[go: up one dir, main page]

JPH05206028A - Semiconductor crystal growth method - Google Patents

Semiconductor crystal growth method

Info

Publication number
JPH05206028A
JPH05206028A JP1148492A JP1148492A JPH05206028A JP H05206028 A JPH05206028 A JP H05206028A JP 1148492 A JP1148492 A JP 1148492A JP 1148492 A JP1148492 A JP 1148492A JP H05206028 A JPH05206028 A JP H05206028A
Authority
JP
Japan
Prior art keywords
group
irradiation
growth
mask
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1148492A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
毅 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1148492A priority Critical patent/JPH05206028A/en
Publication of JPH05206028A publication Critical patent/JPH05206028A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

(57)【要約】 【目的】 本発明は,ガスソース分子線結晶成長法(G
SMBE)による化合物半導体装置の製造方法に関し,
高性能デバイス作成のために必要な化合物半導体の結晶
成長の選択成長を確保し,かつ,結晶成長層の純度を著
しく向上させることを目的とする。 【構成】 III 族材料照射とV族材料照射とを交互に行
い,III 族材料照射後にはマスク上でのIII 族材料の滞
在時間以上の待ち時間(τ1)後にV族材料照射を行い,
V族材料照射後にはマスク上でのV族材料の滞在時間以
上の待ち時間 (τ 2)後にIII 族材料照射を行うように構
成する。
(57) [Summary] [Objective] The present invention is directed to a gas source molecular beam crystal growth method (G
A method for manufacturing a compound semiconductor device by SMBE),
Crystals of compound semiconductors required to create high-performance devices
The selective growth of the growth is ensured and the purity of the crystal growth layer is controlled.
The purpose is to improve it. [Configuration] Group III material irradiation and group V material irradiation are performed alternately.
After irradiation of the group III material, the stagnation of the group III material on the mask
Waiting time longer than present (τ1) After that, irradiation of group V material is performed,
After the irradiation of the group V material, the period of stay of the group V material on the mask is less than
Waiting time on (τ 2) It is planned to irradiate the group III material later.
To achieve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ガスソース分子線結晶
成長法による化合物半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a compound semiconductor device by a gas source molecular beam crystal growth method.

【0002】分子線結晶成長法(MBE)は,超格子を
利用する半導体素子のように原子層単位で厚さが制御さ
れる素子の形成に広く利用されている。分子線を発生さ
せる分子線源は,成長させようとする物質に応じて単数
または複数の元素を用意し,必要な分子線源を選択使用
して所望の物質層を成長させる。
The molecular beam crystal growth method (MBE) is widely used for forming an element whose thickness is controlled in atomic layer units such as a semiconductor element using a superlattice. As a molecular beam source for generating a molecular beam, a single or a plurality of elements are prepared according to the substance to be grown, and a desired substance layer is grown by selecting and using the necessary molecular beam source.

【0003】ソースとしては,従来の金属ソースに加え
て,様々なガスソースも使われるようになってきた。こ
れをガスソース分子線結晶成長法(GSMBE)と言
う。このGSMBEによるIII −V族化合物半導体にお
いて,特にIII 族材料として有機金属を用い,また,基
板上に非晶質,或いは,多結晶のマスクを形成し,成長
を行った場合,マスク上には成長せず,半導体結晶上の
みに成長する選択成長の現象が起こる。この選択成長技
術は,FETのソース・ドレインに用いられて,デバイ
ス性能を向上させる等,新しい構造のデバイス作成のた
めに非常に重要な技術である。
As the source, various gas sources have been used in addition to the conventional metal source. This is called a gas source molecular beam crystal growth method (GSMBE). In this III-V group compound semiconductor by GSMBE, when an organic metal is used as a group III material, and an amorphous or polycrystalline mask is formed and grown on the substrate, the mask is not formed on the mask. The phenomenon of selective growth occurs in which only the semiconductor crystal grows without growing. This selective growth technique is used for the source / drain of the FET and is a very important technique for improving the device performance and for producing a device having a new structure.

【0004】近年の半導体装置の高性能化の要求にとも
ない,上記結晶成長法の技術を向上させる必要がある。
With the recent demand for higher performance of semiconductor devices, it is necessary to improve the technique of the crystal growth method.

【0005】[0005]

【従来の技術】図2はガスソースMBE装置の概略図で
ある。図において,1は超高真空チャンバ,2は基板,
3は基板ホルダ,4は基板加熱ヒータ,5はシャッタ,
6は金属ソース用Kセル,7はガスセル,8はソースガ
ス,9は流量制御装置である。
2. Description of the Related Art FIG. 2 is a schematic diagram of a gas source MBE apparatus. In the figure, 1 is an ultra-high vacuum chamber, 2 is a substrate,
3 is a substrate holder, 4 is a substrate heating heater, 5 is a shutter,
Reference numeral 6 is a metal source K cell, 7 is a gas cell, 8 is a source gas, and 9 is a flow rate control device.

【0006】図2に示す装置を用いて,基板2上に結晶
のエピタキシャル成長を行う場合,金属ソースはKセル
6でソースを加熱し分子線を放射させる。ガスソースの
場合はガスセル7によりガスを加熱分解して分子線とす
るか,または,未分解のままガス分子線の形で放射させ
る。
When epitaxially growing a crystal on the substrate 2 using the apparatus shown in FIG. 2, the metal source is heated in the K cell 6 to emit a molecular beam. In the case of a gas source, the gas is thermally decomposed into a molecular beam by the gas cell 7, or is radiated in the form of a gas molecular beam without being decomposed.

【0007】選択成長を行う場合,基板上に二酸化シリ
コン(SiO2)膜等の非晶質,或いは,多結晶のマスクを形
成し,基板結晶が露出する部分とそうでない部分を設け
る。例えば,III −V族化合物半導体を選択成長させる
場合は,III 族材料として有機金属を用い,V族材料と
しては金属でも水素化合物でも良い。
When selective growth is performed, an amorphous or polycrystalline mask such as a silicon dioxide (SiO 2 ) film is formed on the substrate, and a portion where the substrate crystal is exposed and a portion where it is not provided are provided. For example, when selectively growing a III-V group compound semiconductor, an organic metal may be used as the III group material, and a metal or a hydrogen compound may be used as the V group material.

【0008】このような材料を用いて成長を行えば,基
板結晶が露出した部分にのみ選択的に成長が起こり,マ
スク上には成長しない選択成長が実現できる。しかし,
ソース材料,成長温度,V/III 比等の条件により,マ
スク上にも多結晶が成長したり,或いは,多結晶粒が付
着してしまうため,選択性を保てる限られた成長条件範
囲内で成長を行っていた。
When growth is performed using such a material, selective growth can be realized only in the exposed portion of the substrate crystal and not on the mask. However,
Depending on conditions such as source material, growth temperature, V / III ratio, etc., polycrystals may grow on the mask or polycrystal grains may adhere to the mask, so that within the limited growth condition range where selectivity can be maintained. It was growing.

【0009】一方,高純度の化合物半導体結晶を成長す
るためには,やはり成長温度,V/III 比等に条件範囲
がある。
On the other hand, in order to grow a high-purity compound semiconductor crystal, the growth temperature, the V / III ratio, etc. also have a range of conditions.

【0010】[0010]

【発明が解決しようとする課題】ところが,選択成長を
行う場合,選択性を保てる成長条件範囲と,高純度の結
晶を得るための条件範囲が必ずしも一致しない。
However, when selective growth is performed, the range of growth conditions that can maintain selectivity and the range of conditions for obtaining high-purity crystals do not necessarily match.

【0011】そのため,高純度の結晶を得るための条件
で成長を行えば選択性は保てず,マスク上にも成長が起
こってしまう。逆に,選択性を保てる成長条件で成長を
行えば,不純物の取り込みが増加し,高純度の結晶を得
ることはできない。
Therefore, if the growth is performed under the condition for obtaining a high-purity crystal, the selectivity cannot be maintained, and the growth also occurs on the mask. On the contrary, if the growth is carried out under the growth condition that can maintain the selectivity, the incorporation of impurities is increased, and it is not possible to obtain a high-purity crystal.

【0012】以上のように,従来の技術では,選択性を
保ちつつ,かつ,高純度の化合物半導体結晶を成長する
ことはできなかった。そこで,本発明では,高性能デバ
イス作成のために必要な選択性を保ちつつ成長層の純度
を著しく向上させたガスソース分子線結晶成長法による
半導体結晶の選択成長方法を提供することを目的とす
る。
As described above, according to the conventional technique, it was not possible to grow a compound semiconductor crystal of high purity while maintaining selectivity. Therefore, an object of the present invention is to provide a selective growth method of semiconductor crystals by a gas source molecular beam crystal growth method in which the purity required for producing a high-performance device is maintained and the purity of a growth layer is remarkably improved. To do.

【0013】[0013]

【課題を解決するための手段】図1は本発明の原理説明
図,図3はGaAs結晶中のp型キャリア濃度,図4はSiO2
マスク上のGaAs多結晶粒密度である。
FIG. 1 is a diagram for explaining the principle of the present invention, FIG. 3 is a p-type carrier concentration in a GaAs crystal, and FIG. 4 is SiO 2.
GaAs polycrystal grain density on the mask.

【0014】図1において,τ1 はIII 族材料照射後,
V族材料照射までの待ち時間, τ2はV族材料照射後, I
II 族材料照射までの待ち時間, J1 はV族材料照射中
の少量のIII 族材料照射量, 2 はV族材料照射中の少
量のIII 族材料照射量である。
In FIG. 1, τ 1 is after irradiation of the group III material,
Waiting time until group V material irradiation, τ 2 is after irradiation of group V material, I
The waiting time until the irradiation of the group II material, J 1 is the small irradiation amount of the group III material during irradiation of the group V material , and J 2 is the small irradiation amount of the group III material during irradiation of the group V material.

