[go: up one dir, main page]

JPH05206051A - Ion implantation monitor method - Google Patents

Ion implantation monitor method

Info

Publication number
JPH05206051A
JPH05206051A JP1425192A JP1425192A JPH05206051A JP H05206051 A JPH05206051 A JP H05206051A JP 1425192 A JP1425192 A JP 1425192A JP 1425192 A JP1425192 A JP 1425192A JP H05206051 A JPH05206051 A JP H05206051A
Authority
JP
Japan
Prior art keywords
ion implantation
ions
thin film
implanted
acceleration energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1425192A
Other languages
Japanese (ja)
Inventor
Yoshito Ichinose
義人 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP1425192A priority Critical patent/JPH05206051A/en
Publication of JPH05206051A publication Critical patent/JPH05206051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To exactly judge the fluctuation of acceleration energy of ions at ion implantation by a simple method. CONSTITUTION:In an ion implantation method which judges the acceleration energy of ions by forming a monitor area in the optional position on a silicon wafer 10, and forming a film 12 in the monitor area 11, and then, implanting ions through the film 12, and measuring the quantity of implanted ions, the film 12 is made by changing its thickness in step and then ions are implanted into the monitor area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイオン注入技術に関する
ものである。
FIELD OF THE INVENTION The present invention relates to an ion implantation technique.

【0002】[0002]

【従来の技術】従来、半導体基板へのイオン注入は、半
導体基板上に形成した均一な厚さの薄膜(二酸化シリコ
ン、窒化シリコン、酸化アルミニウム等)を介して行っ
ている。
2. Description of the Related Art Conventionally, ion implantation into a semiconductor substrate is performed through a thin film (silicon dioxide, silicon nitride, aluminum oxide, etc.) having a uniform thickness formed on the semiconductor substrate.

【0003】そして、アニール後に薄膜を除去して四探
針法等によって抵抗率ρを測定するか、または、MOS
(Metal on SiO2 )等を形成することによ
りイオン注入量をモニターしている。
Then, after annealing, the thin film is removed and the resistivity ρ is measured by a four-point probe method or the like, or
The amount of ion implantation is monitored by forming (Metal on SiO 2 ).

【0004】[0004]

【発明が解決しようとする課題】ところが、イオン注入
装置のエクストラクション(Extraction)部
や加速部における不要放電や、オペレータの設定ミス等
により、イオンの加速エネルギーの変動(具体的には加
速電圧の変動)が生じることがある。
However, variations in the acceleration energy of the ions (specifically, the acceleration voltage Fluctuation) may occur.

【0005】その場合、薄膜の厚さが均一なために、加
速エネルギーの微小変動によるイオン注入量のばらつき
を的確にモニターすることができなかった。そのため、
イオン注入量をモニターした時点では規格内に収まって
いるとされたシリコンウエーハが、製造の最終工程にお
いて規格外れであることが判明し、イオン注入量モニタ
ー後の工程が全て無駄となることが多かった。
In this case, since the thickness of the thin film is uniform, it is not possible to accurately monitor the variation of the ion implantation amount due to the minute fluctuation of the acceleration energy. for that reason,
A silicon wafer that was said to be within the standard at the time of monitoring the ion implantation amount was found to be out of specification in the final process of manufacturing, and all the steps after the ion implantation amount monitoring were often wasted. It was

【0006】本発明は上記問題点を解決するためになさ
れたものであって、簡単な方法によってイオン注入にお
けるイオンの加速エネルギーの変動を的確に判定するこ
とができるモニター方法を提供することにある。
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a monitoring method capable of accurately determining fluctuations in ion acceleration energy during ion implantation by a simple method. ..

【0007】[0007]

【課題を解決するための手段】半導体基板上の任意な位
置にモニター領域を形成し、そのモニター領域に薄膜を
形成した後、その薄膜を介してイオンを注入し、イオン
注入量を測定してイオンの加速エネルギーを判定するイ
オン注入モニター方法において、前記薄膜の厚さを階段
状に変化させて形成した後、モニター領域にイオンを注
入するようにした。
A monitor region is formed at an arbitrary position on a semiconductor substrate, a thin film is formed in the monitor region, ions are implanted through the thin film, and the ion implantation amount is measured. In the ion implantation monitoring method for determining the acceleration energy of ions, the thickness of the thin film is changed stepwise, and then the ions are implanted into the monitor region.

【0008】[0008]

【作用】従って、本発明によれば、複数の厚さの薄膜に
おいて実際のイオン注入量を測定できるため、単一の厚
さの薄膜においてイオン注入量を測定するよりも加速エ
ネルギーの変動を的確に判定することができる。
Therefore, according to the present invention, since the actual ion implantation amount can be measured in thin films having a plurality of thicknesses, fluctuations in acceleration energy are more accurate than in measuring the ion implantation amount in a thin film having a single thickness. Can be determined.

