[go: up one dir, main page]

JPH05215929A - Manufacture of glass waveguide - Google Patents

Manufacture of glass waveguide

Info

Publication number
JPH05215929A
JPH05215929A JP1722992A JP1722992A JPH05215929A JP H05215929 A JPH05215929 A JP H05215929A JP 1722992 A JP1722992 A JP 1722992A JP 1722992 A JP1722992 A JP 1722992A JP H05215929 A JPH05215929 A JP H05215929A
Authority
JP
Japan
Prior art keywords
glass
quartz glass
buffer layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1722992A
Other languages
Japanese (ja)
Inventor
Toshihide Tokunaga
利秀 徳永
Hiroaki Okano
広明 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1722992A priority Critical patent/JPH05215929A/en
Publication of JPH05215929A publication Critical patent/JPH05215929A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

(57)【要約】 【目的】伝送損失が小さく、しかも導波路の形状が高精
度なガラス導波路を製造する。 【構成】基板1上にガラス微粒子堆積と透明ガラス化と
によりフッ素をドープした石英ガラスのバッファ層2を
形成する。バッファ層2上に電子ビーム蒸着またはイオ
ンスパッタリングにより純粋の石英ガラス膜3を形成す
る。石英ガラス膜3から余分な部分を除去してコア層4
を形成する。バッファ層2、コア層4を覆ってフッ素を
ドープした石英ガラスのクラッド層5をガラス微粒子堆
積と透明ガラス化により形成する。
(57) [Abstract] [Purpose] To manufacture a glass waveguide with a small transmission loss and a highly accurate waveguide shape. [Structure] A buffer layer 2 of quartz glass doped with fluorine is formed on a substrate 1 by depositing glass fine particles and transparent vitrification. A pure quartz glass film 3 is formed on the buffer layer 2 by electron beam evaporation or ion sputtering. Excessive portions are removed from the quartz glass film 3 to form the core layer 4
To form. A cladding layer 5 of quartz glass doped with fluorine is formed by covering the buffer layer 2 and the core layer 4 by glass fine particle deposition and transparent vitrification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はガラス導波路の製造方
法に係り、特にガラス導波路における低損失化と高精度
化とを図ったガラス導波路の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass waveguide, and more particularly to a method for manufacturing a glass waveguide which achieves low loss and high accuracy in the glass waveguide.

【0002】[0002]

【従来の技術】石英系のガラス導波路の製造には、基板
上に火炎加水分解反応によりガラス微粒子を堆積した
後、加熱して透明ガラス化する技術が知られている。基
板にはシリコンまたは石英ガラスが用いられているが、
シリコンの融点は1420℃であり、また石英ガラス
は、ガラス加工温度からみて、1400℃以上では基板
の台が均一でない場合に変形することがある。
2. Description of the Related Art For manufacturing a quartz glass waveguide, a technique is known in which glass particles are deposited on a substrate by a flame hydrolysis reaction and then heated to form a transparent glass. Silicon or quartz glass is used for the substrate,
The melting point of silicon is 1420 ° C., and the quartz glass may be deformed at a temperature of 1400 ° C. or higher in view of the glass processing temperature when the base of the substrate is not uniform.

【0003】このことから、ガラス微粒子の透明化温度
は1300℃以下が望ましい。このため、石英ガラスに
P、B等のドーパントを添加して、透明化温度を下げて
いる。従って、このような製造技術により得られるガラ
ス導波路は、そのコア、クラッド、バッファ層の全てに
ドーパントが添加された石英ガラスとなっている。
From this, it is desirable that the glass fine particles have a clearing temperature of 1300 ° C. or lower. Therefore, the transparentization temperature is lowered by adding a dopant such as P or B to the quartz glass. Therefore, the glass waveguide obtained by such a manufacturing technique is silica glass in which the core, the clad, and the buffer layer are all doped with a dopant.

【0004】[0004]

【発明が解決しようとする課題】ところが、ガラス導波
路にドーパントが入ると、レーリ散乱による損失が増加
してしまう。また、透明化したガラス膜から反応性イオ
ンエッチングにより余分な部分を除去してコア層を形成
する際に、SiO2 とドーパントとではエッチング速度
が異なるため、エッチング界面が不均一となり、散乱損
失の増加をきたす。
However, if a dopant enters the glass waveguide, the loss due to Rayleigh scattering will increase. Further, when the excess portion is removed from the transparentized glass film by reactive ion etching to form the core layer, the etching rate is different between SiO 2 and the dopant, so that the etching interface becomes non-uniform and scattering loss is reduced. Increase.

