this, it becomes possible to burn all of the air-fuel mixture sucked into the combustion chamber 4 by the end of the exhaust stroke, and it is possible to prevent generation of unburned fuel components and incomplete combustion. it can. Therefore, the amount of HC and CO discharged to the exhaust passage 17 is reduced, and the load on the three-way catalyst 19 is reduced.

【0040】また、吸入行程時に吸気通路11a,11
cから燃焼室4に流れ込むのは、不活性成分である排気
が大部分を占めるので、排気中に含まれる余剰酸素が減
小する。したがって、燃焼過程で生じたNOxを三元触
媒19で分解することができ、上記HCやCOの排出量
が少なくなることと合わせて、三元触媒19を有害成分
の浄化用として有効に活用できる。
Further, during the intake stroke, the intake passages 11a, 11
Exhaust gas, which is an inactive component, occupies most of the flow from c to the combustion chamber 4, so that the excess oxygen contained in the exhaust gas decreases. Therefore, NOx produced in the combustion process can be decomposed by the three-way catalyst 19, and the three-way catalyst 19 can be effectively utilized for purifying harmful components in addition to the reduction in the amount of HC and CO emissions. ..

【0041】その上、低負荷運転域での燃焼が、多量の
排気再循環のもとで行われることになるので、吸気圧力
の上昇によるポンピング損失の低減が可能となる。この
ため、理論空燃比の混合気を供給する構成でありなが
ら、燃費を改善することができる。
Moreover, since combustion in the low load operation range is performed under a large amount of exhaust gas recirculation, pumping loss due to increase in intake pressure can be reduced. Therefore, it is possible to improve the fuel consumption even though the air-fuel mixture having the stoichiometric air-fuel ratio is supplied.

【0042】また、この実施例では、吸入行程の末期に
おいて、不活性成分を燃焼室4に供給する吸気バルブ7
が早く閉じるので、中央の吸気口5bから供給される混
合気の流れが、不活性成分の流れの影響を受け難くな
る。このため、点火プラグ9の回りに混合気が流れ込み
易くなって、ここに混合気の層をより確実に形成するこ
とができ、混合気への着火性が向上するといった利点も
ある。
Further, in this embodiment, the intake valve 7 for supplying the inactive component to the combustion chamber 4 at the end of the intake stroke.
Is closed earlier, the flow of the air-fuel mixture supplied from the central intake port 5b is less likely to be affected by the flow of the inert component. Therefore, the air-fuel mixture easily flows around the ignition plug 9, and a layer of the air-fuel mixture can be formed more reliably there, and the ignitability of the air-fuel mixture is improved.

【0043】なお、上記実施例のにように、排気行程の
初期に燃焼室内の既燃ガスを吸気口から吸気通路内に逆
流させる場合には、排気を吸気通路に導く導入口は、必
ずしも吸気口の近傍に設ける必要はなく、たとえば吸気
通路の中間部分に設けても良い。
When the burned gas in the combustion chamber is made to flow backward from the intake port into the intake passage as in the above-described embodiment, the introduction port for guiding the exhaust gas to the intake passage is not necessarily the intake air. It need not be provided near the mouth, but may be provided, for example, in the middle portion of the intake passage.

【0044】さらに、上記実施例では、不活性成分を燃
焼室に供給する両側の吸気バルブを、混合気を燃焼室に
供給する中央の吸気バルブよりも早く閉じるようにした
が、本発明はこれに限らず、例えば両側の吸気バルブが
閉じるタイミングを、中央の吸気バルブと同じか、ある
いはそれよりも遅くしても良い。
Further, in the above-described embodiment, the intake valves on both sides for supplying the inert component to the combustion chamber are closed earlier than the central intake valve for supplying the air-fuel mixture to the combustion chamber. However, the timing at which the intake valves on both sides close may be the same as or later than that at the central intake valve.

【0045】また、本発明に係るエンジンは、自動車用
に特定されるものではなく、例えば自動二輪車やその他
の分野の駆動源としても適用できるとともに、気筒数も
上記実施例に特定されない。
Further, the engine according to the present invention is not specified for automobiles but can be applied as a drive source for motorcycles and other fields, and the number of cylinders is not specified in the above embodiment.

