JPH05211221A - Measuring method of quantity of charge-up in manufacturing process of semiconductor device - Google Patents
Measuring method of quantity of charge-up in manufacturing process of semiconductor deviceInfo
- Publication number
- JPH05211221A JPH05211221A JP31875791A JP31875791A JPH05211221A JP H05211221 A JPH05211221 A JP H05211221A JP 31875791 A JP31875791 A JP 31875791A JP 31875791 A JP31875791 A JP 31875791A JP H05211221 A JPH05211221 A JP H05211221A
- Authority
- JP
- Japan
- Prior art keywords
- charge
- oxide film
- mos capacitor
- gate oxide
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置の製造工程に
おけるチャージアップ量の測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a charge-up amount in a semiconductor device manufacturing process.
【0002】[0002]
【従来の技術】従来の半導体装置のチャージアップ量の
測定方法の第1の例として、図7に示すように、シリコ
ン基板1の上に設けたフィールド酸化膜2により区画さ
れた素子形成領域の表面に設けた薄いゲート酸化膜3及
びゲート電極4からなるMOSキャパシタが形成された
シリコン基板1が荷電粒子を用いる工程を経た後に、シ
リコン基板1上のMOSキャパシタのゲート酸化膜3が
破壊されたかどうかを調べることによってチャージアッ
プ量を測定する方法がある。2. Description of the Related Art As a first example of a conventional method for measuring a charge-up amount of a semiconductor device, as shown in FIG. 7, an element formation region partitioned by a field oxide film 2 provided on a silicon substrate 1 is formed. Whether the gate oxide film 3 of the MOS capacitor on the silicon substrate 1 has been destroyed after the silicon substrate 1 on which the MOS capacitor composed of the thin gate oxide film 3 and the gate electrode 4 formed on the surface has undergone the process of using charged particles There is a method of measuring the amount of charge-up by checking whether or not it is.
【0003】又、第2の例として荷電粒子を用いる工程
の前後におけるMNOS(metal nitride
oxide silicon)構造のキャパシタでの
荷電粒子の蓄積量に応じた電気的な変化量を測定してチ
ャージアップ量を測定する方法もある(月刊Semic
onductor World 1987年,11月,
31〜37頁参照)。図8に示すように、荷電粒子を用
いる工程を経ることによってゲート電極4に正のチャー
ジアップが生じ、ゲート電極4がN型のシリコン基板1
に対して正の電位にある場合には、チャージアップの電
界によってトンネル効果でシリコン基板中の電子が厚さ
2nmの薄いゲート酸化膜3に注入されゲート酸化膜3
と窒化シリコン膜12の界面にトラップされる。このた
め、MNOS構造のキャパシタのC−V特性は、荷電粒
子を用いる工程を経る前に比べて正にシフトする。従っ
て、このMNOS構造のキャパシタのフラットバンド電
圧のシフト量を調べることによってチャージアップ量を
測定することが出来る。As a second example, MNOS (metal nitride) before and after the step of using charged particles.
There is also a method of measuring the amount of charge-up by measuring the amount of electrical change according to the amount of accumulated charged particles in a capacitor having an oxide silicon structure (Monthly Semi
director World 1987, November,
31-37). As shown in FIG. 8, the gate electrode 4 is positively charged up through the process of using charged particles, and the gate electrode 4 is an N-type silicon substrate 1.
In contrast, when the potential is positive with respect to the gate oxide film 3, electrons in the silicon substrate are injected into the thin gate oxide film 3 having a thickness of 2 nm by the tunnel effect due to the electric field of charge-up.
And the silicon nitride film 12 are trapped at the interface. Therefore, the CV characteristic of the capacitor having the MNOS structure shifts more positively than that before the step of using the charged particles. Therefore, the charge-up amount can be measured by examining the shift amount of the flat band voltage of the capacitor having the MNOS structure.
【0004】又、第3の例として、荷電粒子の蓄積量に
応じた電気的な変化量を測定してチャージアップ量を測
定する方法があり、図9に示すような電気的に書き込み
可能なフローティングゲートを有する不揮発性記憶素子
を用いる方法もある(特開平1−69025号公報参
照)。荷電粒子を用いる工程を経る事によってコントロ
ールゲート13に正のチャージアップが生じ、コントロ
ールゲート13がドレイン領域14に対して正の電位に
ある場合、チャージアップによる電界がトンネル酸化膜
15に加わり、ドレイン領域14からフローティングゲ
ート16に電子が注入される。このため不揮発性記憶素
子におけるNチャネルMOSトランジスタ17のしきい
値電圧は荷電粒子を用いる構造を経る前に比べて正にシ
フトする。従って、この不揮発性記憶素子におけるNチ
ャンネルMOSトランジスタ17のしきい値電圧のシフ
ト量を調べることによってチャージアップ量を測定する
ことが出来る。As a third example, there is a method of measuring the amount of charge up by measuring the amount of electrical change in accordance with the amount of accumulated charged particles, which is electrically writable as shown in FIG. There is also a method of using a nonvolatile memory element having a floating gate (see Japanese Patent Laid-Open No. 1-69025). When the control gate 13 is positively charged up due to the process of using charged particles and the control gate 13 has a positive potential with respect to the drain region 14, an electric field due to the charge-up is applied to the tunnel oxide film 15, Electrons are injected from the region 14 into the floating gate 16. Therefore, the threshold voltage of the N-channel MOS transistor 17 in the non-volatile memory element shifts more positively than that before the structure using charged particles. Therefore, the charge-up amount can be measured by examining the shift amount of the threshold voltage of the N-channel MOS transistor 17 in this nonvolatile memory element.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述し
た従来のチャージアップ量の測定方法は、第1のMOS
キャパシタのゲート酸化膜の絶縁破壊を調べる方法で
は、ゲート酸化膜が破壊されたか否かの2値判定である
ためチャージアップ量を定量化することが難しい。However, the above-mentioned conventional method of measuring the charge-up amount is the same as that of the first MOS.
In the method of examining the dielectric breakdown of the gate oxide film of the capacitor, it is difficult to quantify the charge-up amount because it is a binary judgment as to whether or not the gate oxide film has been destroyed.
【0006】また、第2のMNOS構造のキャパシタに
おけるフラットバンド電圧のシフト量を調べる方法で
は、チャージアップ量が増加し、トンネル酸化膜にある
値以上の電圧が加わると、トンネル酸化膜が破壊されて
しまい、チャージアップ量を測定することが出来なくな
ってしまう。つまり、チャージアップ量の多い、例えば
イオン打ち込み工程などでは使えないという問題があっ
た。Further, in the method of examining the shift amount of the flat band voltage in the capacitor having the second MNOS structure, the tunnel oxide film is destroyed when the charge-up amount increases and a voltage higher than a certain value is applied to the tunnel oxide film. It becomes impossible to measure the charge-up amount. In other words, there is a problem that the charge-up amount is large, such that it cannot be used in, for example, an ion implantation process.
【0007】また、第3の不揮発性記憶素子におけるN
チャネルMOSトランジスタのしきい値電圧のシフト量
を調べる方法では、コントロールゲート電圧としきい値
電圧が図10に示すような関係にあるので、チャージア
ップ量が少なくコントロールゲート電圧がある一定値以
上にならない場合には、MOSトランジスタのしきい値
電圧が変化せず、チャージアップ量を測定することが出
来ないという問題点があった。Further, N in the third nonvolatile memory element
In the method of examining the shift amount of the threshold voltage of the channel MOS transistor, since the control gate voltage and the threshold voltage have the relationship shown in FIG. 10, the charge-up amount is small and the control gate voltage does not exceed a certain value. In this case, there is a problem that the threshold voltage of the MOS transistor does not change and the charge-up amount cannot be measured.
【0008】[0008]
【課題を解決するための手段】本発明の半導体装置の製
造工程におけるチャージアップ量測定方法は、濃度の異
なる不純物が添加された酸化シリコンからなるゲート酸
化膜を有するMOSキャパシタが複数個形成されたシリ
コン基板を、荷電粒子を用いる半導体装置の製造プロセ
スを施した後、前記MOSキャパシタの絶縁破壊状態を
調べ、絶縁破壊された最も不純物濃度が低いMOSキャ
パシタの酸化膜中の不純物濃度からチャージアップ量を
測定する手段を含んで構成される。According to a charge-up amount measuring method in a manufacturing process of a semiconductor device of the present invention, a plurality of MOS capacitors having a gate oxide film made of silicon oxide to which impurities having different concentrations are added are formed. After subjecting a silicon substrate to a manufacturing process of a semiconductor device using charged particles, the dielectric breakdown state of the MOS capacitor is examined, and the charge-up amount is calculated from the impurity concentration in the oxide film of the MOS capacitor having the lowest impurity concentration subjected to dielectric breakdown. It is comprised including the means to measure.
【0009】[0009]
【作用】本発明者は、MOSキャパシタの酸化シリコン
からなるゲート酸化膜中に任意に添加された不純物の濃
度により.MOSキャパシタの耐圧強度が変化すること
を見出した。図11はMOSキャパシタのI−V特性を
示す図であり、ゲート酸化膜中にそれぞれA:5×10
19cm-3,B:3×1019cm-3,C:1×1019cm
-3のヒ素を添加したMOSキャパシタのI−V特性曲線
を示す。これは、20nmの厚さの酸化シリコンからな
るゲート酸化膜を有し、リンが添加された多結晶シリコ
ン膜を電極とするMOSキャパシタについて調査したも
のである。図から明らかなようにゲート酸化膜中の不純
物濃度が高いほど、低電圧で絶縁破壊が生じていること
が判る。The inventors of the present invention depend on the concentration of impurities arbitrarily added to the gate oxide film made of silicon oxide of the MOS capacitor. It has been found that the withstand voltage strength of the MOS capacitor changes. FIG. 11 is a diagram showing the IV characteristic of the MOS capacitor, in which A: 5 × 10 is included in the gate oxide film.
19 cm -3 , B: 3 x 10 19 cm -3 , C: 1 x 10 19 cm
3 shows an IV characteristic curve of a MOS capacitor to which -3 arsenic was added. This is an investigation of a MOS capacitor having a gate oxide film made of silicon oxide with a thickness of 20 nm and using a polycrystalline silicon film to which phosphorus is added as an electrode. As is clear from the figure, the higher the impurity concentration in the gate oxide film, the lower the voltage at which dielectric breakdown occurs.
【0010】[0010]
【実施例】次に、本発明について図面を参照して説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
【0011】図1は本発明の第1の実施例を説明するた
めの半導体チップの断面図である。これは、N型シリコ
ン基板1上に形成した酸化シリコンからなるフィールド
酸化膜2とゲート酸化膜3を有し、リンを添加した多結
晶シリコン膜をゲート電極4とするMOSキャパシタ
で、MOSキャパシタA5,MOSキャパシタB6,M
OSキャパシタC7,MOSキャパシタD8,MOSキ
ャパシタE9のゲート酸化膜にそれぞれ1×1019cm
-3,2×1019cm-3,3×1019cm-3,4×1019
cm-3,5×1019cm-3のヒ素を添加したものであ
る。このキャパシタを用いて半導体装置の製造プロセス
の1つであるイオン注入におけるチャージアップのドー
ズ量依存性について調査した結果を図2に示す。この時
の注入イオンはヒ素イオンを、加速エネルギーが70k
eV,ビーム電流が4mAであり、ドーズ量は5×10
14cm-2〜1×1016cm-2まで変化させた。図2に示
すように、ドーズ量を増加させるに伴って、つまり、チ
ャージアップ量を増加させるに従ってゲート酸化膜中の
ヒ素濃度の低いMOSキャパシタが絶縁破壊されている
ことが判る。FIG. 1 is a sectional view of a semiconductor chip for explaining a first embodiment of the present invention. This is a MOS capacitor having a field oxide film 2 made of silicon oxide and a gate oxide film 3 formed on an N-type silicon substrate 1 and using a polycrystalline silicon film to which phosphorus is added as a gate electrode 4, and a MOS capacitor A5. , MOS capacitors B6, M
The gate oxide films of the OS capacitor C7, the MOS capacitor D8, and the MOS capacitor E9 are each 1 × 10 19 cm.
-3 , 2 x 10 19 cm -3 , 3 x 10 19 cm -3 , 4 x 10 19
cm −3 , 5 × 10 19 cm −3 arsenic was added. FIG. 2 shows the results of an investigation on the dose-dependence of charge-up in ion implantation, which is one of the semiconductor device manufacturing processes, using this capacitor. The implanted ions at this time are arsenic ions and the acceleration energy is 70 k.
eV, beam current 4 mA, dose 5 × 10
It was changed from 14 cm −2 to 1 × 10 16 cm −2 . As shown in FIG. 2, it can be seen that the MOS capacitor having a low arsenic concentration in the gate oxide film is dielectrically broken down as the dose amount is increased, that is, as the charge-up amount is increased.
【0012】ところで、従来のMNOS構造のMOSキ
ャパシタを用いる方法で同様の評価を行ったところ、1
×1015cm-2以上のドーズ量でトンネル酸化膜が破壊
されてしまい、チャージアップ量が測定不可能であっ
た。又、従来のMOSキャパシタを用いる方法で同様の
評価を行った場合には、5×1015cm-2以上のドーズ
量でゲート酸化膜が破壊され、5×1015cm-2未満の
ドーズ量で生じるチャージアップと、5×1015cm-2
以上のドーズ量で生じるチャージアップの違いを区別す
る事は出来たが、それ以上詳しくチャージアップ評価を
行うことは出来なかった。By the way, when the same evaluation was performed by the method using the conventional MNOS structure MOS capacitor, 1
The tunnel oxide film was destroyed at a dose amount of × 10 15 cm -2 or more, and the charge-up amount could not be measured. Further, when the same evaluation was carried out by a method using a conventional MOS capacitor, 5 × 10 15 cm - gate oxide film is destroyed by 2 or more dose, a dose of less than 5 × 10 15 cm -2 Charge up caused by 5 × 10 15 cm -2
It was possible to distinguish the difference in charge-up that occurs with the above dose amount, but it was not possible to perform more detailed charge-up evaluation.
【0013】図3及び図4は本発明の第2の実施例を説
明するための半導体チップの平面図及びA−A′線断面
図である。3 and 4 are a plan view and a sectional view taken along the line AA 'of a semiconductor chip for explaining a second embodiment of the present invention.
【0014】図3及び図4に示すように、ゲート面積に
比べて数桁大きい面積の電極10をゲート電極4に接続
させてある。従って、電極のチャージアップにより生じ
る電界は、第1の実施例の場合に比べて大きいため、チ
ャージアップに対する感度を高くすることができる。こ
の第2の実施例によって半導体装置製造工程の一つであ
るプラズマ処理を行った際のチャージアップとプラズマ
処理時間の関係を調査した結果を図5に示す。また、従
来の不揮発性記憶素子を用いる方法で同様の調査を行っ
た結果を図6に示す。図5と図6から従来例では観測で
きないような僅かなチャージアップ量でも第2の実施例
では観測出来ることが判る。As shown in FIGS. 3 and 4, an electrode 10 having an area several orders of magnitude larger than the gate area is connected to the gate electrode 4. Therefore, since the electric field generated by the charge-up of the electrodes is larger than that in the case of the first embodiment, the sensitivity to the charge-up can be increased. FIG. 5 shows the result of investigation on the relationship between the charge-up and the plasma processing time when the plasma processing, which is one of the semiconductor device manufacturing processes, is performed according to the second embodiment. Further, FIG. 6 shows the results of the same investigation conducted by the method using the conventional nonvolatile memory element. It can be seen from FIGS. 5 and 6 that a small amount of charge-up that cannot be observed in the conventional example can be observed in the second embodiment.
【0015】なお、本発明に用いるMOSキャパシタの
ゲート酸化膜中に不純物を添加する方法としては、ゲー
ト酸化膜を形成後にイオン注入を行い、その後窒素雰囲
気中で熱処理を行う方法や、ゲート酸化膜を形成後にゲ
ート酸化膜に不純物を熱拡散する方法など、ゲート酸化
膜に一様に不純物を添加する方法であればよい。As a method of adding impurities to the gate oxide film of the MOS capacitor used in the present invention, a method of performing ion implantation after forming the gate oxide film and then performing a heat treatment in a nitrogen atmosphere, or a gate oxide film A method of uniformly adding impurities to the gate oxide film, such as a method of thermally diffusing the impurities into the gate oxide film after the formation of Al.
【0016】[0016]
【発明の効果】以上説明したように本発明のチャージア
ップ量測定方法では、様々な濃度の不純物をあらかじめ
酸化シリコンからなるゲート酸化膜に添加したMOSキ
ャパシタを用いており、このMOSキャパシタの耐圧
は、ゲート酸化膜中に添加された不純物濃度に依存して
いるため、チャージアップによってどのような不純物濃
度を有するゲート酸化膜が絶縁破壊されたかを調べるこ
とによってチャージアップ量を測定することができる。As described above, in the charge-up amount measuring method of the present invention, a MOS capacitor in which impurities of various concentrations are added in advance to a gate oxide film made of silicon oxide is used. Since it depends on the impurity concentration added to the gate oxide film, the charge-up amount can be measured by investigating what kind of impurity concentration the gate oxide film has caused by the dielectric breakdown.
【図1】本発明の第1の実施例を説明するための半導体
チップの断面図。FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment of the present invention.
【図2】第1の実施例によるイオン注入におけるチャー
ジアップのドーズ量依存性について調査した結果を示す
図。FIG. 2 is a diagram showing a result of investigation on dose dependency of charge-up in ion implantation according to the first embodiment.
【図3】本発明の第2の実施例を説明するための半導体
チップの平面図。FIG. 3 is a plan view of a semiconductor chip for explaining a second embodiment of the present invention.
【図4】図3のA−A′線断面図。FIG. 4 is a sectional view taken along the line AA ′ of FIG.
【図5】本発明の第2の実施例によるプラズマ処理を行
った際のチャージアップとプラズマ処理時間との関係を
調査した結果を示す図。FIG. 5 is a diagram showing a result of investigating a relationship between charge-up and plasma processing time when performing plasma processing according to the second embodiment of the present invention.
【図6】本発明の第2の実施例と対比するための従来の
不揮発性記憶素子を用いてプラズマ処理を行った際のチ
ャージアップとプラズマ処理時間の関係を示す図。FIG. 6 is a diagram showing the relationship between charge-up and plasma processing time when plasma processing is performed using a conventional nonvolatile memory element for comparison with the second embodiment of the present invention.
【図7】従来の半導体装置の製造工程におけるチャージ
アップ量測定方法の第1の例を説明するための半導体チ
ップの断面図。FIG. 7 is a cross-sectional view of a semiconductor chip for explaining a first example of a charge-up amount measuring method in a conventional semiconductor device manufacturing process.
【図8】従来の半導体装置の製造工程におけるチャージ
アップ量測定方法の第2の例を説明するための半導体チ
ップの断面図。FIG. 8 is a cross-sectional view of a semiconductor chip for explaining a second example of the charge-up amount measuring method in the conventional semiconductor device manufacturing process.
【図9】従来の半導体装置の製造工程におけるチャージ
アップ量測定方法の第3の例を説明するための半導体チ
ップの断面図。FIG. 9 is a sectional view of a semiconductor chip for explaining a third example of the charge-up amount measuring method in the conventional manufacturing process of the semiconductor device.
【図10】不揮発性記憶素子のコントロールゲートとし
きい値電圧のシフト量との関係を示す図。FIG. 10 is a diagram showing a relationship between a control gate of a nonvolatile memory element and a shift amount of a threshold voltage.
【図11】ゲート酸化膜中に任意に不純物を添加したM
OSキャパシタのI−V特性を示す図。FIG. 11: M in which impurities are arbitrarily added to the gate oxide film
The figure which shows the IV characteristic of an OS capacitor.
1 N型シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4 ゲート電極 5 MOSキャパシタA 6 MOSキャパシタB 7 MOSキャパシタC 8 MOSキャパシタD 9 MOSキャパシタE 10 電極 11 層間絶縁膜 12 窒化シリコン膜 13 コントロールゲート 14 ドレイン領域 15 トンネル酸化膜 16 フローティングゲート 17 Nチャネルトランジスタ 18 P型シリコン基板 19 ソース領域 20 配線 1 N-type silicon substrate 2 field oxide film 3 gate oxide film 4 gate electrode 5 MOS capacitor A 6 MOS capacitor B 7 MOS capacitor C 8 MOS capacitor D 9 MOS capacitor E 10 electrode 11 interlayer insulating film 12 silicon nitride film 13 control gate 14 Drain region 15 Tunnel oxide film 16 Floating gate 17 N-channel transistor 18 P-type silicon substrate 19 Source region 20 Wiring
Claims (1)
リコンからなるゲート酸化膜を有するMOSキャパシタ
が複数個形成されたシリコン基板に荷電粒子を用いる半
導体装置の製造プロセスを施した後、前記MOSキャパ
シタの絶縁破壊状態を調べ、絶縁破壊された最も不純物
濃度が低いMOSキャパシタの酸化膜中の不純物濃度か
らチャージアップ量を測定することを特徴とする半導体
装置の製造工程におけるチャージアップ量測定方法。1. A semiconductor device manufacturing process using charged particles on a silicon substrate having a plurality of MOS capacitors each having a gate oxide film made of silicon oxide doped with impurities having different concentrations, and then the MOS capacitors. And measuring the charge-up amount from the impurity concentration in the oxide film of the MOS capacitor having the lowest impurity concentration that has undergone the dielectric breakdown, and measuring the charge-up amount in the manufacturing process of the semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31875791A JPH05211221A (en) | 1991-12-03 | 1991-12-03 | Measuring method of quantity of charge-up in manufacturing process of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31875791A JPH05211221A (en) | 1991-12-03 | 1991-12-03 | Measuring method of quantity of charge-up in manufacturing process of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05211221A true JPH05211221A (en) | 1993-08-20 |
Family
ID=18102603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31875791A Withdrawn JPH05211221A (en) | 1991-12-03 | 1991-12-03 | Measuring method of quantity of charge-up in manufacturing process of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05211221A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000055900A1 (en) * | 1999-03-17 | 2000-09-21 | Hitachi, Ltd. | Ion current density measuring method and instrument, and semiconductor device manufacturing method |
KR100450979B1 (en) * | 2002-05-02 | 2004-10-02 | 강대환 | Method for fabricating plasma diagnostic wafer |
US6812542B2 (en) * | 2000-06-28 | 2004-11-02 | Kabushiki Kaisha Toshiba | Electric fuse whose dielectric breakdown resistance is controlled by injecting impurities into an insulating film of a capacitor structure, and a method for manufacturing the same |
-
1991
- 1991-12-03 JP JP31875791A patent/JPH05211221A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000055900A1 (en) * | 1999-03-17 | 2000-09-21 | Hitachi, Ltd. | Ion current density measuring method and instrument, and semiconductor device manufacturing method |
EP1170789A1 (en) * | 1999-03-17 | 2002-01-09 | Hitachi, Ltd. | Ion current density measuring method and instrument, and semiconductor device manufacturing method |
EP1170789A4 (en) * | 1999-03-17 | 2007-08-15 | Hitachi Ltd | METHOD AND APPARATUS FOR MEASURING THE DENSITY OF AN IONIC CURRENT AND METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE |
US6812542B2 (en) * | 2000-06-28 | 2004-11-02 | Kabushiki Kaisha Toshiba | Electric fuse whose dielectric breakdown resistance is controlled by injecting impurities into an insulating film of a capacitor structure, and a method for manufacturing the same |
KR100450979B1 (en) * | 2002-05-02 | 2004-10-02 | 강대환 | Method for fabricating plasma diagnostic wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3793090A (en) | Method for stabilizing fet devices having silicon gates and composite nitride-oxide gate dielectrics | |
US4649629A (en) | Method of late programming a read only memory | |
US9299622B2 (en) | On-chip plasma charging sensor | |
US6274439B1 (en) | Process for fabricating semiconductor device with field effect transistor changeable in threshold voltage with hydrogen ion after formation of wirings | |
US7208360B2 (en) | Semiconductor device and method of manufacturing the same | |
US4364779A (en) | Fabrication of semiconductor devices including double annealing steps for radiation hardening | |
Kim et al. | Dependence of grain size on the performance of a polysilicon channel TFT for 3D NAND Flash memory | |
EP0010942A1 (en) | A method of ion implantation into a semiconductor substrate provided with an insulating film | |
Aitken | Radiation-induced trapping centers in thin silicon dioxide films | |
JPH033388B2 (en) | ||
JP2003218225A (en) | Charge detector semiconductor element, system comprising the same and reference semiconductor element, wafer, use thereof, and method for qualitative and quantitative measurement of charging thereof | |
US20030080389A1 (en) | Semiconductor device having a dielectric layer with a uniform nitrogen profile | |
JPH05211221A (en) | Measuring method of quantity of charge-up in manufacturing process of semiconductor device | |
US6313504B1 (en) | Vertical MOS semiconductor device | |
US5888836A (en) | Process for the repair of floating-gate non-volatile memories damaged by plasma treatment | |
JPH0388370A (en) | Manufacture of semiconductor memory device | |
JPH09260613A (en) | Film quality evaluation method of tunnel insulating film | |
JP4479344B2 (en) | Method for evaluating gate oxide film of SOI substrate | |
JPH04278559A (en) | Charge up amount measurement method in manufacturing step of semiconductor device | |
JP4443230B2 (en) | Detection structure, charge carrier detection method and use of ONO field effect transistor to detect charge | |
JP3134855B2 (en) | Semiconductor device for evaluating tunnel insulating film and evaluation method | |
JPH0590374A (en) | Measurement method of charge-up rate in semiconductor device manufacturing process | |
JP2994130B2 (en) | Element for evaluating characteristics of nonvolatile memory | |
KR0183994B1 (en) | Test pattern for degradation measuring of gate insulation film | |
Strzałkowski et al. | Electric field dependence of the capture cross section of ion-implantation-induced traps in SiO2 layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990311 |