[go: up one dir, main page]

JPH0521284A - Capacitor and its manufacture - Google Patents

Capacitor and its manufacture

Info

Publication number
JPH0521284A
JPH0521284A JP16995491A JP16995491A JPH0521284A JP H0521284 A JPH0521284 A JP H0521284A JP 16995491 A JP16995491 A JP 16995491A JP 16995491 A JP16995491 A JP 16995491A JP H0521284 A JPH0521284 A JP H0521284A
Authority
JP
Japan
Prior art keywords
capacitor
conductive polymer
phenol
present
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16995491A
Other languages
Japanese (ja)
Other versions
JP2730330B2 (en
Inventor
Masao Fukuyama
正雄 福山
Yasuo Kudo
康夫 工藤
Toshikuni Kojima
利邦 小島
Satonari Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16995491A priority Critical patent/JP2730330B2/en
Publication of JPH0521284A publication Critical patent/JPH0521284A/en
Application granted granted Critical
Publication of JP2730330B2 publication Critical patent/JP2730330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize a small size and large capacity capacitor which employs a conductive polymer layer as an electrode, has excellent frequency characteristics and has excellent reliability characteristics, that is, even if it is left in a high temperature atmosphere, it shows only little deterioration of capacity, loss, impedance, etc. CONSTITUTION:A layer of conductive polymer which is obtained by an electrolytic polymerization method from electrolyte which contains at least phenol and/or phenoxide derivative, polymerizing monomer and supporting electreolyte is built up on a dielectric film and used as an electrode. With this constitution, various characteristics of the conductive polymer layer under a high temperature can be stabilized and a capacitor having excellent stability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子層を電極
として用いたコンデンサ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor using a conductive polymer layer as an electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電気機器等の回路のディジタル
化、小型化に伴い、回路に使われるコンデンサには高周
波域でのインピーダンスが低く、小型かつ大容量である
ことが強く要望されるようになってきた。このような状
況の中、導電性固体を電解質とした大容量固体電解コン
デンサの開発が盛んに行われている。
2. Description of the Related Art In recent years, with the digitization and miniaturization of circuits in electrical equipment and the like, it has been strongly demanded that capacitors used in circuits have a low impedance in a high frequency range, a small size and a large capacity. It's coming. Under such circumstances, development of a large-capacity solid electrolytic capacitor using a conductive solid as an electrolyte has been actively conducted.

【0003】従来、固体電解質として二酸化マンガンを
用いたタンタル固体電解コンデンサが良く知られている
が、二酸化マンガンの抵抗が高いために高周波領域で十
分に低いインピーダンスを得ることができなかった。こ
の他、固体電解コンデンサとしては、二酸化マンガン層
の代わりに、導電性が高く陽極酸化性に優れた有機半導
体、7,7,8,8−テトラシアノキノジメタンコンプ
レックス塩(TCNQ塩)を固体電解質に使うものが提
案されているが、TCNQ塩を塗布する際に比抵抗の上
昇が起こることや、陽極金属箔との接着性に劣るといっ
た問題があった。
Conventionally, a tantalum solid electrolytic capacitor using manganese dioxide as a solid electrolyte has been well known, but it has been impossible to obtain a sufficiently low impedance in a high frequency region because of the high resistance of manganese dioxide. In addition, as a solid electrolytic capacitor, instead of the manganese dioxide layer, an organic semiconductor having high conductivity and excellent anodizing property, 7,7,8,8-tetracyanoquinodimethane complex salt (TCNQ salt) is used as a solid. Although the one used as an electrolyte has been proposed, there have been problems that the resistivity increases when the TCNQ salt is applied and the adhesion to the anode metal foil is poor.