【0009】[0009]

【実施例】以下、本発明を具体化した一実施例を図1,
図2に従って説明する。図1はシリコンウエハ10にお
けるイオン注入モニター領域11の断面図である。イオ
ン注入モニター領域11においては、シリコンウエハ1
0上に形成した薄膜12の厚さを階段状に変化させてい
る。すなわち、薄膜12の厚さが均一な4つの領域A〜
Dを形成する。尚、薄膜12の厚さを階段状に変化させ
て形成する方法は公知のエッチング法による。また、各
領域A〜Dにおける薄膜12の厚さは、シリコンウエハ
10に所要量のイオンが注入されるように、注入するイ
オン種および加速エネルギーに応じて適宜に選択してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention is shown in FIG.
It will be described with reference to FIG. FIG. 1 is a sectional view of an ion implantation monitor region 11 in a silicon wafer 10. In the ion implantation monitor area 11, the silicon wafer 1
The thickness of the thin film 12 formed on the surface is changed stepwise. That is, the four regions A to
Form D. A known etching method is used to form the thin film 12 by changing its thickness stepwise. Further, the thickness of the thin film 12 in each of the regions A to D is appropriately selected according to the ion species to be implanted and the acceleration energy so that a required amount of ions are implanted into the silicon wafer 10.

【0010】図2はシリコンウエハ10の平面図であ
る。イオン注入モニター領域11はシリコンウエハ10
の外周部(本実施例では5mm)を除く内部の任意な位
置に形成される。その大きさは充分な測定精度を得られ
る程度とする(本実施例では20×20mm)。
FIG. 2 is a plan view of the silicon wafer 10. The ion implantation monitor area 11 is a silicon wafer 10.
Is formed at an arbitrary position inside the outer peripheral portion (5 mm in this embodiment). The size is set so that sufficient measurement accuracy can be obtained (20 × 20 mm in this embodiment).

【0011】このように形成したイオン注入モニター領
域11に対してイオン注入を行い、各領域A〜Dのイオ
ン注入量を測定する。すなわち、半導体製造プロセスに
おいて、所定の電圧でイオンを加速しイオン注入を行
う。その時、イオン注入モニター領域11にも同様にイ
オン注入を行う。ここで、各領域A〜Dにおいて、薄膜
12を介してシリコンウエハ10に注入されたイオンの
量は、エネルギーをパラメータにとった実測データと、
四探針法等で測定した抵抗率ρと、薄膜12の膜厚とに
より容易に求めることができる。そこで、各領域A〜D
について、理論的に求めたイオン注入量と実際のイオン
注入量とを比較することにより、加速電圧の変動つまり
加速エネルギーの変動を求めることができる。
Ion implantation is performed on the ion implantation monitor region 11 thus formed, and the amount of ion implantation in each of the regions A to D is measured. That is, in the semiconductor manufacturing process, ions are accelerated at a predetermined voltage to perform ion implantation. At that time, ion implantation is similarly performed in the ion implantation monitor region 11. Here, in each of the regions A to D, the amount of ions implanted into the silicon wafer 10 via the thin film 12 is measured data using energy as a parameter,
It can be easily obtained from the resistivity ρ measured by the four-point probe method and the film thickness of the thin film 12. Therefore, each area A to D
With respect to, by comparing the theoretically obtained ion implantation amount with the actual ion implantation amount, the fluctuation of the acceleration voltage, that is, the fluctuation of the acceleration energy can be calculated.

【0012】このように本実施例においては、各領域A
〜Dのイオン注入量を測定することにより、4種類の厚
さの異なる薄膜12において実際のイオン注入量を測定
することになるため、単一の厚さの薄膜においてイオン
注入量を測定する従来例よりも加速エネルギーの変動を
的確に判定することができる。
As described above, in this embodiment, each area A
Since the actual ion implantation amounts are measured in the four types of thin films 12 having different thicknesses by measuring the ion implantation amounts of D to D, the conventional method for measuring the ion implantation amount in a thin film having a single thickness is conventionally used. The fluctuation of the acceleration energy can be determined more accurately than in the example.

【0013】尚、図1では薄膜12の厚さを4段階に変
化させているが、4段階に限らず適宜複数段階に変化さ
せて実施してもよい。さらに、シリコンウエハ上に複数
のイオン注入モニター領域11を設けて実施してもよ
い。
Although the thickness of the thin film 12 is changed in four steps in FIG. 1, it is not limited to four steps and may be changed in a plurality of steps. Further, a plurality of ion implantation monitor regions 11 may be provided on the silicon wafer for implementation.

