JPH05219588A - Low-frequency submarine ultrasonic transmitter - Google Patents
Low-frequency submarine ultrasonic transmitterInfo
- Publication number
- JPH05219588A JPH05219588A JP2256092A JP2256092A JPH05219588A JP H05219588 A JPH05219588 A JP H05219588A JP 2256092 A JP2256092 A JP 2256092A JP 2256092 A JP2256092 A JP 2256092A JP H05219588 A JPH05219588 A JP H05219588A
- Authority
- JP
- Japan
- Prior art keywords
- active
- low
- frequency
- wave transmitter
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 abstract description 13
- 238000005452 bending Methods 0.000 abstract description 6
- 230000010355 oscillation Effects 0.000 abstract 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000002706 hydrostatic effect Effects 0.000 abstract 1
- 230000001131 transforming effect Effects 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005520 electrodynamics Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は遠距離ソーナー、海洋資
源探査などに使用される低周波帯でハイパワーの水中超
音波送波器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-frequency high-power underwater ultrasonic wave transmitter used for long-distance sonar and ocean resource exploration.
【0002】[0002]
【従来の技術】水中において低周波の超音波は高周波の
それと比較して伝搬損失が少なく、より遠方まで到達す
ることができるために、ソーナー、海洋資源探査、海流
の調査などの分野で低周波の超音波を利用することは数
々の長所がある。従来から水中において強力超音波を放
射する送波器として動電形送波器と圧電形送波器が知ら
れている。動電形送波器は大きな変位がとりうる反面、
発生力が小さいことにより低周波で小型のトランスジュ
ーサを得ることは極めて困難である。また、圧電形送波
器は、電気機械エネルギー変換材料としてジルコンチタ
ン酸鉛系圧電磁器が用いられている。圧電磁器それ自身
は水に比べて約20倍以上も音響インピーダンスが大き
いために発生力は極めて大きいという利点はあるものの
音響放射において媒質排除に必要な変位をとることがで
きないという欠点がある。低周波になるに従い単位放射
面積当たりの音響放射インピーダンスが極めて小さくな
ることを考慮すると、低周波で効率の良い音響放射を行
うためには、圧電磁器の変位をより一層拡大させて音響
放射を行う必要がある。2. Description of the Related Art Ultrasonic waves of low frequency in water have less propagation loss than those of high frequency waves and can reach farther, so that low frequency ultrasonic waves are used in fields such as sonar, ocean resource exploration, and ocean current research. The use of ultrasound has a number of advantages. BACKGROUND ART Conventionally, an electrodynamic wave transmitter and a piezoelectric wave transmitter are known as wave transmitters that emit intense ultrasonic waves in water. Although an electrodynamic wave transmitter can take a large displacement,
It is extremely difficult to obtain a small-sized transducer at a low frequency because the generated force is small. Further, the piezoelectric wave transmitter uses a lead zircon titanate-based piezoelectric ceramic as an electromechanical energy conversion material. The piezoelectric ceramic itself has an advantage that the generated force is extremely large because the acoustic impedance is about 20 times or more larger than that of water, but there is a drawback that the displacement necessary for removing the medium cannot be taken in acoustic radiation. Considering that the acoustic radiation impedance per unit radiation area becomes extremely small as the frequency becomes low, in order to perform efficient acoustic radiation at low frequencies, the displacement of the piezoelectric ceramic is further expanded to perform acoustic radiation. There is a need.
【0003】従来、低周波数帯(3kHz以下)におけ
るハイパワー送波器として、例えばジャーナル・オブ・
アコースティカル・ソサイアティー・オブ・アメリカ
(J.Acoust.Soc.Am.、vol.68、
No.4、pp1046−1052(1980.1
0))に記載されているように、図4に示す楕円形シェ
ルを用いた屈曲伸び送波器が知られている。Conventionally, as a high power transmitter in a low frequency band (3 kHz or less), for example, a journal of
Acoustic Society of America (J.Acoust.Soc.Am., Vol.68,
No. 4, pp1046-1052 (1980.1
As described in (0)), a bending-extension transmitter using an elliptical shell shown in FIG. 4 is known.