【0046】[0046]

【発明の効果】請求項1ないし3に記載した構成によれ
ば、燃焼室内の火花点火位置に、着火容易な混合気層を
確実に形成できるとともに、この燃焼室内に流れ込んだ
混合気は、略理論空燃比の状態で圧縮された後に点火さ
れるので、燃焼室内での火炎伝ぱが安定して行われ、か
つ過濃な混合気領域が燃焼室内に形成される虞れもな
い。したがって、未燃焼の燃料成分が減じられるととも
に、不完全燃焼も防止することができ、その分、HCや
COの排出量が少なくなって、三元触媒の負担が軽減さ
れる。
According to the present invention, it is possible to reliably form an air-fuel mixture layer that is easily ignited at the spark ignition position in the combustion chamber, and the air-fuel mixture flowing into the combustion chamber is substantially Since ignition is performed after being compressed in the state of the stoichiometric air-fuel ratio, flame propagation in the combustion chamber is performed stably, and there is no fear that a rich mixture region is formed in the combustion chamber. Therefore, unburned fuel components are reduced, and incomplete combustion can be prevented, and accordingly, the amount of HC and CO emissions is reduced, and the burden on the three-way catalyst is reduced.

【0047】また、多量の排気再循環のもとでの燃焼と
なるから、排気中の余剰酸素が減小する。したがって、
燃焼過程で生じたNOxを三元触媒で分解することがで
き、上記HCやCOの排出量が減小することと合わせ
て、三元触媒を有害成分に浄化用として有効に活用でき
る。
Further, since the combustion is carried out under a large amount of exhaust gas recirculation, the surplus oxygen in the exhaust gas is reduced. Therefore,
NOx generated in the combustion process can be decomposed by the three-way catalyst, and the three-way catalyst can be effectively used as a harmful component for purification together with the reduction of the emission amount of HC and CO.

【0048】さらに、低負荷運転時での燃焼が、多量の
排気再循環のもとで行われるから、吸気圧力の上昇によ
るポンピング損失の低減が可能となり、理論空燃比の混
合気を供給する構成でありながら、燃費を改善すること
ができる。
Further, since the combustion during the low load operation is performed under a large amount of exhaust gas recirculation, it is possible to reduce the pumping loss due to the rise of the intake pressure, and to supply the air-fuel mixture of the stoichiometric air-fuel ratio. However, the fuel efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるエンジンの概略を示
す構成図。
FIG. 1 is a configuration diagram showing an outline of an engine in an embodiment of the present invention.

【図2】(a)は、吸気バルブが閉じている時、吸気通
路に還流された排気の流れを示す断面図。(b)は、中
央の吸気バルブが開いた時、吸気通路に還流された排気
の流れを示す断面図。
FIG. 2A is a cross-sectional view showing the flow of exhaust gas recirculated to the intake passage when the intake valve is closed. FIG. 6B is a cross-sectional view showing the flow of exhaust gas recirculated to the intake passage when the central intake valve is opened.

【符号の説明】[Explanation of symbols]

4…燃焼室、5a,5b,5c…吸気口、7…吸気バル
ブ、9…点火プラグ、11a,11b,11c…吸気通
路、15…燃料噴射手段(燃料噴射弁)、17…排気通
路、19…三元触媒、21…導入口。
4 ... Combustion chamber, 5a, 5b, 5c ... Intake port, 7 ... Intake valve, 9 ... Spark plug, 11a, 11b, 11c ... Intake passage, 15 ... Fuel injection means (fuel injection valve), 17 ... Exhaust passage, 19 … Three-way catalyst, 21… Inlet.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室の略中央に点火プラグを設け、 この燃焼室に、点火プラグの周囲に位置して、吸気バル
ブによって個別に開閉される三つの吸気口を設け、 これら吸気口に夫々吸気通路を連通させるとともに、 上記燃焼室に連なる排気通路には、排気浄化用の三元触
媒を設けたエンジンにおいて、 上記燃焼室に連なる三つの吸気口のうち、中央の吸気口
を上記点火プラグの位置の方向に向けて開口させ、 この中央の吸気口に連なる一本の吸気通路に、上記燃焼
室に理論空燃比の混合気を供給するための燃料供給手段
を設けるとともに、 上記中央の吸気通路を挾んだ両側の吸気通路には、少な
くとも低負荷運転時に不活性成分である排気の一部を導
入するための導入口を設けたことを特徴とするエンジン
の燃焼制御装置。
1. A spark plug is provided substantially in the center of a combustion chamber, and three intake ports that are located around the spark plug and that are individually opened and closed by intake valves are provided in the combustion chamber. In an engine in which the intake passage is communicated and an exhaust passage communicating with the combustion chamber is provided with a three-way catalyst for exhaust purification, the central intake port among the three intake ports communicating with the combustion chamber is the spark plug. A fuel supply means for supplying the air-fuel mixture of the stoichiometric air-fuel ratio to the combustion chamber is provided in one intake passage which is opened toward the position of the central intake port and is connected to the central intake port. A combustion control device for an engine, characterized in that the intake passages on both sides of the passage are provided with inlets for introducing at least a part of exhaust gas which is an inactive component at the time of low load operation.
【請求項2】 請求項1の記載において、上記導入口
は、吸気口の近傍においてこの吸気口を指向して開口さ
れていることを特徴とするエンジンの燃焼制御装置。
2. The combustion control device for an engine according to claim 1, wherein the introduction port is opened near the intake port so as to be directed toward the intake port.
【請求項3】 請求項1の記載において、上記導入口を
有する両側の吸気通路に対応した吸気バルブの開時期
を、中央の吸気通路に対応した吸気バルブの開時期より
も早く設定したことを特徴とするエンジンの燃焼制御装
置。
3. The method according to claim 1, wherein the opening timing of the intake valves corresponding to the intake passages on both sides having the introduction port is set earlier than the opening timing of the intake valves corresponding to the central intake passage. Characteristic engine combustion control device.
JP02246292A 1991-12-19 1992-02-07 Engine combustion control device Expired - Fee Related JP3151273B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02246292A JP3151273B2 (en) 1992-02-07 1992-02-07 Engine combustion control device
US07/994,191 US5329912A (en) 1991-12-19 1992-12-21 Induction system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02246292A JP3151273B2 (en) 1992-02-07 1992-02-07 Engine combustion control device