【0004】そこで、ピロール、チオフェンなどの複素
環式化合物モノマーと支持電解質を含ませた溶液を用い
て電解重合することにより、支持電解質のアニオンをド
ーパントとして含む導電性高分子層を固体電解質に使う
ものが提案されている。電解重合電導性高分子はTCN
Q塩と比較しても電気伝導度が非常に大きく、また接着
性の優れた皮膜が容易に作製できる。さらに、導電性高
分子を用いるとコンデンサのチップ化も容易である。こ
のため、小型大容量で理想的なインピーダンスの周波数
特性を有するコンデンサが実現できるので、導電性高分
子を用いた固体電解コンデンサが注目されている。
Therefore, by conducting electropolymerization using a solution containing a heterocyclic compound monomer such as pyrrole or thiophene and a supporting electrolyte, a conductive polymer layer containing an anion of the supporting electrolyte as a dopant is used as a solid electrolyte. Things have been proposed. Electropolymerization Conductive polymer is TCN
Even if compared with Q salt, the electric conductivity is very large, and a film having excellent adhesiveness can be easily produced. Furthermore, when a conductive polymer is used, it is easy to make a capacitor into a chip. For this reason, a small-sized, large-capacity capacitor having ideal impedance frequency characteristics can be realized, and therefore a solid electrolytic capacitor using a conductive polymer is drawing attention.

【0005】さらに最近では、電着によって作製したポ
リイミド薄膜を誘電体とし、この上に導電性高分子を積
層形成し電極とした無極性のコンデンサも提案されてお
り(電気化学協会第58回大会講演要旨集 p252)、導
電性高分子を固体電解コンデンサの電解質として用いる
だけでなく、あらゆるコンデンサの電極として用いるこ
とが提案されている。
More recently, a nonpolar capacitor has been proposed in which a polyimide thin film produced by electrodeposition is used as a dielectric, and a conductive polymer is laminated on this to form an electrode (The 58th Congress of the Electrochemical Society of Japan). It is proposed to use not only conductive polymer as an electrolyte of solid electrolytic capacitors but also electrodes of all capacitors p252).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、導電性
高分子は一般に、高温下に長時間放置すると電気伝導
度、機械的強度、接着性等の諸特性の劣化が起こり、こ
れを電極に用いて作製したコンデンサも高温下に長時間
放置するとこれらの特性が劣化してしまうという問題が
ある。
However, in general, when a conductive polymer is left at a high temperature for a long time, various properties such as electric conductivity, mechanical strength and adhesiveness are deteriorated. The produced capacitor also has a problem that these characteristics deteriorate if it is left at high temperature for a long time.

【0007】この発明は上記の課題に鑑み、コンデンサ
の電極として電解重合により作製した導電性高分子層を
備えているにもかかわらず、高温下でも寿命特性に優れ
たコンデンサ及びその製造方法を提供することを目的と
する。
In view of the above problems, the present invention provides a capacitor excellent in life characteristics even at high temperature, and a method for manufacturing the same, even though it has a conductive polymer layer produced by electrolytic polymerization as an electrode of the capacitor. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、誘電体皮膜上に導電性高分子が積層形成
されている電極を有するコンデンサにおいて、導電性高
分子が、フェノールまたはフェノキシドから選ばれる少
なくとも一つのものと重合性モノマーと支持電解質とか
らなるように構成され、また、本発明のコンデンサの製
造方法では、上記の構成の電解液から電解重合法により
導電性高分子層を得るように構成されている。
In order to achieve the above object, the present invention provides a capacitor having an electrode in which a conductive polymer is laminated on a dielectric film, wherein the conductive polymer is phenol or It is composed of at least one selected from phenoxide, a polymerizable monomer, and a supporting electrolyte, and in the method for producing a capacitor of the present invention, a conductive polymer layer is formed from an electrolytic solution having the above structure by electrolytic polymerization. Is configured to obtain.

【0009】本発明で使用されるフェノールとは、芳香
族ヒドロキシ化合物のことであり、水酸基の数、位置な
どによっては限定されず、1価フェノールの他に多価フ
ェノール、ビスフェノール、ナフトール、ビナフトー
ル、アントロール、アントラヒドロキノン等も含んでい
る。また、フェノキシドとは上記フェノールの塩のこと
であり、ナトリウム、カリウム、カルシウム、バリウ
ム、アルミニウム等の金属塩の他アンモニウム塩等も含
んでいる。
The phenol used in the present invention is an aromatic hydroxy compound, and is not limited by the number and position of hydroxyl groups, and in addition to monohydric phenols, polyhydric phenols, bisphenols, naphthols, binaphthols, It also contains anthrol and anthrahydroquinone. Phenoxide is a salt of the above-mentioned phenol, and includes ammonium salts as well as metal salts such as sodium, potassium, calcium, barium and aluminum.