【0005】更に、透明化温度を下げるために、コア、
クラッド、バッファ層の全てにP、B等のドーパントを
添加する場合、クラッド層のドーパント量が多くなり、
その熱膨張係数が大となって、透明ガラス化後に基板に
反りが生じる。基板に反りが生じると、実装時に光学部
品との光軸合せが困難で接続損失となる。また、コアに
異方性の歪を与える原因ともなり、導波路に入射する光
の偏波方向によって損失に差異が生じ、伝送が不安定に
なる。
Further, in order to lower the clearing temperature, the core,
When dopants such as P and B are added to all of the cladding and buffer layers, the amount of dopant in the cladding layer increases,
The coefficient of thermal expansion becomes large, and the substrate warps after being made transparent. If the substrate warps, it is difficult to align the optical axis with the optical component during mounting, resulting in a connection loss. In addition, this also causes an anisotropic strain in the core, which causes a difference in loss depending on the polarization direction of the light incident on the waveguide, resulting in unstable transmission.

【0006】この発明の目的は、上記の従来技術の問題
点を解消すべくなされたもので、低損失でしかも高精度
なガラス導波路を製造することができるガラス導波路の
製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method of manufacturing a glass waveguide which can manufacture a glass waveguide with low loss and high accuracy. Especially.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、石英ガラス又はシリコンからなる基板
上にガラス微粒子の堆積工程と透明ガラス化工程とによ
りフッ素をドープした石英ガラスのバッファ層を形成
し、バッファ層上に電子ビームによる真空蒸着またはイ
オンによるスパッタリングにより純粋の石英ガラス膜を
形成し、このガラス膜から余分な部分を除去してコア層
を形成した後、上記バッファ層及びコア層を覆ってフッ
素をドープした石英ガラスのクラッド層をガラス微粒子
の堆積工程と透明ガラス化工程とにより形成するように
したものである。
In order to achieve the above object, the present invention provides a buffer of quartz glass doped with fluorine by a glass fine particle deposition step and a transparent vitrification step on a substrate made of quartz glass or silicon. After forming a layer, a pure quartz glass film is formed on the buffer layer by vacuum vapor deposition by an electron beam or sputtering by ions, and a surplus part is removed from the glass film to form a core layer, and then the buffer layer and A cladding layer of quartz glass, which covers the core layer and is doped with fluorine, is formed by a glass fine particle deposition step and a transparent vitrification step.

【0008】上記バッファ層、クラッド層は、火炎加水
分解反応を利用して純粋の石英ガラス微粒子を堆積した
後、フッ素化合物を含む雰囲気中で焼結して透明ガラス
化することによって形成しても、あるいはフッ素がドー
プされた石英ガラス微粒子を堆積し、これをHe雰囲気
中で焼結して透明ガラス化することにより形成してもよ
い。
The buffer layer and the clad layer may be formed by depositing pure silica glass fine particles by utilizing a flame hydrolysis reaction and then sintering them in an atmosphere containing a fluorine compound to form a transparent glass. Alternatively, it may be formed by depositing silica glass fine particles doped with fluorine and sintering this in a He atmosphere to form a transparent glass.

【0009】また、上記バッファ層、クラッド層となる
ガラス微粒子中にP、B等の酸化物を含ませて、透明化
温度の低下を図るようにしてもよい。
Further, oxides such as P and B may be contained in the glass fine particles to be the buffer layer and the clad layer so as to lower the transparency temperature.

【0010】[0010]

【作用】バッファ層上に電子ビーム蒸着法又はスパッタ
リング法を用いて純粋の石英ガラス膜を形成し、これを
パターニングしてコア層を形成しているので、溶融温度
が高い純粋石英ガラスの透明ガラス化に伴う基板の変形
などの問題を生じさせることなく、コア層を形成でき
る。更に、純粋な石英ガラス膜なので、エッチングで石
英ガラス膜から余分な部分を除去しても、エッチング界
面は均一なものとなる。
A pure quartz glass film having a high melting temperature is formed because a pure quartz glass film is formed on the buffer layer by using the electron beam evaporation method or the sputtering method and is patterned to form a core layer. The core layer can be formed without causing problems such as deformation of the substrate due to aging. Further, since it is a pure quartz glass film, the etching interface becomes uniform even if an excessive portion is removed from the quartz glass film by etching.