【0014】[0014]

【発明の効果】以上詳述したように本発明によれば、簡
単な方法によってイオン注入におけるイオンの加速エネ
ルギーの変動を的確にモニターできる優れた効果があ
る。
As described in detail above, according to the present invention, there is an excellent effect that the fluctuation of the acceleration energy of ions in ion implantation can be accurately monitored by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を具体化した一実施例におけるモニター
領域の断面図である。
FIG. 1 is a cross-sectional view of a monitor area in an embodiment embodying the present invention.

【図2】本発明を具体化した一実施例におけるシリコン
ウエハの平面図である。
FIG. 2 is a plan view of a silicon wafer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 シリコンウエハ 11 モニター領域 12 薄膜 10 Silicon Wafer 11 Monitor Area 12 Thin Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の任意な位置にモニター領
域を形成し、そのモニター領域に薄膜を形成した後、そ
の薄膜を介してイオンを注入し、イオン注入量を測定し
てイオンの加速エネルギーを判定するイオン注入モニタ
ー方法において、 前記薄膜の厚さを階段状に変化させて形成した後、モニ
ター領域にイオンを注入するようにしたことを特徴とす
るイオン注入モニター方法。
1. A monitor region is formed at an arbitrary position on a semiconductor substrate, a thin film is formed in the monitor region, ions are implanted through the thin film, and an ion implantation amount is measured to measure ion acceleration energy. In the ion implantation monitoring method for determining, the ion implantation monitoring method is characterized in that the thin film is formed by changing the thickness thereof stepwise, and then ions are implanted into the monitor region.
JP1425192A 1992-01-29 1992-01-29 Ion implantation monitor method Pending JPH05206051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1425192A JPH05206051A (en) 1992-01-29 1992-01-29 Ion implantation monitor method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1425192A JPH05206051A (en) 1992-01-29 1992-01-29 Ion implantation monitor method

Publications (1)

Publication Number Publication Date
JPH05206051A true JPH05206051A (en) 1993-08-13

Family

ID=11855874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1425192A Pending JPH05206051A (en) 1992-01-29 1992-01-29 Ion implantation monitor method

Country Status (1)

Country Link
JP (1) JPH05206051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060943A (en) * 1997-12-31 1999-07-26 윤종용 Reference wafer of measuring equipment for semiconductor device manufacturing and its manufacturing method
JP2006229145A (en) * 2005-02-21 2006-08-31 Oki Electric Ind Co Ltd Method of monitoring implantation depth of impurities
WO2019198182A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Semiconductor device, semiconductor wafer, and method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990060943A (en) * 1997-12-31 1999-07-26 윤종용 Reference wafer of measuring equipment for semiconductor device manufacturing and its manufacturing method
JP2006229145A (en) * 2005-02-21 2006-08-31 Oki Electric Ind Co Ltd Method of monitoring implantation depth of impurities
WO2019198182A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Semiconductor device, semiconductor wafer, and method for manufacturing semiconductor device
JPWO2019198182A1 (en) * 2018-04-11 2020-12-03 三菱電機株式会社 Manufacturing method of semiconductor devices, semiconductor wafers and semiconductor devices

Similar Documents

Publication Publication Date Title
JPH07221082A (en) Microstructure flattening method
JPH05235133A (en) Control of large-scale topography on silicon wafer
CN101369551B (en) Process control for improving wafer uniformity using combined or independent metrics
CN107342254B (en) The calibration method of crystal edge etching machine bench
JPH06349920A (en) Electric charge measuring method of semiconductor wafer
JPH05206051A (en) Ion implantation monitor method
JPH1032233A (en) Silicon wafer, glass wafer and stress measurement method using the same
JP3439584B2 (en) Method for measuring concentration distribution of element in solid and sample for measurement
JPH08255817A (en) Linewidth measurement of integrated circuit structures
US6313480B1 (en) Structure and method for evaluating an integrated electronic device
JP4535242B2 (en) Heat treatment evaluation method
US20040110314A1 (en) Silicon-on-insulator devices and methods for fabricating the same
JP4083878B2 (en) Impurity measurement method
KR19990005456A (en) Thickness Measurement Standard Wafer Manufacturing Method
US3976377A (en) Method of obtaining the distribution profile of electrically active ions implanted in a semiconductor
KR920010752B1 (en) How to measure a compact in-line etch monitoring pattern
KR100260243B1 (en) Pressure sensor and manufacturing method
JP2003194747A (en) Method of measuring concentration distribution of element in solid
JPH10270517A (en) Measurement of carrier concentration in p-type silicon epitaxial layer
JP2917937B2 (en) Method for analyzing impurity concentration distribution of semiconductor device
JPH02238646A (en) Measurement of impurities in semiconductor
KR0140443B1 (en) Method of measuring ion implantation in ion implantation process
JPH0368175A (en) Semiconductor pressure sensor
JP3757828B2 (en) Evaluation method of semiconductor heat treatment equipment
KR100293268B1 (en) Pressure sensor and manufacturing method