【0010】さらに具体的には、石炭酸(フェノー
ル)、カテコール、レゾルシン、ヒドロキノン、ピロガ
ロール、フロログルシン、ビスフェノールA、α−ナフ
トール、β−ナフトール、α−ビナフトール、β−ビナ
フトール、γ−ビナフトール、α−アントロール、β−
アントロール、γ−アントロール、アントラヒドロキノ
ン、ナトリウムフェノキシド、カリウムフェノキシド、
カルシウムフェノキシド等が挙げられる。なお、上記の
フェノールまたはフェノキシド誘導体は、単独で用いて
もよいし、両者を混合して用いてもよい。
More specifically, carboxylic acid (phenol), catechol, resorcin, hydroquinone, pyrogallol, phloroglucin, bisphenol A, α-naphthol, β-naphthol, α-binaphthol, β-binaphthol, γ-binaphthol, α-ant. Roll, β-
Anthrol, γ-anthrol, anthrahydroquinone, sodium phenoxide, potassium phenoxide,
Calcium phenoxide etc. are mentioned. The above-mentioned phenol or phenoxide derivative may be used alone or as a mixture of both.

【0011】また、上記のフェノールまたはフェノキシ
ドの電解液中の添加濃度は、多い方が効果があり、0.
005mol/リットル以上であると好適であり、さら
には0.1mol/リットル以上であると最適である。
Further, the higher the concentration of the above-mentioned phenol or phenoxide added to the electrolytic solution, the better the effect.
It is preferably 005 mol / liter or more, and more preferably 0.1 mol / liter or more.

【0012】なお、本発明のコンデンサは、二つの電極
のうち少なくとも一つに上記の導電性高分子を用いるも
のであるが、コンデンサの大容量化を図るためには片方
の電極の実効表面積を大きくするとさらに好ましい。こ
の方法としてはエッチングされた金属や焼結体を用いる
と好適であり、さらに、アルミニウム、タンタル等のエ
ッチド箔や焼結体が最適である。
The capacitor of the present invention uses the above conductive polymer for at least one of the two electrodes. However, in order to increase the capacity of the capacitor, the effective surface area of one electrode is It is more preferable to increase the size. For this method, it is preferable to use an etched metal or a sintered body, and further, an etched foil or a sintered body of aluminum, tantalum or the like is most suitable.

【0013】また、本発明に使用するフェノールまたは
フェノキシドの水素は、少なくとも一つをハロゲンによ
って置き換えることができる。具体的には、フルオロフ
ェノール、クロロフェノール、ブロモフェノール、ヨー
ドフェノール等が挙げられる。
Further, at least one hydrogen atom of the phenol or phenoxide used in the present invention can be replaced by halogen. Specific examples include fluorophenol, chlorophenol, bromophenol, iodophenol and the like.

【0014】本発明に使用する重合性モノマーとして
は、ピロールまたはその誘導体(例えば、N−メチルピ
ロール)の少なくともひとつが挙げられるが、他に、例
えばチオフェン、フラン等でもよい。
As the polymerizable monomer used in the present invention, at least one of pyrrole and its derivative (for example, N-methylpyrrole) can be mentioned, but other than that, for example, thiophene, furan and the like may be used.

【0015】また、支持電解質としては過塩素酸塩、ス
ルホン酸塩、カルボン酸塩、リン酸塩等の一般に用いら
れるものであればどのようなものでもよいが、アルキル
置換基を有するナフタレンスルホン酸塩もしくはアルキ
ルリン酸エステルが好適である。さらに具体的には、モ
ノメチルナフタレンスルホン酸ナトリウム、トリイソプ
ロピルナフタレンスルホン酸ナトリウム、モノイソプロ
ピルナフタレンスルホン酸ナトリウム、ジブチルナフタ
レンスルホン酸ナトリウム、プロピルリン酸エステル、
ブチルリン酸エステル、ヘキシルリン酸エステル等が挙
げられる。
The supporting electrolyte may be any of those commonly used, such as perchlorates, sulfonates, carboxylates and phosphates, but naphthalenesulfonic acid having an alkyl substituent. Salts or alkyl phosphates are preferred. More specifically, sodium monomethylnaphthalene sulfonate, sodium triisopropyl naphthalene sulfonate, sodium monoisopropyl naphthalene sulfonate, sodium dibutyl naphthalene sulfonate, propyl phosphate,
Examples thereof include butyl phosphate ester and hexyl phosphate ester.

【0016】なお、上記した重合性モノマーや支持電解
質は、上記のものをそれぞれ単独で用いてもよいし、例
えば、支持電解質を複数種混合して用いたり、ピロール
またはチオフェンをそれぞれの誘導体と混合して用いる
など上記モノマーを複数種併用してもよい。
The above-mentioned polymerizable monomers and supporting electrolytes may be used alone, for example, a plurality of supporting electrolytes may be mixed, or pyrrole or thiophene may be mixed with each derivative. A plurality of types of the above-mentioned monomers may be used in combination.

【0017】さらに、導電性高分子を複合化するため
に、電解液に他の所望の添加剤を入れてもよい。また、
本発明は、上記例示の化合物や処理工程に限定されるこ
とはなく、例示以外の代替可能な化合物や処理工程を用
いてもよいことはいうまでもない。
Further, other desired additives may be added to the electrolytic solution in order to form a composite with the conductive polymer. Also,
It is needless to say that the present invention is not limited to the above-exemplified compounds and treatment steps, and that substitutable compounds and treatment steps other than the exemplified ones may be used.

【0018】[0018]

【作用】本発明のコンデンサは上記構成により、導電性
高分子層が構造の整ったものとなり、酸化開始点のよう
な劣化の開始点となるものが少ない。導電性高分子を高
温下に長時間放置した際に起きる諸特性の劣化は、空気
中の酸素と導電性高分子が作用する酸化による劣化が支
配的であるので、劣化開始点の少ない本発明のコンデン
サの導電性高分子層は高温下に長時間放置しても、電気
伝導度、機械的強度、接着性等の諸特性の劣化は少な
い。その結果、本発明のコンデンサは、電極に導電性高
分子を用いるにもかかわらず、高温下でも諸特性の安定
性に優れたコンデンサとすることができる。
With the above structure, the capacitor of the present invention has a conductive polymer layer having a well-structured structure, and there are few starting points for deterioration such as oxidation starting points. The deterioration of various properties that occurs when the conductive polymer is left under high temperature for a long time is dominated by the deterioration caused by the oxidation of oxygen in the air and the conductive polymer, so that the present invention has a small starting point of deterioration. Even if the conductive polymer layer of the capacitor is left at high temperature for a long time, the electrical conductivity, mechanical strength, adhesiveness, and other characteristics are not significantly deteriorated. As a result, the capacitor of the present invention can be a capacitor having excellent stability of various characteristics even at high temperatures, even though the conductive polymer is used for the electrodes.

【0019】[0019]

【実施例】以下、本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0020】(実施例1)図1に本発明のコンデンサの
断面図を示す。
(Embodiment 1) FIG. 1 shows a sectional view of a capacitor of the present invention.