【0011】また、クラッド層、バッファ層には、フッ
素をドープさせて屈折率を下げるようにしているので熱
膨張係数の増加は小さく、透明ガラス化後の基板の反り
が低減される。
Further, since the cladding layer and the buffer layer are doped with fluorine to lower the refractive index, the coefficient of thermal expansion does not increase so much and the warp of the substrate after transparent vitrification is reduced.

【0012】[0012]

【実施例】以下に、この発明の実施例を図面を用いて説
明する。まず、図1(A)に示すように、石英ガラスの
基板1上にバッファ層2を形成する製造工程を述べる。
バーナ(図示省略)に原料のSiCl4 および燃料を供
給して、火炎加水分解反応および酸化反応によりSiO
2 を生成し、生成したSiO2 の微粒子を3インチ径、
厚さ1mmの基板1上に約50μmの厚さとなるまで堆
積させた。その後、この基板1をHeとSiF4 の混合
ガス雰囲気とした電気炉内で1250℃で熱処理し、堆
積したSiO2 微粒子を透明ガラス化した。これによ
り、厚さ20μmのフッ素ドープ石英ガラスのバッファ
層2が得られた。バッファ層2と基板1の比屈折率差Δ
Nは、ΔN=(nb −ns )×100/ns =−0.3
%であった。ここで、ns は石英ガラスの基板1の屈折
率、nb はバッファ層2の屈折率である。
Embodiments of the present invention will be described below with reference to the drawings. First, as shown in FIG. 1A, a manufacturing process for forming a buffer layer 2 on a substrate 1 made of quartz glass will be described.
Raw material SiCl 4 and fuel are supplied to a burner (not shown), and SiO 2 is generated by flame hydrolysis reaction and oxidation reaction.
2 is generated, and the generated SiO 2 fine particles have a diameter of 3 inches,
It was deposited on the substrate 1 having a thickness of 1 mm to a thickness of about 50 μm. Then, this substrate 1 was heat-treated at 1250 ° C. in an electric furnace in a mixed gas atmosphere of He and SiF 4 to make the deposited SiO 2 fine particles into transparent glass. As a result, the buffer layer 2 of fluorine-doped quartz glass having a thickness of 20 μm was obtained. The relative refractive index difference Δ between the buffer layer 2 and the substrate 1
N is ΔN = (n b −n s ) × 100 / n s = −0.3
%Met. Here, n s is the refractive index of the quartz glass substrate 1, and n b is the refractive index of the buffer layer 2.

【0013】次に、バッファ層2上に、電子ビーム蒸着
法により、純粋の石英ガラス膜3を形成する(図1
(B))。これは、電子ビーム真空蒸着装置(図示せ
ず)内にバッファ層2が形成された上記の基板1を保持
すると共に、装置内に純粋石英ガラスのタブレットを加
熱してSiO2 を蒸発させ、基板1のバッファ層2上に
SiO2 を付着堆積させる。この蒸着により、バッファ
層2上に厚さ8μmの純粋の石英ガラス膜3を形成し
た。
Next, a pure quartz glass film 3 is formed on the buffer layer 2 by the electron beam evaporation method (FIG. 1).
(B)). This is because the substrate 1 having the buffer layer 2 formed thereon is held in an electron beam vacuum deposition apparatus (not shown), and a tablet of pure quartz glass is heated in the apparatus to evaporate SiO 2 and the substrate SiO 2 is deposited on the first buffer layer 2. By this vapor deposition, a pure quartz glass film 3 having a thickness of 8 μm was formed on the buffer layer 2.

【0014】次いで、石英ガラス膜3から余分な部分を
除去してコア層4を形成する(図1(C))。これに
は、パターン形成装置を用い、導波路のパターンをフォ
トリソグラフィにより転写した後、反応性イオンエッチ
ングで石英ガラス膜3の不用な部分を除去することによ
って、導波路をパターン化してコア層4を得た。
Then, the excess portion is removed from the quartz glass film 3 to form the core layer 4 (FIG. 1C). For this purpose, a pattern forming device is used to transfer the pattern of the waveguide by photolithography, and then unnecessary portions of the quartz glass film 3 are removed by reactive ion etching to pattern the waveguide to form the core layer 4. Got

【0015】最後に、バッファ層2を形成したのと同様
な条件下で、ガラス微粒子堆積と透明ガラス化を行い、
バッファ層2、コア層4を覆って、厚さ30μmのクラ
ッド層5を形成した(図1(D))。
Finally, glass fine particle deposition and transparent vitrification are performed under the same conditions as those for forming the buffer layer 2.
A clad layer 5 having a thickness of 30 μm was formed so as to cover the buffer layer 2 and the core layer 4 (FIG. 1D).

【0016】以上により製造した基板1からダイシング
によってガラス導波路素子を切り出し、その両端面を研
磨した。このガラス導波路素子の両端に光ファイバを突
き合わせて、ガラス導波路素子本体のみの伝送損失を測
定した。測定結果は0.02dB/cm以下と非常に低
損失であった。また、反りについては、基板1では、基
板1の表面の50mmの間において反り量が1μm以下
であり、試作したガラス導波路素子(10mm×15m
m)内では0.2μm以下と良好であった。
The glass waveguide element was cut out from the substrate 1 manufactured as described above by dicing, and both end faces thereof were polished. Optical fibers were butted against both ends of this glass waveguide element, and the transmission loss of only the glass waveguide element body was measured. The measurement result was 0.02 dB / cm or less, which was a very low loss. Regarding the warp, in the substrate 1, the warp amount was 1 μm or less within 50 mm of the surface of the substrate 1, and the glass waveguide device (10 mm × 15 m
m) was 0.2 μm or less, which was good.

【0017】(比較例)上記実施例における石英ガラス
膜の形成工程を、火炎加水分解法で純粋石英ガラスの微
粒子を堆積し、これを焼結して透明ガラス化する方法で
行った。透明ガラス化には1470℃の高温を要した。
透明ガラス化後に、バッファ層には軟化がみられ、石英
ガラス膜は約1μmのウェーブ状となり、また基板の変
形も大きかった。
(Comparative Example) The step of forming the quartz glass film in the above example was carried out by a method of depositing fine particles of pure quartz glass by a flame hydrolysis method and sintering the fine particles to form a transparent glass. A high temperature of 1470 ° C. was required for transparent vitrification.
After the transparent vitrification, the buffer layer was softened, the quartz glass film had a wave shape of about 1 μm, and the deformation of the substrate was large.

【0018】従って、石英ガラスやシリコンの基板の軟
化点、融点よりも十分に低温で純粋石英ガラス膜を作成
できる電子ビーム蒸着法はガラス導波路の形状や寸法の
高精度化に取って極めて有効であることが確認できた。
Therefore, the electron beam vapor deposition method capable of forming a pure quartz glass film at a temperature sufficiently lower than the softening point and melting point of a quartz glass or silicon substrate is extremely effective for improving the precision of the shape and dimensions of the glass waveguide. It was confirmed that

【0019】以上の説明により明らかなように、上記実
施例によれば次のような効果が得られる。ガラス導波路
のコア層が純粋な石英ガラスなので、ドーパントによる
レーリ散乱損失がない。更に石英ガラス膜は純粋な石英
ガラスなので、エッチングにより石英ガラス膜から余分
な部分を除去してコア層を形成しても、エッチング界面
は均一なものとなる。このため、伝送損失の少ないガラ
ス導波路を製造できる。
As is clear from the above description, the following effects can be obtained according to the above embodiment. Since the core layer of the glass waveguide is pure silica glass, there is no Rayleigh scattering loss due to the dopant. Further, since the quartz glass film is pure quartz glass, even if the core layer is formed by removing the excess portion from the quartz glass film by etching, the etching interface becomes uniform. Therefore, a glass waveguide with less transmission loss can be manufactured.

【0020】また、電子ビームによる真空蒸着あるいは
イオンによるスパッタリングにより、コア用の純粋の石
英ガラス膜を形成しているので、純粋石英ガラス微粒子
を透明ガラス化する場合に生じる、高温加熱による石英
ガラス膜、基板の変形などの難点がない。更に、コア層
は溶融温度が高い純粋石英ガラスなので、コア層上に焼
結によってフッ素ドープの石英ガラスのクラッド層を形
成しても、コア層の変形はない。また、クラッド層、コ
ア層には、石英ガラスにフッ素をドープさせて屈折率を
下げるようにしているので、ドープによる熱膨張係数の
増加は小さく、透明ガラス化後の基板の反りを低減でき
る。これらのことから、形状・寸法等が高精度なガラス
導波路が得られ、実装時の光軸ずれやコア歪による偏波
特性の悪化等を防止できる。
Further, since the pure silica glass film for the core is formed by vacuum vapor deposition by electron beam or sputtering by ions, the silica glass film by high temperature heating which occurs when the pure silica glass fine particles are transparentized. There is no difficulty such as substrate deformation. Further, since the core layer is pure silica glass having a high melting temperature, even if a cladding layer of fluorine-doped silica glass is formed on the core layer by sintering, the core layer is not deformed. Further, since the cladding layer and the core layer are made of quartz glass doped with fluorine to lower the refractive index, the thermal expansion coefficient due to doping is small, and the warp of the substrate after transparent vitrification can be reduced. As a result, a glass waveguide having a highly precise shape, size, etc. can be obtained, and it is possible to prevent deterioration of polarization characteristics due to optical axis shift and core distortion during mounting.

【0021】[0021]

【発明の効果】この発明によれば、電子ビームによる真
空蒸着あるいはイオンによるスパッタリングにより、コ
ア用の純粋石英ガラス膜を形成しているので、純粋石英
ガラス微粒子を高温加熱により透明ガラス化する場合に
生じる石英ガラス膜、基板の変形などの難点がなく、低
損失で、高精度なガラス導波路が得られる。
According to the present invention, since the pure silica glass film for the core is formed by vacuum vapor deposition by an electron beam or sputtering by ions, when the pure silica glass fine particles are heated to a high temperature to form a transparent glass. It is possible to obtain a highly accurate glass waveguide with low loss, without any problems such as the deformation of the quartz glass film and the substrate that occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るガラス導波路の製造方法の一実
施例であり、その各製造工程を示す横断面図である。
FIG. 1 is a cross-sectional view showing an example of a method of manufacturing a glass waveguide according to the present invention, showing each manufacturing step thereof.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3 石英ガラス膜 4 コア層 5 クラッド層 1 substrate 2 buffer layer 3 quartz glass film 4 core layer 5 clad layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】石英ガラスまたはシリコンからなる基板上
にガラス微粒子の堆積工程と透明ガラス化工程とにより
フッ素をドープした石英ガラスのバッファ層を形成し、
バッファ層上に電子ビームによる真空蒸着またはイオン
によるスパッタリングにより純粋の石英ガラス膜を形成
し、このガラス膜から余分な部分を除去してコア層を形
成した後、上記バッファ層およびコア層を覆ってフッ素
をドープした石英ガラスのクラッド層をガラス微粒子の
堆積工程と透明ガラス化工程とにより形成するようにし
たことを特徴とするガラス導波路の製造方法。
1. A buffer layer of quartz glass doped with fluorine is formed on a substrate made of quartz glass or silicon by a glass fine particle deposition step and a transparent vitrification step,
A pure quartz glass film is formed on the buffer layer by vacuum deposition with an electron beam or sputtering with ions, a surplus part is removed from the glass film to form a core layer, and then the buffer layer and the core layer are covered. A method of manufacturing a glass waveguide, characterized in that a clad layer of quartz glass doped with fluorine is formed by a glass fine particle deposition step and a transparent vitrification step.
JP1722992A 1992-02-03 1992-02-03 Manufacture of glass waveguide Pending JPH05215929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1722992A JPH05215929A (en) 1992-02-03 1992-02-03 Manufacture of glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1722992A JPH05215929A (en) 1992-02-03 1992-02-03 Manufacture of glass waveguide

Publications (1)

Publication Number Publication Date
JPH05215929A true JPH05215929A (en) 1993-08-27

Family

ID=11938124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1722992A Pending JPH05215929A (en) 1992-02-03 1992-02-03 Manufacture of glass waveguide

Country Status (1)