【0004】[0004]
【発明が解決しようとする課題】図4に示した屈曲伸び
送波器は圧電磁器からなるアクティブ柱状体20が長軸
方向に伸び変位をしたときに、楕円シェル21が図中の
矢印で示すように柱状体20の倍数の変位で収縮する一
種の変位拡大機構を有する送波器である。(楕円シェル
の4分の1部分だけ矢印で示す。)このような屈曲伸び
送波器の共振周波数は、アクティブ柱状体20のスチフ
ネスがシェルのそれに比べて相当大きいために、楕円シ
ェル21自身の共振周波数の2倍かそれ以上の値とな
る。即ち、一定寸法を有する楕円シェル21自身の屈曲
伸びモードに関する共振周波数を相当低下させることな
しには、屈曲伸び送波器の低周波小型化は達成されない
わけであり、屈曲伸び送波器においてシェル自身の共振
周波数の一層の低下が望まれている。しかしながら以下
に述べる理由により、この楕円シェル自身の低周波小型
化は極めて困難である。In the bending-extension transmitter shown in FIG. 4, the elliptical shell 21 is indicated by an arrow in the figure when the active columnar body 20 made of a piezoelectric ceramic is extended and displaced in the long axis direction. Thus, it is a wave transmitter having a kind of displacement magnifying mechanism that contracts with a multiple displacement of the columnar body 20. (Only a quarter portion of the elliptical shell is indicated by an arrow.) The resonance frequency of such a bending and extending transmitter has a stiffness of the active columnar body 20 that is considerably larger than that of the shell. The value is twice the resonance frequency or more. That is, the low frequency miniaturization of the flexural extension transmitter cannot be achieved without considerably reducing the resonance frequency of the elliptical shell 21 itself having a constant dimension with respect to the flexural extension mode. It is desired to further reduce the resonance frequency of itself. However, it is extremely difficult to miniaturize the low frequency of the elliptical shell itself for the reasons described below.
【0005】この楕円シェルの動作を説明するために、
楕円シェルの長軸をx軸、短軸をy軸に、奥行方向をz
軸に対応させて、楕円シェルの4分の1部分を図5に示
す。楕円シェルの肉厚の中心とx軸とが交わる点を
(a,0)、またy軸と交わる点を(0,b)とする。
即ち楕円シェルの長径をa、短径をbとする。いま、ア
クティブ柱状体20が伸びてP点を+x方向にξだけ変
位させたとき、楕円シェル自身のもつ変位拡大機構によ
り、Q点において−y方向にξの数倍の変位が現れるわ
けで、シェル全体として媒質を引き込むことになる。こ
れに対して、アクティブ柱状体が収縮したときシェル全
体としては媒質を排除する方向に働くわけである。この
場合、楕円シェルをx軸で切った断面はx軸に平行に、
あたかもローラーをはいたかのように、並進変位するだ
けでz軸廻りの回転変位は零である。したがって、z軸
廻りの回転を許さない分だけ、シェルの動きに関する拘
束が大きくなり、シェルの共振周波数が高くなる。屈曲
伸び送波器は、楕円シェル自身の共振周波数が、以上の
ような理由により低下しにくいために低周波小型化は極
めて困難となっている。In order to explain the operation of this elliptical shell,
The major axis of the elliptical shell is the x-axis, the minor axis is the y-axis, and the depth direction is z.
Corresponding to the axis, a quarter of the elliptical shell is shown in FIG. The point at which the center of the thickness of the elliptical shell intersects the x axis is (a, 0), and the point at which it intersects the y axis is (0, b).
That is, the major axis of the elliptical shell is a and the minor axis is b. Now, when the active columnar body 20 extends and displaces the point P by ξ in the + x direction, the displacement magnifying mechanism of the elliptical shell itself causes a displacement of several times ξ in the −y direction at the point Q. The medium as a whole will draw in the medium. On the other hand, when the active columnar body contracts, the shell as a whole works in the direction of eliminating the medium. In this case, the cross section of the elliptical shell cut along the x-axis is parallel to the x-axis,
The translational displacement is zero, and the rotational displacement about the z-axis is zero, as if the roller were worn. Therefore, since the rotation around the z axis is not allowed, the constraint on the movement of the shell is increased and the resonance frequency of the shell is increased. In the flexural extension wave transmitter, the resonance frequency of the elliptical shell itself is not easily lowered for the above reasons, and it is extremely difficult to downsize the low frequency wave.