【0021】まず、陽極リードをつけた縦7mm×横10
mmのアルミニウムエッチド箔1に3%アジピン酸アンモ
ニウム水溶液を用い、約70℃、印加電圧70Vの条件
で陽極酸化を40分間行うことにより、エッチド箔表面
に誘電体皮膜2を形成した。ついで、硝酸マンガン30
%水溶液に浸漬し、自然乾燥させた後、300℃で30
分間加熱し熱分解処理を行い、誘電体皮膜にマンガン酸
化物層3からなる導電層を積層形成した。次に、このよ
うな導電層を設けたエッチド箔を、フェノール(0.1
5M)、ピロール(0.5M)、トリイソプロピルナフ
タレンスルホン酸ナトリウム(0.1M)および水から
なる電解重合液中に配置し、重合開始用電極を導電層に
近接させ、重合開始用電極に1.5Vの定電圧を50分
間印加して電解重合反応を行い、電解重合ポリピロール
層4を形成した。これを水洗し乾燥してから、電解重合
層4の上にカーボン層5と銀ペイント層6を順次設け、
本発明のコンデンサを得た。作製個数は10個である。
First, 7 mm in length and 10 in width with an anode lead attached.
A 3% ammonium adipate aqueous solution was used for the aluminum etched foil 1 having a thickness of 30 mm, and anodic oxidation was performed for 40 minutes under conditions of about 70 ° C. and an applied voltage of 70 V to form the dielectric film 2 on the surface of the etched foil. Then, manganese nitrate 30
% Aqueous solution and let it air dry, then 30 at 300 ℃
A heating treatment was performed by heating for a minute to form a conductive layer composed of the manganese oxide layer 3 on the dielectric film. Next, the etched foil provided with such a conductive layer is treated with phenol (0.1
5M), pyrrole (0.5M), sodium triisopropylnaphthalenesulfonate (0.1M) and water, and placed in an electropolymerization solution to bring the polymerization initiating electrode close to the conductive layer. A constant voltage of 0.5 V was applied for 50 minutes to carry out an electrolytic polymerization reaction to form an electrolytic polymerization polypyrrole layer 4. This is washed with water and dried, and then a carbon layer 5 and a silver paint layer 6 are sequentially provided on the electropolymerized layer 4,
A capacitor of the present invention was obtained. The number of manufactured pieces is 10.

【0022】得られたコンデンサを20Vで1時間エー
ジングをした後、初期の容量及び損失係数(120H
z)を測定した。その後、高温下(125℃)に100
0時間暴露した後に再度、容量及び損失係数(120H
z)を測定した。測定値の平均値を(表1)に示し、評
価した。
After aging the obtained capacitor for 1 hour at 20V, the initial capacity and loss coefficient (120H
z) was measured. After that, 100 at high temperature (125 ℃)
After exposure for 0 hours, capacity and loss factor (120H
z) was measured. The average value of the measured values is shown in (Table 1) and evaluated.

【0023】(比較例1)比較のために電解重合液にフ
ェノールを添加しない以外は上記と同じ条件で、比較用
のコンデンサを10個作製し同様な測定を行い評価し
た。測定値の平均値を比較例1として(表1)に示す。
両者を比べれば、本発明のコンデンサの方が、高温下の
安定性が遥かに優れていることがよくわかる。
(Comparative Example 1) For comparison, 10 capacitors for comparison were prepared under the same conditions as above except that phenol was not added to the electrolytic polymerization solution, and the same measurement was performed and evaluated. The average value of the measured values is shown in Table 1 as Comparative Example 1.
Comparing the two, it can be clearly seen that the capacitor of the present invention has far superior stability at high temperatures.

【0024】(実施例2)フェノールに代えてヒドロキ
ノンを電解重合液に添加する以外は実施例1と同様にし
て、本発明のコンデンサを10個作製した。得られたコ
ンデンサを20Vで1時間エージングをした後、初期の
容量及び損失係数(120Hz)を測定した。その後、
高温下(125℃)に1000時間暴露した後に再度、
容量及び損失係数(120Hz)を測定した。測定値の
平均値を(表1)に示す。
Example 2 Ten capacitors of the present invention were produced in the same manner as in Example 1 except that hydroquinone was added to the electrolytic polymerization liquid instead of phenol. After aging the obtained capacitor at 20 V for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. afterwards,
After exposing at high temperature (125 ° C) for 1000 hours,
The capacity and loss factor (120 Hz) were measured. The average value of the measured values is shown in (Table 1).

【0025】比較例1と比べれば、本発明によるコンデ
ンサの方が、高温下の安定性が遥かに優れていることが
よくわかる。
As compared with Comparative Example 1, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0026】(実施例3)フェノールに代えてナトリウ
ムフェノキシドを電解重合液に添加する以外は実施例1
と同様にして、本発明のコンデンサを10個作製した。
得られたコンデンサを20Vで1時間エージングをした
後、初期の容量及び損失係数(120Hz)を測定し
た。その後、高温下(125℃)に1000時間暴露し
た後に再度、容量及び損失係数(120Hz)を測定し
た。測定値の平均値を(表1)に示す。
Example 3 Example 1 was repeated except that sodium phenoxide was added to the electrolytic polymerization solution in place of phenol.
Ten capacitors of the present invention were produced in the same manner as in.
After aging the obtained capacitor at 20 V for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. After that, after being exposed to a high temperature (125 ° C.) for 1000 hours, the capacity and the loss coefficient (120 Hz) were measured again. The average value of the measured values is shown in (Table 1).

【0027】比較例1と比べれば、本発明によるコンデ
ンサの方が、高温下の安定性が遥かに優れていることが
よくわかる。
As compared with Comparative Example 1, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0028】(実施例4)フェノールに代えてpフルオ
ロフェノールを電解重合液に添加する以外は実施例1と
同様にして、本発明のコンデンサを10個作製した。得
られたコンデンサを20Vで1時間エージングをした
後、初期の容量及び損失係数(120Hz)を測定し
た。その後、高温下(125℃)に1000時間暴露し
た後に再度、容量及び損失係数(120Hz)を測定し
た。測定値の平均値を(表1)に示す。
Example 4 Ten capacitors of the present invention were produced in the same manner as in Example 1 except that p-fluorophenol was added to the electrolytic polymerization liquid instead of phenol. After aging the obtained capacitor at 20 V for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. After that, after being exposed to a high temperature (125 ° C.) for 1000 hours, the capacity and the loss coefficient (120 Hz) were measured again. The average value of the measured values is shown in (Table 1).

【0029】比較例1と比べれば、本発明によるコンデ
ンサの方が、高温下の安定性が遥かに優れていることが
よくわかる。
As compared with Comparative Example 1, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0030】(実施例5)フェノールに代えてαナフト
ールを電解重合液に添加する以外は実施例1と同様にし
て、本発明のコンデンサを10個作製した。得られたコ
ンデンサを20Vで1時間エージングをした後、初期の
容量及び損失係数(120Hz)を測定した。その後、
高温下(125℃)に1000時間暴露した後に再度、
容量及び損失係数(120Hz)を測定した。測定値の
平均値を(表1)に示す。
Example 5 Ten capacitors of the present invention were produced in the same manner as in Example 1 except that α-naphthol was added to the electrolytic polymerization liquid instead of phenol. After aging the obtained capacitor at 20 V for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. afterwards,
After exposing at high temperature (125 ° C) for 1000 hours,
The capacity and loss factor (120 Hz) were measured. The average value of the measured values is shown in (Table 1).

【0031】比較例1と比べれば、本発明によるコンデ
ンサの方が、高温下の安定性が遥かに優れていることが
よくわかる。
As compared with Comparative Example 1, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0032】(実施例6)トリイソプロピルナフタレン
スルホン酸ナトリウムに代えてn−ブチルリン酸エステ
ルを用いた以外は実施例1と同様にして、本発明のコン
デンサを10個作製した。得られたコンデンサを20V
で1時間エージングをした後、初期の容量及び損失係数
(120Hz)を測定した。その後、高温下(125
℃)に1000時間暴露した後に再度、容量及び損失係
数(120Hz)を測定した。測定値の平均値を(表
1)に示す。
Example 6 Ten capacitors of the present invention were produced in the same manner as in Example 1 except that n-butyl phosphate was used instead of sodium triisopropylnaphthalene sulfonate. The obtained capacitor is 20V
After aging for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. Then, under high temperature (125
After exposure to (° C.) for 1000 hours, the capacity and loss coefficient (120 Hz) were measured again. The average value of the measured values is shown in (Table 1).

