[go: up one dir, main page]

JPH05213630A - Heat ray reflecting glass - Google Patents

Heat ray reflecting glass

Info

Publication number
JPH05213630A
JPH05213630A JP1897892A JP1897892A JPH05213630A JP H05213630 A JPH05213630 A JP H05213630A JP 1897892 A JP1897892 A JP 1897892A JP 1897892 A JP1897892 A JP 1897892A JP H05213630 A JPH05213630 A JP H05213630A
Authority
JP
Japan
Prior art keywords
glass
film
nickel
cobalt
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1897892A
Other languages
Japanese (ja)
Inventor
Akira Fujisawa
章 藤沢
Hiroyuki Nagao
宏行 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1897892A priority Critical patent/JPH05213630A/en
Publication of JPH05213630A publication Critical patent/JPH05213630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To provide low-cost heat ray reflecting glass having high electric resistance and low solar radiation transmissivity. CONSTITUTION:Glass is held at 650 deg.C and then sprayed with a stock soln. prepd. by dissolving acetylacetonatocobalt (III), dipropionylmethane of nickel (II) and acetylacetonatoiron (III). The resulting film is made of a spinel type oxide contg. cobalt, iron and nickel and has >=10<4>OMEGA.cm<2> surface resistivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築用あるいは自動車
・車両用の熱線反射ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-reflecting glass for buildings or automobiles and vehicles.

【0002】[0002]

【従来の技術】近年、建築用あるいは自動車・車両用窓
ガラスには、冷房負荷の軽減あるいは直射太陽光による
熱暑感の低減を目的として、視感透過率の小さな熱線反
射ガラスが用いられている。このような視感透過率の小
さな熱線反射ガラスは、プライバシ−の保護という観点
からも利用価値が高いものである。これらの要求に応え
る熱線反射ガラスとしては、Cr、Fe等の遷移金属を
含んだ、可視光領域に強い吸収のあるコバルトのスピネ
ル型酸化物被膜を通常のソ−ダライムガラス上に形成し
たものが知られていた。
2. Description of the Related Art In recent years, heat-reflecting glass having a low luminous transmittance has been used for window glass for buildings or automobiles / vehicles for the purpose of reducing the cooling load or reducing the heat sensation caused by direct sunlight. There is. Such a heat ray reflective glass having a low luminous transmittance has a high utility value from the viewpoint of protecting privacy. As a heat ray reflective glass that meets these requirements, a spinel type oxide film of cobalt containing a transition metal such as Cr or Fe and having strong absorption in the visible light region is formed on a normal soda lime glass. Was known.

【0003】ところで、視感透過率の小さな熱線反射ガ
ラスを特に自動車用窓ガラスとして使用した場合、ある
程度の視感透過率を保ちつつ太陽輻射エネルギ−を遮断
する必要がある。
By the way, when a heat ray reflective glass having a small luminous transmittance is used as a window glass for an automobile, it is necessary to block solar radiation energy while maintaining a certain luminous transmittance.

【0004】この要求に応える熱線反射ガラスとして
は、特公昭63−32736に記載されているニッケル
コバルタイト被膜をガラス上に形成した物品があり、こ
の場合、ニッケルコバルタイト被膜が赤外領域にも吸収
を持つことで、視感透過率をあまり下げずに太陽エネル
ギ−遮断効果を高められる。
As a heat ray reflecting glass that meets this requirement, there is an article having a nickel cobaltite coating formed on the glass, which is described in Japanese Examined Patent Publication No. 63-32736. In this case, the nickel cobaltite coating is also used in the infrared region. By having the absorption, the solar energy-shielding effect can be enhanced without significantly lowering the luminous transmittance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、Cr、
Fe等の遷移金属を含んだ、可視光領域に強い吸収のあ
るコバルトのスピネル型酸化物被膜を通常のソ−ダライ
ムガラス上に形成した熱線反射ガラスでは、太陽輻射エ
ネルギ−を遮断する効果は可視光線透過率の点から限界
があった。一般に、太陽輻射エネルギ−はエネルギ−構
成で紫外線約4%、可視光線約50%、近赤外線約46
%からなる。かかる熱線反射ガラスは、主として可視領
域の光線の吸収および反射により太陽輻射エネルギ−を
遮断しているため、太陽エネルギ−遮断効果を十分に高
めようとすると視感透過率が小さくなりすぎてしまうと
いう問題点があった。
However, Cr,
In the heat ray reflection glass in which the spinel type oxide film of cobalt containing a transition metal such as Fe and having strong absorption in the visible light region is formed on the ordinary soda lime glass, the effect of blocking solar radiation energy is There was a limit in terms of visible light transmittance. Generally, the solar radiation energy has an energy composition of about 4% of ultraviolet rays, about 50% of visible rays, and about 46% of near infrared rays.
%. Since such heat-ray reflective glass mainly shields solar radiant energy by absorbing and reflecting light rays in the visible region, the luminous transmittance becomes too small if the solar energy-shielding effect is sufficiently enhanced. There was a problem.

【0006】また特公昭63−32736に記載されて
いるニッケルコバルタイト被膜をガラス上に形成した物
品の場合、上記問題点は解決できるものの、このニッケ
ルコバルタイト被膜は電導性金属酸化物皮膜と記載され
ているように電気抵抗が低いため、かかる被膜を形成し
たガラスを建築・車輌用に用いた場合にテレビ電波等を
反射してしまい、電波の受信を妨げたり、近年特に問題
になっているゴ−スト障害を起こすという問題がある。
Further, in the case of an article in which a nickel cobaltite coating described in Japanese Patent Publication No. 63-32736 is formed on glass, the nickel cobaltite coating is described as a conductive metal oxide coating although the above problems can be solved. Since the electric resistance is low as described above, when the glass formed with such a coating is used for construction and vehicles, it reflects TV radio waves and the like, which hinders reception of radio waves and has become a particular problem in recent years. There is a problem of causing ghost failure.

【0007】以上述べたように、視感透過率の小さな熱
線反射ガラスとして、高い太陽エネルギ−遮断効果(す
なわち小さい日射透過率)と低い導電性の両方の機能を
兼ね備えた安価なガラスが求められているが、このよう
なガラスは得られていなかった。例えば、このようなガ
ラスを生産する手段として、ガラス上に金属膜や金属窒
化膜と誘電体膜からなる多層構造を有する薄膜を形成す
ることも考えられるが、このガラスの製造コストが高く
なるという問題がある。
As described above, as a heat ray reflective glass having a small luminous transmittance, an inexpensive glass having both a high solar energy-shielding effect (that is, a small solar radiation transmittance) and a low conductivity is required. However, such a glass has not been obtained. For example, as a means for producing such glass, it is conceivable to form a thin film having a multilayer structure composed of a metal film or a metal nitride film and a dielectric film on the glass, but the production cost of this glass is high. There's a problem.

【0008】本発明は、前記問題点を解決するためにな
されたものであって、電気抵抗が大きく日射透過率の小
さい安価な熱線反射ガラスを提供することを目的とす
る。
The present invention has been made in order to solve the above problems, and an object thereof is to provide an inexpensive heat-reflecting glass having a large electric resistance and a small solar radiation transmittance.

【0009】[0009]

【課題を解決するための手段】請求項1の熱線反射ガラ
スは、ガラス上にコバルト、鉄及びニッケルの3つの元
素が全て存在するスピネル型酸化物多結晶膜を形成さ
せ、該被膜の表面抵抗率が104Ω/スクエアより大き
いことを特徴とする。
According to the heat ray reflective glass of claim 1, a spinel type oxide polycrystalline film in which all three elements of cobalt, iron and nickel are present is formed on the glass, and the surface resistance of the film is formed. The rate is greater than 10 4 Ω / square.

【0010】請求項2の熱線反射ガラスは、請求項1の
熱線反射ガラスにおいて、該酸化物膜中のコバルトの重
量百分率が25%より大きいことを特徴とする。
The heat ray reflective glass of claim 2 is characterized in that, in the heat ray reflective glass of claim 1, the weight percentage of cobalt in the oxide film is larger than 25%.

【0011】請求項3の熱線反射ガラスは、請求項1ま
たは請求項2の熱線反射ガラスにおいて、該酸化物膜中
の鉄の重量百分率が5〜60%の範囲であることを特徴
とする。
The heat-reflecting glass according to claim 3 is characterized in that, in the heat-reflecting glass according to claim 1 or 2, the weight percentage of iron in the oxide film is in the range of 5 to 60%.

【0012】[0012]

【作用】本発明はコバルト、鉄及びニッケルの3つの元
素が全て存在するスピネル型酸化物をガラス上に多結晶
膜として形成させた、表面抵抗率が104Ω/スクエア
より大きいことを特徴とする日射透過率の低い熱線反射
ガラスである。
The present invention is characterized in that a spinel type oxide containing all three elements of cobalt, iron and nickel is formed as a polycrystalline film on glass and has a surface resistivity of more than 10 4 Ω / square. It is a heat ray reflective glass with low solar radiation transmittance.

【0013】本発明では、表面抵抗率が104Ω/スク
エアより小さいと、テレビ電波等を反射してしまい、電
波の受信を妨げたり、近年特に問題になっているゴ−ス
ト障害を起こし易いので、表面抵抗率を104Ω/スク
エアより大きくしている。
In the present invention, when the surface resistivity is less than 10 4 Ω / square, television radio waves are reflected, which hinders the reception of radio waves and is likely to cause a ghost failure which has become a particularly serious problem in recent years. Therefore, the surface resistivity is made larger than 10 4 Ω / square.

【0014】該被膜が可視光域に強い吸収を示すために
はコバルトを含んだスピネル型酸化物を形成することが
必要となるが、該酸化物膜中にコバルトの重量百分率が
25%よりも小さい場合はスピネル型構造を示さず視感
透過率の大きなものとなる。
In order for the coating film to exhibit strong absorption in the visible light region, it is necessary to form a spinel type oxide containing cobalt, but the weight percentage of cobalt in the oxide film is more than 25%. When it is small, the spinel structure is not shown and the luminous transmittance is large.

【0015】また、該被膜において鉄の濃度が少なすぎ
ると、被膜の電気抵抗が低くなってしまい、前述のよう
に、テレビ電波等を反射してしまい、電波の受信を妨げ
たり、ゴ−スト障害を起こし易い。一方、鉄濃度があま
りにも大きくなりすぎると、該被膜の透過色相が赤くな
り、高級感が損なわれ商品価値をおとしめる。そのた
め、該被膜中の鉄の重量百分率として5〜60%の範囲
にあることが望ましい。
If the iron concentration in the coating is too low, the electrical resistance of the coating will be low, and as described above, it will reflect television radio waves and the like, which will interfere with the reception of radio waves and will cause ghosting. Prone to failure. On the other hand, if the iron concentration is too high, the transparent hue of the coating becomes red, impairing the high-class feeling and reducing the commercial value. Therefore, the weight percentage of iron in the coating is preferably in the range of 5 to 60%.

【0016】本発明の熱線反射膜をガラス上に形成する
方法は特に限定されないが、加熱したガラス基板上に熱
分解スプレ−法によってコバルト・鉄・ニッケル複合酸
化物を形成するのが最も容易かつ好ましい。スプレ−の
吹き付け原料液としては、コバルト、鉄及びニッケル金
属化合物が液体状の溶媒中に溶解しているものが一般的
である。ここでコバルト化合物としてはアセチルアセト
ンコバルト(二価塩と三価塩いずれも可)・酢酸コバル
ト・塩化コバルトなどが、鉄化合物としてはアセチルア
セトン鉄・塩化鉄などが、ニッケル化合物としてはアセ
チルアセトンニッケル・ジプロピオニルメタンニッケル
・酢酸ニッケル・塩化ニッケルなどが挙げられる。これ
らの金属化合物を溶解する溶媒としては、芳香族やケト
ン・アルコ−ルなどの有機溶剤が一般的である。一例と
しては、ベンゼン中にニッケルジプロピオニルメタンお
よび三価のコバルトアセチルアセトン、三価のアセチル
アセトン鉄を溶解させた物が挙げられる。
The method of forming the heat-reflecting film of the present invention on glass is not particularly limited, but the easiest method is to form the cobalt-iron-nickel composite oxide on the heated glass substrate by the thermal decomposition spray method. preferable. As the spraying raw material liquid, one in which cobalt, iron and nickel metal compounds are dissolved in a liquid solvent is generally used. Here, cobalt compounds include acetylacetone cobalt (both divalent and trivalent salts are acceptable), cobalt acetate, cobalt chloride, etc., iron compounds include acetylacetone iron, iron chloride, etc., and nickel compounds include acetylacetone nickel, dipropionyl. Examples include methane nickel, nickel acetate, and nickel chloride. As a solvent for dissolving these metal compounds, an organic solvent such as aromatic or ketone / alcohol is generally used. As an example, the thing which melt | dissolved nickel dipropionyl methane, trivalent cobalt acetylacetone, and trivalent acetylacetone iron in benzene is mentioned.

【0017】かかる吹き付け液を、加熱した基板上に大
気中で吹き付けると、コバルト・鉄・ニッケルを含有す
るスピネル型酸化物被膜が基板上に形成される。基板と
しては通常のソ−ダライムガラスが最も一般的である
が、着色されたソ−ダライム基板やその他の透光性基板
であっても構わない。吹き付け時の基板温度は350℃
から800℃程度で行なう必要がある。350℃以下で
は非晶質膜となり酸化物多結晶膜が形成されず、800
℃以上では好ましい複合酸化物の組合せが得られない。
When such a spraying liquid is sprayed on the heated substrate in the atmosphere, a spinel type oxide film containing cobalt, iron and nickel is formed on the substrate. Ordinary soda lime glass is the most common substrate, but a colored soda lime substrate or other translucent substrate may be used. Substrate temperature during spraying is 350 ° C
It is necessary to carry out at about 800 ° C. If the temperature is 350 ° C or lower, an amorphous film is not formed and an oxide polycrystal film is not formed.
Above 0 ° C, a preferable combination of complex oxides cannot be obtained.

【0018】本発明において熱線反射ガラスを作製する
際には、好ましい吹き付け液中の金属化合物含有量は、
あらかじめ使用装置に応じて実験的に決定しておく必要
がある。この含有量は、吹き付け時の基板温度・吹き付
けに用いるノズル・ガスの排気機構・成膜速度などに応
じた最適範囲が存在する。すなわち、吹き付け液中の金
属化合物の総量が少なすぎれば十分な成膜速度が得られ
ず、逆に多すぎれば良好な膜厚分布が得られない。コバ
ルト・鉄・ニッケルそれぞれが膜中に適量存在するスピ
ネル型複合酸化物膜をガラス上に形成することで、電気
抵抗が大きく日射透過率の小さな熱線反射ガラスが得ら
れる。
When producing the heat ray-reflecting glass in the present invention, the preferred content of the metal compound in the spray liquid is
It must be experimentally determined in advance according to the device used. This content has an optimum range depending on the substrate temperature at the time of spraying, the nozzle used for spraying, the gas exhaust mechanism, the film formation rate, and the like. That is, if the total amount of metal compounds in the spray liquid is too small, a sufficient film formation rate cannot be obtained, and conversely, if the total amount is too large, a good film thickness distribution cannot be obtained. By forming a spinel-type composite oxide film in which cobalt, iron, and nickel are present in appropriate amounts in the film, a heat-reflecting glass having high electrical resistance and low solar radiation transmittance can be obtained.

【実施例】【Example】

実施例1 大きさが150mm×150mm厚みが4mmのソ−ダ
ライムガラスを洗浄、乾燥し基板とした。この基板を吊
具によって固定し、650℃に設定した電気炉内に5分
間保持した後、取り出して200ccのトルエンに3価
のコバルトのアセチルアセトナ−ト3.56g、2価の
ニッケルのジプロピオニルメタン4.70g、3価の鉄
のアセチルアセトナ−ト1.77gを溶解させた原料液
を市販のスプレ−ガンを用いて基板上に約30秒間、空
気圧1.5kg/cm2 、空気量50リットル/mi
n、噴霧量120ミリリットル/minで吹き付けた。
得られた膜の膜厚はおよそ150nmであった。この試
料について、JIS−3106に従って視感透過率、日
射透過率を求めた。また得られた膜の表面抵抗率は1.
4×106Ω/スクエアであった。これらの結果を表1
に示す。 比較例1 実施例1に用いたものと同じソ−ダライムガラスを基板
とし、200ccのトルエンに3価のコバルトのアセチ
ルアセトナ−ト3.56g、3価の鉄のアセチルアセト
ナ−ト5.30g、3価のクロムのアセチルアセトナ−
ト1.75gを溶解させた原料液を用いて実施例1と同
じ方法により成膜した。こうして得られた膜の膜厚はお
よそ150nmであった。この試料について実施例1と
同じ方法により視感透過率、日射透過率を求めた。また
得られた膜の表面抵抗率は測定上限(300×106Ω
/スクエア)を越えた。これらの結果を表1に示す。
Example 1 Soda-lime glass having a size of 150 mm × 150 mm and a thickness of 4 mm was washed and dried to obtain a substrate. This substrate was fixed by a suspending tool and kept in an electric furnace set at 650 ° C. for 5 minutes, then taken out and put in 200 cc of toluene, 3.56 g of trivalent cobalt acetylacetonate, and divalent nickel dichloride. 4.70 g of propionylmethane was dissolved in 1.77 g of trivalent iron acetylacetonate, and the raw material solution was put on a substrate using a commercially available spray gun for about 30 seconds, air pressure of 1.5 kg / cm 2 , air. Volume 50 liters / mi
Spraying was performed at a spray rate of 120 ml / min.
The thickness of the obtained film was about 150 nm. For this sample, the luminous transmittance and the solar radiation transmittance were determined according to JIS-3106. The surface resistivity of the obtained film was 1.
It was 4 × 10 6 Ω / square. These results are shown in Table 1.
Shown in. Comparative Example 1 Using the same soda lime glass as that used in Example 1 as a substrate, 3.56 g of trivalent cobalt acetylacetonate in 200 cc of toluene, and trivalent iron acetylacetonate 5 were used. .30 g, trivalent chromium acetylacetona
A film was formed in the same manner as in Example 1 by using a raw material liquid in which 1.75 g of the aluminum oxide was dissolved. The film thickness of the film thus obtained was about 150 nm. The luminous transmittance and the solar radiation transmittance of this sample were determined by the same method as in Example 1. The surface resistivity of the obtained film is the upper limit of measurement (300 × 10 6 Ω
/ Square). The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 大きさが150mm×150mm厚みが4mmのソ−ダ
ライムガラスを洗浄、乾燥し基板とした。この基板を吊
具によって固定し、650℃に設定した電気炉内に5分
間保持した後、取り出して200ccのトルエンに3価
のコバルトのアセチルアセトナ−ト7.12g、2価の
ニッケルのジプロピオニルメタン2.09g、3価の鉄
のアセチルアセトナ−ト1.18gを溶解させた原料液
を市販のスプレ−ガンを用いて基板上に約30秒間、空
気圧1.5kg/cm2 、空気量50リットル/mi
n、噴霧量120ミリリットル/minで吹き付けたも
のを試料とした。得られた膜の膜厚は150nmで表面
抵抗率は90000Ω/スクエアであった。この試料の
視感透過率は11.4%、日射透過率は20.4%であ
った。これらの結果を表1に示す。 比較例2 実施例2に用いたものと同じソ−ダライムガラスを基板
とし、200ccのトルエンに3価のコバルトのアセチ
ルアセトナ−ト7.12g、2価のニッケルのジプロピ
オニルメタン3.13g、を溶解させた原料液を用いて
実施例2と同じ方法により成膜した。こうして得られた
膜の膜厚は150nmで表面抵抗率は1000Ω/スク
エアであった。この試料の視感透過率は8.7%、日射
透過率は12.4%であった。これらの結果を表1に示
す。 実施例3 大きさが150mm×150mm厚みが4mmのソ−ダ
ライムガラスを洗浄、乾燥し基板とした。この基板を吊
具によって固定し、650℃に設定した電気炉内に5分
間保持した後、取り出して200ccのトルエンに3価
のコバルトのアセチルアセトナ−ト3.56g、2価の
ニッケルのジプロピオニルメタン1.57g、3価の鉄
のアセチルアセトナ−ト5.30gを溶解させた原料液
を市販のスプレ−ガンを用いて基板上に約30秒間、空
気圧1.5kg/cm2 、空気量50リットル/mi
n、噴霧量120ミリリットル/minで吹き付けたも
のを試料とした。こうして得られた膜の膜厚はおよそ1
50nmであった。この試料について実施例1と同じ方
法により求めた視感透過率は25.1%であり、日射透
過率は37.4%である。これらの結果を表1に示す。
実施例1ないし3及び比較例1、2の試料について、該
被膜におけるコバルト、鉄の重量百分率を高周波プラズ
マ発光分析により求めた結果を表2に示す。また、実施
例1ないし3の試料についてX線回折分析を行ったとこ
ろ、全てスピネル型構造を示した。
Example 2 Soda-lime glass having a size of 150 mm × 150 mm and a thickness of 4 mm was washed and dried to obtain a substrate. This substrate was fixed by a suspending tool and kept in an electric furnace set at 650 ° C. for 5 minutes, and then taken out to 200 cc of toluene and acetylacetonate of trivalent cobalt (7.12 g) and divalent nickel divalent. A raw material solution in which 2.09 g of propionylmethane and 1.18 g of trivalent iron acetylacetonate were dissolved was placed on a substrate using a commercially available spray gun for about 30 seconds, air pressure of 1.5 kg / cm 2 , air. Volume 50 liters / mi
The sample sprayed at a spray rate of 120 ml / min was used as a sample. The film obtained had a thickness of 150 nm and a surface resistivity of 90,000 Ω / square. This sample had a luminous transmittance of 11.4% and a solar radiation transmittance of 20.4%. The results are shown in Table 1. Comparative Example 2 Using the same soda lime glass as used in Example 2 as a substrate, 200 cc of toluene was added with trivalent cobalt acetylacetonate 7.12 g and divalent nickel dipropionylmethane 3.13 g. A film was formed in the same manner as in Example 2 by using the raw material liquid in which The film thus obtained had a film thickness of 150 nm and a surface resistivity of 1000 Ω / square. This sample had a luminous transmittance of 8.7% and a solar radiation transmittance of 12.4%. The results are shown in Table 1. Example 3 Soda lime glass having a size of 150 mm × 150 mm and a thickness of 4 mm was washed and dried to obtain a substrate. This substrate was fixed by a suspending tool and kept in an electric furnace set at 650 ° C. for 5 minutes, then taken out and put in 200 cc of toluene, 3.56 g of trivalent cobalt acetylacetonate and divalent nickel dichloride. A raw material solution in which 1.57 g of propionylmethane and 5.30 g of acetylacetonate of trivalent iron were dissolved was put on a substrate for about 30 seconds using a commercially available spray gun, air pressure of 1.5 kg / cm 2 , air. Volume 50 liters / mi
The sample sprayed at n and a spray rate of 120 ml / min was used as a sample. The thickness of the film thus obtained is about 1
It was 50 nm. For this sample, the luminous transmittance obtained by the same method as in Example 1 is 25.1%, and the solar radiation transmittance is 37.4%. The results are shown in Table 1.
Table 2 shows the results of the weight percentages of cobalt and iron in the coatings of the samples of Examples 1 to 3 and Comparative Examples 1 and 2 determined by high-frequency plasma emission analysis. Further, when the X-ray diffraction analysis was performed on the samples of Examples 1 to 3, all showed a spinel structure.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明によれば、実施例から明かなよう
に、日射透過率が小さく、電気抵抗が大きく、テレビ電
波等を反射しない、電波の受信を妨げたりしない、ゴ−
スト障害を起こさない、熱線反射ガラスを得ることがで
きる。
According to the present invention, as is apparent from the examples, the solar radiation transmittance is low, the electric resistance is high, the television radio waves are not reflected, the reception of radio waves is not disturbed, and the
It is possible to obtain a heat-reflecting glass that does not cause a strike failure.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス上にコバルト、鉄及びニッケルの
3つの元素が全て存在するスピネル型酸化物多結晶膜を
形成させ、該被膜の表面抵抗率が104Ω/スクエアよ
り大きいことを特徴とする熱線反射ガラス。
1. A spinel type oxide polycrystalline film in which all three elements of cobalt, iron and nickel are present on glass, and the surface resistivity of the film is larger than 10 4 Ω / square. Heat ray reflective glass.
【請求項2】 請求項1の熱線反射ガラスにおいて、該
酸化物膜中のコバルトの重量百分率が25%より大きい
ことを特徴とする熱線反射ガラス。
2. The heat ray reflective glass according to claim 1, wherein the weight percentage of cobalt in the oxide film is larger than 25%.
【請求項3】 請求項1または請求項2の熱線反射ガラ
スにおいて、該酸化物膜中の鉄の重量百分率が5〜60
%の範囲であることを特徴とする熱線反射ガラス。
3. The heat ray reflective glass according to claim 1 or 2, wherein the weight percentage of iron in the oxide film is 5 to 60.
% Heat-reflecting glass.
JP1897892A 1992-02-04 1992-02-04 Heat ray reflecting glass Pending JPH05213630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1897892A JPH05213630A (en) 1992-02-04 1992-02-04 Heat ray reflecting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1897892A JPH05213630A (en) 1992-02-04 1992-02-04 Heat ray reflecting glass

Publications (1)

Publication Number Publication Date
JPH05213630A true JPH05213630A (en) 1993-08-24

Family

ID=11986715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1897892A Pending JPH05213630A (en) 1992-02-04 1992-02-04 Heat ray reflecting glass

Country Status (1)

Country Link
JP (1) JPH05213630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894047A (en) * 1995-03-30 1999-04-13 Central Glass Company, Limited Heat reflecting glass
US10259205B2 (en) 2015-04-22 2019-04-16 Aisin Seiki Kabushiki Kaisha Vehicular resin glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894047A (en) * 1995-03-30 1999-04-13 Central Glass Company, Limited Heat reflecting glass
US10259205B2 (en) 2015-04-22 2019-04-16 Aisin Seiki Kabushiki Kaisha Vehicular resin glass

Similar Documents

Publication Publication Date Title
US5780149A (en) Glass article having a solar control coating
US5576885A (en) Heatable mirror including a non-metallic reflecting coating on a glass substate
US8158262B2 (en) Glass article having a zinc oxide coating and method for making same
US3202054A (en) Radiation filter with plural iridized metal oxide films
JPH08336923A (en) Heat resistant window or window shield having high transmission and low radiation rate and manufacture thereof
JPH05195201A (en) Metal vacuum coating article and preparation thereof
CN110418710A (en) Low emissivity coatings for glass baseplate
Szczyrbowski et al. Bendable silver-based low emissivity coating on glass
AU2007258727B2 (en) Glass article having a zinc oxide coating and method for making same
JPH04275949A (en) Method for forming layer consisting of aluminum oxide as basic material on glass and article provided with said layer
US6110597A (en) Coated glass for buildings
JPH05213630A (en) Heat ray reflecting glass
JP2003002691A (en) Low reflective substrate and method for producing the same
JPH0710601A (en) Article with glass substrate carrying transparent conductive film containing zinc and indium and method for its production and use
JP2000233946A (en) Heat ray reflecting glass and laminated glass using the same
JP3094852B2 (en) Heat ray shielding glass for vehicles
JP3058056B2 (en) Heat ray reflective glass
US6291074B1 (en) Heat-radiation reflective glass
JP2528520B2 (en) Veneer insulated glass
JPH08171015A (en) High visible ray transmissive heat ray reflection glass
JPH0986966A (en) Thermal lay-reflecting glass
JPH0753241A (en) Ultraviolet-transmission preventive glass and its production
JPH06247746A (en) Glass for vehicle
US4954367A (en) Vapor deposition of bis-tributyltin oxide
JPH11343146A (en) Heat ray shielding glass