【0006】一方、楕円シェルの形状を変えた場合、b
/aを大きくしていって円に近づけて行くほど確かにシ
ェル共振周波数は低下する。しかしこの場合、b/aを
大きくするほど周波数低下に比べて変位拡大率が大幅に
減少してしまうために形状を変えて小型化をはかるメリ
ットはなくなる。また、シェルの肉厚を小さくした場合
にも、共振周波数が低下することが認められる。しか
し、この場合、シェルの媒質排除能力が低下するばかり
か、耐水圧特性も著しく劣化するという欠点がある。On the other hand, when the shape of the elliptical shell is changed, b
The shell resonance frequency surely decreases as / a is increased and approaches a circle. However, in this case, as b / a is increased, the displacement enlargement ratio is greatly reduced as compared with the frequency reduction, and therefore there is no merit of changing the shape and reducing the size. It is also recognized that the resonance frequency is lowered when the thickness of the shell is reduced. However, in this case, there is a drawback that not only the capacity of the shell for removing the medium is lowered but also the water pressure resistance characteristic is significantly deteriorated.
【0007】本発明はこのような従来のトランスジュー
サの欠点を除去せしめて、低周波帯において小型でハイ
パワー特性に優れた無指向性の送波器を提供することに
ある。An object of the present invention is to provide a non-directional transmitter which is small in a low frequency band and has excellent high power characteristics by eliminating the above drawbacks of the conventional transducer.
【0008】[0008]
【課題を解決するための手段】本発明の送波器は、圧電
磁器を用いたアクティブ体と、このアクティブ体をはめ
込んだディスクとからなる板状振動体2個を前記ディス
ク材料よりヤング率の低い材料リングを介してアクティ
ブ体が互いに外表面側となるようにはり合わせたことを
特徴とする低周波水中超音波送波器である。A wave transmitter according to the present invention comprises two plate-like vibrating bodies each having an active body using a piezoelectric ceramic and a disc having the active body fitted therein, and having a Young's modulus higher than that of the disc material. A low-frequency underwater ultrasonic wave transmitter, characterized in that active bodies are bonded to each other via a low material ring so that they are on the outer surface side.
【0009】[0009]
【作用】本発明の送波器は上記構造とすることにより従
来技術の問題点を改善している。以下図面に従って説明
する。The wave transmitter according to the present invention has the above-mentioned structure to solve the problems of the prior art. The following is a description with reference to the drawings.
【0010】図1は本発明の送波器の一例を示したもの
である。図1の送波器の動作原理について詳細に説明す
る。図1において30は圧電磁器を用いたアクティブ円
板体であり、電圧あるいは電流を入力することにより径
ひろがり振動が励振されるものである。このアクティブ
円板体は強力接着剤により、高張力鋼などの機械的強度
の大きな材料からできた金属ディスク31の窪み内部に
接着されている。図1では、このようなアクティブ円板
体がはめ込まれた金属ディスクを2枚用意し、金属より
ヤング率が低く、しかも高強度な材料でできたリング3
2を介して接着剤およびボルト締め35により接合され
ている。さらにその外形廻りを保護板33を介して、ウ
レタン樹脂34等でモールドされている。FIG. 1 shows an example of the transmitter of the present invention. The operating principle of the transmitter of FIG. 1 will be described in detail. In FIG. 1, reference numeral 30 denotes an active disk body using a piezoelectric ceramic, which is adapted to excite the radial expansion vibration by inputting voltage or current. The active disk body is bonded to the inside of the recess of the metal disk 31 made of a material having high mechanical strength such as high-strength steel by a strong adhesive. In FIG. 1, two metal disks in which such an active disc body is fitted are prepared, and a ring 3 made of a material having a lower Young's modulus and a higher strength than metal is used.
They are joined via an adhesive and a bolt tightening 35. Further, the outer periphery thereof is molded with urethane resin 34 or the like via a protective plate 33.
【0011】アクティブ円板体がξ1 だけ変位すると、
2枚の金属ディスクの接合部分が支持端となって、アク
ティブ円板体と金属ディスク一体の系はξ2 だけ変位す
る。このとき、ξ2 はξ1 に比べ拡大されていてξ2 >
ξ1 となる。これが繰り返され、アクティブ円板体と金
属ディスク一体の系は屈曲振動をすることになる。When the active disc body is displaced by ξ 1 ,
The joint part of the two metal disks serves as a support end, and the system of the active disk body and the metal disk is displaced by ξ 2 . At this time, ξ 2 is larger than ξ 1 and ξ 2 >
ξ 1 . This is repeated, and the system in which the active disk body and the metal disk are integrated vibrates flexibly.
【0012】本発明の送波器では、アクティブ円板体と
金属ディスクとが一体となって振動する方式をとるの
で、薄型・軽量化が容易に可能である。さらに低周波化
をはかるため2枚の金属ディスクの間に金属よりヤング
率が低く、高強度な材料でできたリング32を挟み込ん
でいることが特徴である。図3(a),(b)にリング
32がある場合と(実線)とない場合(点線)との振動
モードを示す。リング32を挿入することにより、アク
ティブ円板体と金属ディスク一体の系の屈曲振動は、そ
の支持部があたかもpin端支持に近い状態で行われる
ことになり、低周波化がはかれる。さらに図3で示され
ているように振動モードの振幅も大きく、すなわち体積
速度も大きくとれ、大音圧を出すことが可能である。In the wave transmitter of the present invention, since the active disk body and the metal disk vibrate integrally, it is possible to easily reduce the thickness and weight. Further, in order to lower the frequency, a feature is that a ring 32 made of a material having a Young's modulus lower than that of metal and having high strength is sandwiched between two metal disks. 3A and 3B show vibration modes with and without the ring 32 (solid line) and without (dotted line). By inserting the ring 32, the bending vibration of the system in which the active disk body and the metal disk are integrated is performed in a state in which the supporting portion is close to the pin end support, and the frequency can be lowered. Furthermore, as shown in FIG. 3, the amplitude of the vibration mode is large, that is, the volume velocity is large, and a large sound pressure can be produced.
【0013】本発明の送波器で用いているアクティブ円
板体は引張応力にはやや脆い傾向にあるが、本発明の送
波器では図1に示すようにアクティブ円板体を2枚の金
属ディスクの外表面にはめ込み、さらに有限要素法によ
る応力解析によりアクティブ円板体の直径を送波器全体
の直径60〜75%程度に決定することで、静水圧下で
アクティブ円板体に対し、圧縮応力のみがかかるように
することができる。よって、本発明に基づく低周波水中
超音波送波器は耐水圧性に優れ、深々度(水深500m
程度)での使用が可能である。なお、本発明においてア
クティブ体の外形は望ましくは円または矩形だがこれに
限定されない。またディスクの材料も金属に必ずしも限
定されない。Although the active disc body used in the wave transmitter of the present invention tends to be slightly fragile in tensile stress, the wave disc drive of the present invention has two active disc members as shown in FIG. By fitting it to the outer surface of the metal disk and then determining the diameter of the active disk to be 60 to 75% of the diameter of the entire transmitter by stress analysis using the finite element method, It is possible to apply only compressive stress. Therefore, the low-frequency underwater ultrasonic wave transmitter according to the present invention is excellent in water pressure resistance and has a deep depth (water depth of 500 m).
It is possible to use the In the present invention, the outer shape of the active body is preferably a circle or a rectangle, but is not limited to this. The material of the disc is not necessarily limited to metal.
【0014】[0014]
【実施例1】本発明の一実施例を図1を参照に説明す
る。図1においてアクティブ円板体30の直径を104
mmφ、厚さ7mm、金属ディスク31の直径を160
mmφ、厚さを厚いところで14mm、薄いところで7
mm、挿入リング32の内径を150mm、外径160
mm、厚さ2mmと設計した。従って、モールド前の段
階で送波器全体の寸法は160mmφ×32mmとな
る。次にアクティブ円板体30にはジルコンチタン酸鉛
系圧電磁器、金属ディスク31にはステンレス鋼SUS
304、挿入リング32には繊維強化プラスチック(F
RP)を適用し試作した。試作した送波器の空気中での
共振周波数は3544Hzである。アクティブ円板体の
変位に対し、アクティブ円板体と金属ディスク一体の系
の中央部分では約19.5倍の変位が得られている。[Embodiment 1] An embodiment of the present invention will be described with reference to FIG. In FIG. 1, the diameter of the active disc body 30 is set to 104
mmφ, thickness 7 mm, diameter of metal disk 31 is 160
mmφ, 14 mm thick, 7 thick
mm, the inner diameter of the insertion ring 32 is 150 mm, the outer diameter is 160
mm and a thickness of 2 mm. Therefore, the dimensions of the entire wave transmitter are 160 mmφ × 32 mm before the molding. Next, a lead zircon titanate-based piezoelectric ceramic for the active disk body 30, and stainless steel SUS for the metal disk 31.