Country Link
JP (1) JPH05215929A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167037A (en) * 1997-10-02 1999-06-22 Samsung Electron Co Ltd Production of optical waveguide element utilizing induction coupling plasma apparatus
FR2843407A1 (en) * 2002-08-08 2004-02-13 Essilor Int Production of a stabilized thin layer of silica doped with silica oxyfluoride for ophthalmic applications, by vapor phase deposition of a protective layer of silica or metal oxide with ionic bombardment
FR2843406A1 (en) * 2002-08-08 2004-02-13 Essilor Int Production of a stabilized thin layer of silica doped with silica oxyfluoride for ophthalmic applications by vapor phase deposition of a protective layer of silica or metal oxide with ionic bombardment
WO2004016822A3 (en) * 2002-08-08 2004-04-08 Essilor Int Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer and use thereof in ophthalmic optics
US6844074B2 (en) * 2000-09-06 2005-01-18 Humo Laboratory, Ltd. Crystal thin film and production method therefor
US7228045B2 (en) * 2004-03-26 2007-06-05 Sumitomo Electric Industries, Ltd. Optical waveguide device and method of manufacturing same
WO2013152031A1 (en) * 2012-04-04 2013-10-10 Kla-Tencor Corporation Protective fluorine-doped silicon oxide film for optical components
JP2021039241A (en) * 2019-09-03 2021-03-11 古河電気工業株式会社 Optical waveguide circuit, light source module, and manufacturing method for optical waveguide circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167037A (en) * 1997-10-02 1999-06-22 Samsung Electron Co Ltd Production of optical waveguide element utilizing induction coupling plasma apparatus
US6844074B2 (en) * 2000-09-06 2005-01-18 Humo Laboratory, Ltd. Crystal thin film and production method therefor
US7186295B2 (en) 2000-09-06 2007-03-06 Humo Laboratory, Ltd. Quartz thin film
FR2843407A1 (en) * 2002-08-08 2004-02-13 Essilor Int Production of a stabilized thin layer of silica doped with silica oxyfluoride for ophthalmic applications, by vapor phase deposition of a protective layer of silica or metal oxide with ionic bombardment
FR2843406A1 (en) * 2002-08-08 2004-02-13 Essilor Int Production of a stabilized thin layer of silica doped with silica oxyfluoride for ophthalmic applications by vapor phase deposition of a protective layer of silica or metal oxide with ionic bombardment
WO2004016822A3 (en) * 2002-08-08 2004-04-08 Essilor Int Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer and use thereof in ophthalmic optics
US7228045B2 (en) * 2004-03-26 2007-06-05 Sumitomo Electric Industries, Ltd. Optical waveguide device and method of manufacturing same
WO2013152031A1 (en) * 2012-04-04 2013-10-10 Kla-Tencor Corporation Protective fluorine-doped silicon oxide film for optical components
US9188544B2 (en) 2012-04-04 2015-11-17 Kla-Tencor Corporation Protective fluorine-doped silicon oxide film for optical components
JP2021039241A (en) * 2019-09-03 2021-03-11 古河電気工業株式会社 Optical waveguide circuit, light source module, and manufacturing method for optical waveguide circuit

Similar Documents

Publication Publication Date Title
US6356694B1 (en) Process for producing planar waveguide structures as well as waveguide structure
US5600745A (en) Method of automatically coupling between a fiber and an optical waveguide
EP1116966A2 (en) Polarization independent silica based optical waveguide
JPH05215929A (en) Manufacture of glass waveguide
US6735370B1 (en) Waveguide for an optical circuit and method of fabrication thereof
JPH05188231A (en) Optical waveguide manufacturing method
JP3500990B2 (en) Method for manufacturing substrate-type optical waveguide
JPH09222525A (en) Production of optical waveguide
JPH01189614A (en) Quartz system light waveguide and its manufacture
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
EP1209493A1 (en) An optical waveguide and a method for producing it
JP2927597B2 (en) Manufacturing method of glass waveguide
JPH05181031A (en) Optical waveguide and its production
JPS59137346A (en) Manufacture of glass waveguide
JP2953173B2 (en) Optical waveguide
JPH08110425A (en) Optical waveguide, method of manufacturing the same, and optical transmission module
JP2827657B2 (en) Glass waveguide and manufacturing method thereof
JPH0829634A (en) Optical waveguide fabrication method
JP2603652B2 (en) Optical waveguide manufacturing method
JP2000241636A (en) Quartz glass waveguide and method of manufacturing
JPH0875940A (en) Optical waveguide fabrication method
JPH05257021A (en) Production of optical waveguide
JP3809792B2 (en) Manufacturing method of optical waveguide
JPH08136754A (en) Optical waveguide fabrication method
JP2588710B2 (en) Method for manufacturing quartz-based optical waveguide film