Publications (2)

Publication Number Publication Date
JPH05223015A true JPH05223015A (en) 1993-08-31
JP3151273B2 JP3151273B2 (en) 2001-04-03

Family

ID=12083377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02246292A Expired - Fee Related JP3151273B2 (en) 1991-12-19 1992-02-07 Engine combustion control device

Country Status (1)

Country Link
JP (1) JP3151273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848148A2 (en) * 1996-12-06 1998-06-17 Luciano Caruso Feed system for the air-fuel mixture formation and inlet into the combustion chamber of aspirated or supercharged, internal-combustion Otto engines with a 5 - valve head per cylinder
JP2016098745A (en) * 2014-11-25 2016-05-30 アイシン精機株式会社 Intake device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848148A2 (en) * 1996-12-06 1998-06-17 Luciano Caruso Feed system for the air-fuel mixture formation and inlet into the combustion chamber of aspirated or supercharged, internal-combustion Otto engines with a 5 - valve head per cylinder
EP0848148A3 (en) * 1996-12-06 1999-02-10 Luciano Caruso Feed system for the air-fuel mixture formation and inlet into the combustion chamber of aspirated or supercharged, internal-combustion Otto engines with a 5 - valve head per cylinder
JP2016098745A (en) * 2014-11-25 2016-05-30 アイシン精機株式会社 Intake device of internal combustion engine
WO2016084576A1 (en) * 2014-11-25 2016-06-02 アイシン精機株式会社 Intake device for internal combustion engine

Also Published As

Publication number Publication date
JP3151273B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US7059114B2 (en) Hydrogen fueled spark ignition engine
US6877464B2 (en) Spark-ignition engine controller
US6141959A (en) Multi-cylinder air-compressing injection-type internal-combustion engine
JP2001349232A (en) In-cylinder injection internal combustion engine
US20060053786A1 (en) Control device for supercharged engine
JP2639140B2 (en) 2-stroke engine
JP2002364412A (en) Exhaust emission control device for engine with turbo supercharger
JP3151273B2 (en) Engine combustion control device
JP3934934B2 (en) Engine for stratified charge combustion at stoichiometric air-fuel ratio and stratified charge combustion method for the engine
JP2001336435A (en) 6-cycle internal combustion engine
JP3327940B2 (en) Engine combustion control device
JP3896630B2 (en) Exhaust gas purification device for in-cylinder injection engine
JPH05187326A (en) Exhaust gas reflux device for internal combustion engine
JP2005054676A (en) Spark ignition type engine
JP4078737B2 (en) In-cylinder injection type 4-cycle engine
JP2003113730A (en) INTERNAL COMBUSTION ENGINE WITH NOx STORAGE CATALYST, AND COMBUSTION CONTROL METHOD FOR THE SAME
JP3711941B2 (en) Control device for spark ignition engine
JPH05195880A (en) Combustion control device for engine
JP2004132318A (en) Exhaust gas purification device for internal combustion engine
JP3312514B2 (en) In-cylinder internal combustion engine
JP2004332591A (en) Intake device for internal combustion engine, internal combustion engine, collector device for internal combustion engine, and intake device for spark ignition in-cylinder injection engine
JP2002364395A (en) Internal combustion engine
JP3894083B2 (en) Control device for spark ignition engine
JPH045416A (en) Two-stroke internal combustion engine
JPH04311645A (en) Exhaust gas purifying device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees