[go: up one dir, main page]

JPH05217526A - Photomultiplier - Google Patents

Photomultiplier

Info

Publication number
JPH05217526A
JPH05217526A JP4620092A JP4620092A JPH05217526A JP H05217526 A JPH05217526 A JP H05217526A JP 4620092 A JP4620092 A JP 4620092A JP 4620092 A JP4620092 A JP 4620092A JP H05217526 A JPH05217526 A JP H05217526A
Authority
JP
Japan
Prior art keywords
image
plane
lens
output
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4620092A
Other languages
Japanese (ja)
Inventor
Keiichi Hiragaki
圭一 平垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4620092A priority Critical patent/JPH05217526A/en
Publication of JPH05217526A publication Critical patent/JPH05217526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To reduce the image distortion by forming a recessed plane having a curvature determined on the basis of the electron image focus plane of a lens on the fluorescent surface supporting side of a glass substrate, and forming a projection surface having a curvature determined so that a visible light image forms a planary imaginary image, viewed from an output side, on a visible light image output side. CONSTITUTION:Since an image focus plane due to an electronic lens is obtained by the simulation using CAD, the degree of freedom of the curvature of the image focus plane is increased, and the preparation of an output image having little strain is facilitated by a glass substrate having a curved recessed surface. Further, since the radiation plane of the substrate is formed to a proper projection surface through the lens calculation, the visible output light beam can be made parallel. For example, the plane faced to the electron orbit due to the electron lens of a glass substrate 28g is formed to a recessed surface, and a fluorescent body 28f is formed, and the plane for outputting the visible light beam is formed to a projecting plane. Accordingly, the image focus plane can be obtained by the electron lens without using a fiber plane or a special collimating lens, and the light image free from distortion as a whole can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイメージセンサの分野で
利用される。本発明は、入力面の光電面から放出された
光電子を電子レンズにより加速させて出力蛍光面上に結
像させ、可視光像を出力する光電子増倍管に関し、とく
にその出力蛍光面を支持する改良されたガラス基板に関
する。
FIELD OF THE INVENTION The present invention is used in the field of image sensors. The present invention relates to a photomultiplier tube which outputs a visible light image by accelerating photoelectrons emitted from a photocathode of an input surface by an electron lens to form an image on the output phosphor screen, and particularly to supporting the output phosphor screen. It relates to an improved glass substrate.

【0002】[0002]

【従来の技術】図4は一般的なX線光電子増倍管(XI
I)の略示縦断面図である。このようなXIIは、入射
窓12wより入射したX線を入力面12iにより可視光
線に変換した後、これが光電子に変換されて、加速電極
14、陽極16によ加速、収束され、すなわちそれらの
電極14、16が電子レンズの役割を担って出力面18
の蛍光体層(面)に結像され、この出力面により蛍光
し、可視光となって出力される構造となっている。更に
出力された可視光線をコリメートレンズ20により、タ
ンデム光(平行光線)にして図示しないTVカメラ、シ
ネカメラといった画像撮像装置に集光、利用される。な
お、10は真空外囲器である。
2. Description of the Related Art FIG. 4 shows a general X-ray photomultiplier tube (XI
It is a schematic longitudinal cross-sectional view of I). Such XII converts X-rays incident from the incident window 12w into visible rays by the input surface 12i, and then converts them into photoelectrons, which are accelerated and converged by the acceleration electrode 14 and the anode 16, that is, those electrodes. 14 and 16 play the role of an electronic lens and output surface 18
The image is formed on the phosphor layer (surface) of the above, and the output surface fluoresces and outputs visible light. Further, the output visible light is converted into tandem light (parallel light) by the collimator lens 20, and is condensed and used by an image pickup device such as a TV camera or a cine camera (not shown). In addition, 10 is a vacuum envelope.

【0003】このうち、加速電極14、陽極16による
電子レンズと出力面18に注目すると、従来では図5の
ように出力面18は入出射面が平面のガラス基板、それ
も光学ガラスの単板あるいは貼り合わせ複合板18gに
より構成されている。これにより蛍光体層(面)18f
も平面となって支持されている。
Of these, focusing on the electron lens formed by the acceleration electrode 14 and the anode 16 and the output surface 18, the output surface 18 is a glass substrate having a flat input / output surface as shown in FIG. 5, which is also a single plate of optical glass. Alternatively, it is composed of a laminated composite plate 18g. As a result, the phosphor layer (surface) 18f
Is also supported as a flat surface.

【0004】少例として、図6のように蛍光体層18’
f支持側を凹面としたファイバープレート18’gによ
り構成したものがガラス基板として用いられている。
As a few examples, as shown in FIG. 6, a phosphor layer 18 'is provided.
A glass substrate is used which is composed of a fiber plate 18′g having a concave surface on the f-support side.

【0005】図5のように入出射面が平面のガラス基板
18gの場合、電極形状、印加電圧を工夫して出来るだ
け電子結像面を平面に近づけるようにされている。また
ガラス厚を厚くすることによって散乱光を抑えコントラ
スト向上を計った例も存在する(実公昭59−3316
1号)。
In the case of a glass substrate 18g having a flat entrance / exit surface as shown in FIG. 5, the electron image forming surface is made as close to the flat surface as possible by devising the electrode shape and applied voltage. There is also an example in which the scattered light is suppressed by increasing the thickness of the glass to improve the contrast (Jitsuko Sho 59-3316).
No. 1).

【0006】[0006]

【発明が解決しようとする課題】図5で示されるような
構成の場合、図4で示されるように凹面を持ち入力面1
2iから放出された電子を平面に結像させなければなら
ず、たとえ多数の電極によって補正しても出力蛍光面1
8上の結像に歪が残りやすい。
In the case of the structure shown in FIG. 5, the input surface 1 having a concave surface as shown in FIG.
The electrons emitted from 2i must be imaged on a flat surface, and even if it is corrected by a large number of electrodes, the output phosphor screen 1
Distortion tends to remain in the image formed on 8.

【0007】図6で示されるような構成の場合、電子レ
ンズによる歪については有利であるが、ファイバープレ
ートを用いているため、a.ファイバー繊維太さによる
解像制限、b.ファイバ繊維の目詰りによる歩留り低
下、c.ファイバープレート使用による単体コストアッ
プ等といった問題がある。ちなみに、ファイバーを用い
ずにガラス基板で同形状のものに代替すると図4に示し
たコリメートレンズ20の設計が大変複雑になる。
In the case of the structure shown in FIG. 6, the distortion due to the electron lens is advantageous, but since the fiber plate is used, a. Resolution limitation by fiber fiber thickness, b. Yield reduction due to clogging of fiber fibers, c. There is a problem such as an increase in unit cost due to the use of fiber plates. Incidentally, the design of the collimator lens 20 shown in FIG. 4 becomes very complicated if the glass substrate is replaced with a glass substrate having the same shape without using the fiber.

【0008】本発明の目的は、出力蛍光面を支持する基
体にファイバープレートを用いることなく、またタンデ
ム空間距離に特殊なコリメートレンズを用いることな
く、電子レンズによる歪を大幅に減少させることがで
き、全体として歪みの少ない良好な可視光像を出力でき
る、光電子増倍管を提供することである。
The object of the present invention is to significantly reduce the distortion caused by an electronic lens without using a fiber plate as a substrate for supporting an output phosphor screen and without using a special collimating lens for a tandem spatial distance. The object is to provide a photomultiplier tube capable of outputting a good visible light image with little distortion as a whole.

【0009】[0009]

【課題を解決するための手段】前記した目的は、入力面
の光電面から放出された光電子を電子レンズにより加速
させて出力蛍光面上に結像させ、可視光像を出力する光
電子増倍管において、その出力蛍光面を支持するガラス
基板の該蛍光面支持側を凹面に、他方その可視光像出力
側を凸面に、それぞれ形成し、該凹面の曲率を電子レン
ズによる電子結像面に基づいて決定し、また該凸面の曲
率を該電子結像面に沿って配置された蛍光面による凹面
可視光像が出力側から見て平面虚像を形成するよう決定
することにより、達成される。
The above-mentioned object is to provide a photomultiplier tube for outputting a visible light image by accelerating photoelectrons emitted from a photocathode of an input surface by an electron lens to form an image on an output fluorescent screen. In the above, the fluorescent surface supporting side of the glass substrate supporting the output fluorescent surface is formed into a concave surface, while the visible light image output side is formed into a convex surface, and the curvature of the concave surface is based on the electron image forming surface by the electron lens. And the curvature of the convex surface is determined so that the concave visible light image by the fluorescent surface arranged along the electron image plane forms a plane virtual image when viewed from the output side.

【0010】[0010]

【作用】CADを用いたシミューレションにより電子レ
ンズによる結像面が求められるので、該結像面の曲率の
自由度が高くなり、そのような曲率凹面を持つガラス基
体により歪の少ない出力像が容易になる。また、このよ
うなガラス基体の出射面はレンズ計算により最適な凸面
に形成されるので、可視出力光線は図5で示される場合
と同等な平行光線となり、特別なコリメートレンズは不
用で、従来通りの光学レンズが使用される。
Since the image plane formed by the electron lens is obtained by the simulation using CAD, the degree of freedom of the curvature of the image plane becomes high, and the glass substrate having such a concave concave surface produces an output image with little distortion. Will be easier. In addition, since the exit surface of such a glass substrate is formed as an optimal convex surface by lens calculation, the visible output light beam becomes a parallel light beam equivalent to that shown in FIG. 5, and a special collimating lens is not required, and it is the same as before. Optical lens is used.

【0011】[0011]

【実施例】本発明の好適な実施例は図1から図3に基づ
いて説明される。図1のように電子レンズによって蛍光
体層28f上に結ばれた像はその蛍光体によってその結
像を再現して発光し、光学像となる。その後の原理を図
2により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the image formed on the phosphor layer 28f by the electron lens reproduces the image formed by the phosphor and emits light to become an optical image. The subsequent principle will be described with reference to FIG.

【0012】図2では光学像を曲線A、F、Gで表わさ
れる。この曲線は電子レンズの設計によって球面、回転
双曲面、楕円面等になるが、ここでは球面とする。点A
から出た光はA→B→CあるいはA→D→Eで示される
軌跡をとる。ただし、点B、Dはガラス基板28g(屈
折率η)の臨界角で制限される凸側表面の任意の点であ
る。位置O側から見た時、点Aの見かけ上の位置はHと
なる。
In FIG. 2, the optical image is represented by curves A, F and G. This curve is a spherical surface, a hyperboloid of revolution, an elliptic surface, etc. depending on the design of the electron lens, but here it is a spherical surface. Point A
The light emitted from the light source has a locus indicated by A → B → C or A → D → E. However, points B and D are arbitrary points on the convex side surface limited by the critical angle of the glass substrate 28g (refractive index η). When viewed from the position O side, the apparent position of the point A is H.

【0013】同様に点F、Gの見かけ上の位置はI、J
になる。このとき、点H、I、Jが同一平面上に来るよ
うにガラス基板の凸面曲率を屈折率ηに基づいて設計す
れば、出力光は図5の場合と光学上同等に扱える。
Similarly, the apparent positions of the points F and G are I and J.
become. At this time, if the convex surface curvature of the glass substrate is designed based on the refractive index η so that the points H, I, and J are on the same plane, the output light can be handled optically equivalent to the case of FIG.

【0014】なお、ガラス基板厚さを先行考案(実公昭
59−33161号)の原理に基づいて決定すれば、同
考案の効果も兼ねることができる。
If the thickness of the glass substrate is determined based on the principle of the prior invention (Japanese Utility Model Publication No. 59-33161), the effect of the invention can be obtained.

【0015】また、本発明のようなガラス基板(基本的
には凸レンズ)では色収差によるぼけが懸念されるが、
XIIの場合単色光であると見なせるので問題にならな
い。
Further, in the glass substrate (basically a convex lens) as in the present invention, blurring due to chromatic aberration is feared.
In the case of XII, since it can be regarded as monochromatic light, there is no problem.

【0016】さらに、本発明による出力面を構成するガ
ラス基板は、図3に例示されているように同じ屈折率を
持つ複数のガラス基板28g1、10(真空外囲器)、2
8g2より構成し、それらを同じ屈折率を持つ無色透明な
接着剤によって貼り合わせてもよい。
Further, the glass substrate constituting the output surface according to the present invention is composed of a plurality of glass substrates 28g1 and 10g (vacuum envelope) having the same refractive index as illustrated in FIG.
It may be composed of 8 g 2, and they may be bonded together by a colorless and transparent adhesive having the same refractive index.

【0017】あるいは、異なる屈折率を持つ複数のガラ
ス基板を貼り合わせて、全体で本発明による作用効果を
奏するように設計してもよい。
Alternatively, a plurality of glass substrates having different refractive indexes may be bonded to each other and designed so as to exert the effects of the present invention as a whole.

【0018】[0018]

【効果】前述のように不具合いのあるファイバープレー
トや特殊なコリメートレンズを用いなくても、電子レン
ズによる結像面をこれと一致した曲面を持つガラス基板
が容易に得られ、またその基板の出射面もレンズ計算に
より適当な凸面に形成可能であることから、電子レンズ
によるの歪を大幅に減少させることができ、XII全体
として歪みの少ない良好な光像が得られる。
[Effect] As described above, without using a defective fiber plate or a special collimating lens, a glass substrate having a curved surface on which the image plane formed by the electron lens coincides can be easily obtained. Since the exit surface can also be formed into an appropriate convex surface by lens calculation, the distortion due to the electron lens can be significantly reduced, and a good optical image with little distortion can be obtained as a whole of XII.