【0033】(比較例2)比較のために電解重合液へフ
ェノールを添加しない以外は実施例6と同じ条件で、比
較用のコンデンサを10個作製し、同様な測定を行っ
た。測定値の平均値を比較例2として(表1)に示す。
両者を比べれば、この発明によるコンデンサの方が、高
温下の安定性が遥かに優れていることがよくわかる。
Comparative Example 2 For comparison, 10 capacitors for comparison were prepared under the same conditions as in Example 6 except that phenol was not added to the electrolytic polymerization solution, and the same measurement was performed. The average value of the measured values is shown in Table 1 as Comparative Example 2.
Comparing the two, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0034】(実施例7)ピロール(0.5M)、トリ
イソプロピルナフタレンスルホン酸ナトリウム(0.1
M)と水とからなる電解液に代えて、チオフェン(0.
5M)、テトラブチルアンモニウムパラトルエンスルホ
ネート(0.1M)とアセトニトリルとからなる電解液
を用いた以外は実施例1と同様にして、本発明のコンデ
ンサを10個作製した。得られたコンデンサを20Vで
1時間エージングをした後、初期の容量及び損失係数
(120Hz)を測定した。その後、高温下(125
℃)に1000時間暴露した後に再度、容量及び損失係
数(120Hz)を測定した。測定値の平均値を(表
1)に示す。
(Example 7) Pyrrole (0.5M), sodium triisopropylnaphthalenesulfonate (0.1M)
M) and water instead of the electrolyte solution, thiophene (0.
5 capacitors), 10 capacitors of the present invention were prepared in the same manner as in Example 1 except that an electrolytic solution containing tetrabutylammonium paratoluenesulfonate (0.1M) and acetonitrile was used. After aging the obtained capacitor at 20 V for 1 hour, the initial capacity and loss coefficient (120 Hz) were measured. Then, under high temperature (125
After exposure to (° C.) for 1000 hours, the capacity and loss coefficient (120 Hz) were measured again. The average value of the measured values is shown in (Table 1).

【0035】(比較例3)比較のために電解重合液へフ
ェノールを添加しない以外は実施例7と同じ条件でコン
デンサを10個作製し同様な測定を行った。測定値の平
均値を比較例3として(表1)に示す。両者を比べれ
ば、本発明によるコンデンサの方が、高温下の安定性が
遥かに優れていることがよくわかる。
Comparative Example 3 For comparison, 10 capacitors were prepared under the same conditions as in Example 7 except that phenol was not added to the electrolytic polymerization solution, and the same measurement was performed. The average value of the measured values is shown in Table 1 as Comparative Example 3. Comparing the two, it can be clearly seen that the capacitor according to the present invention has far superior stability at high temperatures.

【0036】なお、以上の実施例では弁金属を用いた固
体電解コンデンサに関してのみ示したが、本発明は電極
に用いる導電性高分子を改善したものであるので、導電
性高分子を電極に用いたコンデンサであればどのような
ものでもよいことは明らかである。
In the above embodiments, only the solid electrolytic capacitor using the valve metal is shown. However, since the present invention is an improvement of the conductive polymer used for the electrode, the conductive polymer is used for the electrode. Obviously, any capacitor can be used.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】以上に述べたように、本発明のコンデン
サの及びその製造方法では、フェノールまたはフェノキ
シドから選ばれる少なくとも1つのものと重合性モノマ
ーと支持電解質とを含有した電解液から電解重合法によ
り得られた導電性高分子を、誘電体皮膜上に積層形成し
電極として用いることにより、導電性高分子層を電極と
して用いているにもかかわらず、高温下でも優れた安定
性を有するコンデンサを実現することができる。
As described above, in the capacitor of the present invention and the method for producing the same, the electrolytic polymerization method is carried out from the electrolytic solution containing at least one selected from phenol or phenoxide, the polymerizable monomer and the supporting electrolyte. A capacitor having excellent stability even at high temperatures, even though the conductive polymer layer is used as an electrode, by using the conductive polymer obtained by Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるコンデンサの断面図FIG. 1 is a sectional view of a capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミニウムエッチド箔 2 誘電体皮膜 3 マンガン酸化物層 4 電解重合ポリピロール層 5 カーボン層 6 銀ペイント層 1 Aluminum Etched Foil 2 Dielectric film 3 Manganese oxide layer 4 Electropolymerized polypyrrole layer 5 carbon layer 6 silver paint layer

フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内Continued front page    (72) Inventor Shigenari Nanai             3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture             No. Matsushita Giken Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 誘電体皮膜上に導電性高分子が積層形成
されている電極を具備し、前記導電性高分子層が、フェ
ノールまたはフェノキシドから選ばれる少なくとも一つ
と重合性モノマーと支持電解質とからなることを特徴と
するコンデンサ。
1. An electrode comprising an electrically conductive polymer laminated on a dielectric film, wherein the electrically conductive polymer layer comprises at least one selected from phenol or phenoxide, a polymerizable monomer and a supporting electrolyte. A capacitor that is characterized by.
【請求項2】 フェノールまたはフェノキシドの有する
水素の少なくとも一つが、ハロゲンに置き換えられてい
る請求項1記載のコンデンサ。
2. The capacitor according to claim 1, wherein at least one of hydrogens contained in phenol or phenoxide is replaced with halogen.
【請求項3】 重合性モノマーが、ピロールまたはその
誘導体である請求項1記載のコンデンサ。
3. The capacitor according to claim 1, wherein the polymerizable monomer is pyrrole or a derivative thereof.
【請求項4】 支持電解質が、アルキル置換基を有する
ナフタレンスルホン酸塩もしくはアルキルリン酸エステ
ルである請求項1記載のコンデンサ。
4. The capacitor according to claim 1, wherein the supporting electrolyte is a naphthalene sulfonate having an alkyl substituent or an alkyl phosphate.
【請求項5】 導電性高分子層を電解重合法により形成
することを特徴とする請求項1記載のコンデンサの製造
方法。
5. The method for producing a capacitor according to claim 1, wherein the conductive polymer layer is formed by an electrolytic polymerization method.
JP16995491A 1991-07-10 1991-07-10 Capacitor and manufacturing method thereof Expired - Lifetime JP2730330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16995491A JP2730330B2 (en) 1991-07-10 1991-07-10 Capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16995491A JP2730330B2 (en) 1991-07-10 1991-07-10 Capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0521284A true JPH0521284A (en) 1993-01-29
JP2730330B2 JP2730330B2 (en) 1998-03-25

Family

ID=15895934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16995491A Expired - Lifetime JP2730330B2 (en) 1991-07-10 1991-07-10 Capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2730330B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267798A (en) * 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Manufacture of capacitor
US6493208B1 (en) * 1999-07-27 2002-12-10 Eikos, Inc. Triphenyl phosphine oxide polymer capacitors
WO2012144477A1 (en) * 2011-04-19 2012-10-26 イーメックス株式会社 Electrically conductive polymer containing phenol compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267798A (en) * 1993-03-12 1994-09-22 Matsushita Electric Ind Co Ltd Manufacture of capacitor
US6493208B1 (en) * 1999-07-27 2002-12-10 Eikos, Inc. Triphenyl phosphine oxide polymer capacitors
WO2012144477A1 (en) * 2011-04-19 2012-10-26 イーメックス株式会社 Electrically conductive polymer containing phenol compound
JP2012226962A (en) * 2011-04-19 2012-11-15 Eamex Co Conductive polymer containing phenol compound

Also Published As

Publication number Publication date
JP2730330B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5694287A (en) Solid electrolytic capacitor with conductive polymer as solid electrolyte and method of manufacturing the same
EP0803886A2 (en) Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative and method for making the same
JPH0736375B2 (en) Method for manufacturing solid electrolytic capacitor
EP0696037B1 (en) Solid electrolyte capacitor having conductive polymer compounds as solid electrolyte and method of manufacturing the same
JPH04112519A (en) Manufacture of solid electrolytic capacitor
JP2762779B2 (en) Capacitor and manufacturing method thereof
JPH0521284A (en) Capacitor and its manufacture
JP3223790B2 (en) Capacitor and manufacturing method thereof
JP3362600B2 (en) Manufacturing method of capacitor
JPH0521280A (en) Capacitor and its manufacture
JPH0727842B2 (en) Solid electrolytic capacitor
JPH1167602A (en) Capacitor and its manufacture
JP4075421B2 (en) Method for producing conductive composition and capacitor
JP2730329B2 (en) Capacitor and manufacturing method thereof
JP3551118B2 (en) Capacitor and manufacturing method thereof
JP2982543B2 (en) Manufacturing method of capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JP3213700B2 (en) Manufacturing method of capacitor
JP3067284B2 (en) Capacitor and manufacturing method thereof
JP2762819B2 (en) Method for manufacturing solid electrolytic capacitor
JP2776113B2 (en) Manufacturing method of capacitor
JP2785565B2 (en) Manufacturing method of capacitor
JP2783038B2 (en) Capacitor
JP2906473B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11297570A (en) Manufacture of capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111219

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20111219