304 and the insertion ring 32 have a fiber reinforced plastic (F
RP) was applied to make a prototype. The resonance frequency of the prototyped wave transmitter in air is 3544 Hz. About 19.5 times the displacement of the active disk body is obtained in the central part of the system where the active disk body and the metal disk are integrated.
【0015】次にこの送波器を水槽にいれてハイパワー
で駆動し、音響放射面から1m離れた点における音圧を
測定したところ、3000Hzにおいて203dBre
1μmPaの音圧が得られた。水中でのQ値も3.4と
かなり低い値が得られた。指向性については、ほとんど
無指向性であった。Next, this wave transmitter was placed in a water tank and driven with high power, and the sound pressure at a point 1 m away from the acoustic radiation surface was measured. At 3000 Hz, the sound pressure was 203 dBre.
A sound pressure of 1 μmPa was obtained. The Q value in water was 3.4, which was a very low value. As for directivity, it was almost omnidirectional.
【0016】また金属ディスクとして、ステンレス鋼の
代わりにアルミニウム合金を使用する方法もある。この
場合、アルミニウム合金の音響インピーダンスがステン
レス鋼に比べ低いため、水との整合に有利であり、より
一層の低Q化が可能であることは明らかである。There is also a method of using an aluminum alloy instead of stainless steel as the metal disk. In this case, since the acoustic impedance of the aluminum alloy is lower than that of stainless steel, it is advantageous for matching with water, and it is clear that the Q value can be further reduced.
【0017】[0017]
【実施例2】次に図2を参照して本発明の実施例を説明
する。図2は図1の円板型のものを矩形型にし、アクテ
ィブ体40として幅方向に分極されたジルコンチタン酸
鉛系圧電磁器を数枚並べたものを適用している。このと
きアクティブ体の振動モードは変換効率の高い縦効果縦
振動となる。図2では、金属部は矩形型の金属シェル4
1となり、この部分に対しステンレス鋼SUS304を
適用する。2枚の金属シェルの間に挿入するヤング率の
低い材料にはFRP42を適用するが、この場合FRP
は2本の板状のものが使われる。Second Embodiment Next, an embodiment of the present invention will be described with reference to FIG. In FIG. 2, the disk type shown in FIG. 1 is changed to a rectangular type, and as the active body 40, a plurality of lead zircon titanate-based piezoelectric ceramics polarized in the width direction are arranged. At this time, the vibration mode of the active body becomes vertical effect vertical vibration with high conversion efficiency. In FIG. 2, the metal part is a rectangular metal shell 4
1, and stainless steel SUS304 is applied to this portion. FRP42 is applied to a material with a low Young's modulus inserted between two metal shells. In this case, FRP42
Is used as two plates.
【0018】図2においてアクティブ体40の長さを9
6mm、幅85mm、厚7mm、金属シェル41の長さ
を96mm、幅112mm、厚さを厚いところで14m
m、薄いところで7mm、1本当たりのFRP42の長
さを96mm、幅14mm、厚さ2mmとして試作し
た。試作した送波器の空気中での共振周波数は3598
Hzであり、アクティブ体の変位に対し、アクティブ体
と金属シェル一体の系の中央部分では約11.5倍の変
位が得られた。In FIG. 2, the length of the active body 40 is 9
6 mm, width 85 mm, thickness 7 mm, metal shell 41 has a length of 96 mm, a width of 112 mm and a thickness of 14 m
m, the thin portion was 7 mm, and the length of each FRP 42 was 96 mm, the width was 14 mm, and the thickness was 2 mm. The resonance frequency of the prototyped transmitter in air is 3598.
It was Hz, and about 11.5 times the displacement of the active body was obtained in the central part of the system in which the active body and the metal shell were integrated.
【0019】次にこの送波器を水槽にいれてハイパワー
で駆動し、音響放射面から1m離れた点における音圧を
測定したところ、3000Hzにおいて201dBre
1μmPaの音圧が得られた。水中でのQ値は4.5、
指向性についてはほとんど無指向性であった。Next, this wave transmitter was put in a water tank and driven with high power, and the sound pressure at a point 1 m away from the acoustic radiation surface was measured. As a result, 201 dBre at 3000 Hz.
A sound pressure of 1 μmPa was obtained. Q value in water is 4.5,
The directivity was almost omnidirectional.
【0020】[0020]
【発明の効果】以上のように本発明によれば、小型軽量
で音響放射効率の優れた無指向性のハイパワー送波器を
得ることができる。As described above, according to the present invention, it is possible to obtain an omnidirectional high power transmitter which is small in size and light in weight and has excellent acoustic radiation efficiency.
【図1】本発明の送波器の構造例を示す図である。FIG. 1 is a diagram showing a structural example of a wave transmitter of the present invention.
【図2】本発明の送波器の他の例を示す図である。FIG. 2 is a diagram showing another example of the wave transmitter of the present invention.
【図3】本発明の送波器の振動モードを示す図である。FIG. 3 is a diagram showing vibration modes of the wave transmitter of the present invention.
【図4】従来の屈曲伸び送波器を示す図である。FIG. 4 is a diagram showing a conventional bending and stretching wave transmitter.
【図5】従来の屈曲伸び送波器に用いられる楕円シェル
を示す図である。FIG. 5 is a diagram showing an elliptical shell used in a conventional bending and stretching wave transmitter.
20 アクティブ柱状体 21 楕円シェル 30 アクティブ円板体 31 金属ディスク 32 金属よりヤング率が低い材料リング 33 保護板 34 ウレタン樹脂 35 ボルト 40 アクティブ体 41 金属シェル 42 FRP 43 保護板 44 ウレタン樹脂 45 ボルト 20 Active Columnar Body 21 Elliptical Shell 30 Active Disc Body 31 Metal Disk 32 Material with Young's Modulus Lower than Metal Ring 33 Protective Plate 34 Urethane Resin 35 Bolt 40 Active Body 41 Metal Shell 42 FRP 43 Protective Plate 44 Urethane Resin 45 Bolt
Claims (4)
アクティブ体をはめ込んだディスクとからなる板状振動
体2個を前記ディスク材料よりヤング率の低い材料を介
してアクティブ体が互いに外表面側となるようにはり合
わせたことを特徴とする低周波水中超音波送波器。1. A plate-shaped vibrating body comprising an active body using a piezoelectric ceramic and a disc in which the active body is fitted, and two active bodies are formed on the outer surface side of each other through a material having a Young's modulus lower than that of the disc material. A low-frequency underwater ultrasonic wave transmitter characterized by being bonded so that
器において、外形を円型とした板状の圧電磁器をアクテ
ィブ板としたことを特徴とする低周波水中超音波送波
器。2. The low-frequency underwater ultrasonic transmitter according to claim 1, wherein the plate-shaped piezoelectric ceramic having a circular outer shape is an active plate.
器において、外形を矩形型にした板状の圧電磁器をアク
ティブ板としたことを特徴とする低周波水中超音波送波
器。3. The low-frequency underwater ultrasonic wave transmitter according to claim 1, wherein a plate-shaped piezoelectric ceramic having a rectangular outer shape is an active plate.
ける低周波水中超音波送波器において、アクティブ体の
径が送波器全体の径の60〜75%となる寸法にしたこ
とを特徴とする低周波水中超音波送波器。4. The low-frequency underwater ultrasonic wave transmitter according to claim 1, claim 2, or claim 3, wherein the diameter of the active body is 60 to 75% of the diameter of the whole wave transmitter. Characteristic low frequency underwater ultrasonic wave transmitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256092A JP2814817B2 (en) | 1992-02-07 | 1992-02-07 | Low frequency underwater ultrasonic transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2256092A JP2814817B2 (en) | 1992-02-07 | 1992-02-07 | Low frequency underwater ultrasonic transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05219588A true JPH05219588A (en) | 1993-08-27 |
JP2814817B2 JP2814817B2 (en) | 1998-10-27 |
Family
ID=12086253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2256092A Expired - Lifetime JP2814817B2 (en) | 1992-02-07 | 1992-02-07 | Low frequency underwater ultrasonic transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814817B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271098A (en) * | 1996-04-02 | 1997-10-14 | Nec Corp | Electro-acoustic transducer |
JP2004104481A (en) * | 2002-09-10 | 2004-04-02 | Nec Corp | Bent transmitter |
JP2008294719A (en) * | 2007-05-24 | 2008-12-04 | Nec Corp | Transducer and its driving method |
US7555133B2 (en) | 2006-08-30 | 2009-06-30 | Nec Corporation | Electro-acoustic transducer |
WO2012026319A1 (en) * | 2010-08-24 | 2012-03-01 | 株式会社村田製作所 | Ultrasonic wave-generating device |
WO2013051400A1 (en) * | 2011-10-03 | 2013-04-11 | 株式会社村田製作所 | Ultrasonic-wave generation device |
WO2013125412A1 (en) * | 2012-02-23 | 2013-08-29 | 株式会社村田製作所 | Ultrasonic wave-generating device |
-
1992
- 1992-02-07 JP JP2256092A patent/JP2814817B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271098A (en) * | 1996-04-02 | 1997-10-14 | Nec Corp | Electro-acoustic transducer |
JP2004104481A (en) * | 2002-09-10 | 2004-04-02 | Nec Corp | Bent transmitter |
US7555133B2 (en) | 2006-08-30 | 2009-06-30 | Nec Corporation | Electro-acoustic transducer |
JP2008294719A (en) * | 2007-05-24 | 2008-12-04 | Nec Corp | Transducer and its driving method |
GB2496070A (en) * | 2010-08-24 | 2013-05-01 | Murata Manufacturing Co | Ultrasonic wave-generating device |
WO2012026319A1 (en) * | 2010-08-24 | 2012-03-01 | 株式会社村田製作所 | Ultrasonic wave-generating device |
JP5556893B2 (en) * | 2010-08-24 | 2014-07-23 | 株式会社村田製作所 | Ultrasonic generator |
US9135906B2 (en) | 2010-08-24 | 2015-09-15 | Murata Manufacting Co., Ltd. | Ultrasonic generator |
GB2496070B (en) * | 2010-08-24 | 2017-03-01 | Murata Manufacturing Co | Ultrasonic generator |
WO2013051400A1 (en) * | 2011-10-03 | 2013-04-11 | 株式会社村田製作所 | Ultrasonic-wave generation device |
JPWO2013051400A1 (en) * | 2011-10-03 | 2015-03-30 | 株式会社村田製作所 | Ultrasonic generator |
WO2013125412A1 (en) * | 2012-02-23 | 2013-08-29 | 株式会社村田製作所 | Ultrasonic wave-generating device |
JPWO2013125412A1 (en) * | 2012-02-23 | 2015-07-30 | 株式会社村田製作所 | Ultrasonic generator |
US9853578B2 (en) | 2012-02-23 | 2017-12-26 | Murata Manufacturing Co., Ltd. | Ultrasonic generator |
Also Published As
Publication number | Publication date |
---|---|
JP2814817B2 (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4706230A (en) | Underwater low-frequency ultrasonic wave transmitter | |
CN101964185B (en) | An Ultra-Wideband Underwater Acoustic Transducer | |
JPH05219588A (en) | Low-frequency submarine ultrasonic transmitter | |
CN108435523A (en) | Droplet-shaped flextensional transducer | |
JP3416648B2 (en) | Acoustic transducer | |
JP2985509B2 (en) | Low frequency underwater transmitter | |
JPH08195998A (en) | Portable ultrasonic underwater sensor | |
JP2888191B2 (en) | Electroacoustic transducer | |
JP2666730B2 (en) | Low frequency underwater transmitter | |
JP2546488B2 (en) | Low frequency underwater transmitter | |
JP2910412B2 (en) | Low frequency underwater ultrasonic transmitter | |
JP2768340B2 (en) | Broadband low frequency transmitter | |
JP2947115B2 (en) | Broadband low frequency underwater transmitter and driving method thereof | |
JP5219154B2 (en) | Flexural-diameter combined transducer | |
JPS6143896A (en) | Low frequency underwater ultrasonic transmitter | |
JPH07231496A (en) | Low frequency underwater wave transmitter | |
JPS6143897A (en) | Low frequency underwater ultrasonic transmitter | |
JPH0511719B2 (en) | ||
JPH07105996B2 (en) | Low frequency underwater transmitter | |
JP2812309B2 (en) | Plate vibrator and wave transmitter using plate vibrator | |
JPS6143098A (en) | Low frequency underwater ultrasonic transmitter | |
JPH0582797B2 (en) | ||
Yao et al. | 3-D FEM ANALYSIS OF LOW-FREQUENCY FLEXTENSIONAL BARREL-STAVE TRANSDUCERS WITH CONCAVE STRUCTURE | |
Yamamoto et al. | Miniaturized disk bender sound projector with dual radiation surface | |
JPS60241399A (en) | Underwater sound wave transmitter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980714 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070814 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080814 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080814 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090814 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090814 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100814 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110814 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110814 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120814 Year of fee payment: 14 |