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示した出力面要部の説明
図。
FIG. 1 is an explanatory diagram of a main part of an output surface showing an embodiment of the present invention.

【図2】該出力面による作用効果の説明図。FIG. 2 is an explanatory diagram of a function and effect of the output surface.

【図3】他の実施例を示した出力面要部の説明図。FIG. 3 is an explanatory diagram of a main part of an output surface showing another embodiment.

【図4】一般的なX線光電子増倍管の略示的縦断面図。FIG. 4 is a schematic vertical sectional view of a general X-ray photomultiplier tube.

【図5】従来例による出力面構成図。FIG. 5 is a configuration diagram of an output surface according to a conventional example.

【図6】他の従来例による出力面構成図。FIG. 6 is a configuration diagram of an output surface according to another conventional example.

【符号の説明】[Explanation of symbols]

10 外囲器 14 加速電極 16 陽極電極 18 出力面 18f 出力蛍光体層(面) 18g ガラス基板 20 コリメート光学レンズ 28g ガラス基板 10 Enclosure 14 Accelerating Electrode 16 Anode Electrode 18 Output Surface 18f Output Phosphor Layer (Surface) 18g Glass Substrate 20 Collimating Optical Lens 28g Glass Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力面の光電面から放出された光電子を
電子レンズにより加速させて出力蛍光面上に結像させ、
可視光像を出力する光電子増倍管において、その出力蛍
光面を支持するガラス基板の該蛍光面支持側が凹面に、
他方その可視光像出力側が凸面に、それぞれ形成され、
該凹面の曲率は電子レンズによる電子結像面に基づいて
決定され、また該凸面の曲率は該電子結像面に沿って配
置された蛍光面による凹面可視光像が出力側から見て平
面虚像を形成するよう決定されていることを特徴とす
る、光電子増倍管。
1. Photoelectrons emitted from the photocathode of the input surface are accelerated by an electron lens to form an image on the output fluorescent screen,
In a photomultiplier tube that outputs a visible light image, the fluorescent screen supporting side of the glass substrate that supports the output fluorescent screen is a concave surface,
On the other hand, the visible light image output side is formed into a convex surface,
The curvature of the concave surface is determined based on the electron image plane formed by the electron lens, and the curvature of the convex surface is a plane virtual image of the concave visible light image formed by the fluorescent surface arranged along the electron image plane when viewed from the output side. A photomultiplier tube, characterized in that it has been determined to form
JP4620092A 1992-01-31 1992-01-31 Photomultiplier Pending JPH05217526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4620092A JPH05217526A (en) 1992-01-31 1992-01-31 Photomultiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4620092A JPH05217526A (en) 1992-01-31 1992-01-31 Photomultiplier

Publications (1)

Publication Number Publication Date
JPH05217526A true JPH05217526A (en) 1993-08-27

Family

ID=12740440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4620092A Pending JPH05217526A (en) 1992-01-31 1992-01-31 Photomultiplier

Country Status (1)

Country Link
JP (1) JPH05217526A (en)

Similar Documents

Publication Publication Date Title
US3058021A (en) Optical coupling device between x-ray intensifier and vidicon camera tube or the like
US5923120A (en) Microchannel plate with a transparent conductive film on an electron input surface of a dynode
US4131818A (en) Night vision system
JPH05217526A (en) Photomultiplier
US5166512A (en) X-ray imaging tube and method of manufacturing the same with columnar crystals and opaque light blocking means
JPH0460296B2 (en)
US5381000A (en) Image intensifier with modified aspect ratio
JPS60212951A (en) X-ray image tube
US4730141A (en) Imaging tube having a reflective photocathode and internal optical means
JP2798867B2 (en) X-ray image tube
JPH0487242A (en) X-ray image intensifier
US5357100A (en) Ionizing radiation converter with catadioptric electron focusing
JPH02309535A (en) X-ray image tube
JPS59201349A (en) Fluorescent screen and its production method
JPH05244506A (en) X-ray image pickup device
JP2003222640A (en) Electronic image converter
JPH0145071Y2 (en)
JPH06275215A (en) Two-dimensional x-ray tube
JPH02253547A (en) X-ray fluorescent image intensifying tube
JPH0845439A (en) Image intensifier
JPS59142513A (en) image projection device
JPS60158536A (en) Fluorescent screen
JPS58225548A (en) Approach type image tube and its manufacturing method
JPH05188306A (en) Night vision binoculars
KAPANY 20. FIBER OPTICS COUPLING FOR MULTISTAGE IMAGE