【0015】上記の目的は,本発明によれば,III 族材
料として有機金属を用い,基板上にマスクを形成し,ガ
スソースMBE法によって成長を行うIII −V化合物半
導体の選択成長において,図1に示すように,III 族材
料照射とV族材料照射とを交互に行い,III 族材料照射
後にはマスク上でのIII 族材料の滞在時間以上の待ち時
間後にV族材料照射を行い,V族材料照射後にはマスク
上でのV族材料の滞在時間以上の待ち時間後にIII 族材
料照射を行うことを特徴とする半導体結晶の成長方法に
より達成される。
According to the present invention, the above-mentioned object is achieved in the selective growth of a III-V compound semiconductor in which a metal is used as a group III material, a mask is formed on a substrate, and growth is performed by a gas source MBE method. As shown in Fig. 1, group III material irradiation and group V material irradiation are performed alternately, and after group III material irradiation, group V material irradiation is performed after a waiting time of the group III material on the mask or longer, and V This can be achieved by a method for growing a semiconductor crystal, which is characterized in that after the irradiation of the group material, the irradiation of the group III material is performed after a waiting time longer than the residence time of the group V material on the mask.

【0016】また,前記に加えて,III 族材料照射時に
は,少量のV族材料照射を行い,V族材料照射時には少
量のIII 族材料照射を行うことを特徴とする半導体結晶
の成長方法により達成される。
In addition to the above, a small amount of group V material irradiation is performed during the irradiation of the group III material, and a small amount of the group III material irradiation is performed during the irradiation of the group V material. To be done.

【0017】[0017]

【作用】本発明においては,III 族材料照射時にはV族
材料を照射しないか,又は照射量を少なくし,V族材料
照射時にはIII 族材料を照射しないか,又は照射量を少
なくし,それぞれの間に各材料のマスク上での滞在時間
以上の待ち時間をおくことにより,マスク上への多結晶
の成長,又は多結晶粒の付着が起こらないようにし,か
つ成長結晶中への炭素不純物の取り込みを抑えることが
できる。
In the present invention, the group V material is not irradiated or the irradiation amount is reduced during the irradiation of the group III material, and the group III material is not irradiated or the irradiation amount is reduced during the irradiation of the group V material. By placing a waiting time longer than the residence time of each material on the mask, it is possible to prevent the growth of polycrystals or the adhesion of polycrystal grains on the mask, and to prevent the carbon impurities in the grown crystal from growing. Capturing can be suppressed.

【0018】図3にソース材料として,トリエチルガリ
ウム(TEGa)と金属砒素(As)を用い,砒化ガリウム(GaAs)
を成長した場合の, GaAs結晶中の残留不純物濃度の成長
温度, V/III 比依存性をp型キャリア濃度により示
す。
In FIG. 3, triethylgallium (TEGa) and metal arsenic (As) are used as the source material, and gallium arsenide (GaAs) is used.
Dependence of residual impurity concentration in GaAs crystal on growth temperature and V / III ratio is shown by p-type carrier concentration.

【0019】図3(a)において,高温側でp型キャリ
ア濃度が増加するのは,高温側で有機金属の炭化水素基
の分解が起こり易くなり,その結果生じた炭素が結晶中
に取りこまれるためと考えられる。
In FIG. 3 (a), the p-type carrier concentration increases on the high temperature side because the hydrocarbon group of the organic metal is easily decomposed on the high temperature side, and the resulting carbon is incorporated into the crystal. It is thought to be because it is done.

【0020】図3(b)において,高V/III 比側でp
型キャリア濃度が減少するのは,過剰なV族元素が炭化
水素基と結合し,脱離するためと考えられる。また,V
族材料として,V族水素化合物を用いた場合には,前述
の効果に加えて,V族水素化合物の分解による水素ラジ
カルが炭化水素基と結合し,脱離する効果も加わる。
In FIG. 3 (b), p on the high V / III ratio side
It is considered that the type carrier concentration decreases because an excessive group V element bonds with the hydrocarbon group and is desorbed. Also, V
When a group V hydrogen compound is used as the group material, in addition to the above-described effect, a hydrogen radical resulting from the decomposition of the group V hydrogen compound is combined with a hydrocarbon group to be eliminated.

【0021】図4に結晶成長の選択性の成長温度,V/
III 比依存性,成長速度依存性をマスク上のGaAs結晶粒
の密度により示す。尚, 条件が外れて, GaAs多結晶粒の
密度が1x107cm -2を大きく越えると,GaAs多結晶はマス
ク表面を覆って成長する。
FIG. 4 shows the crystal growth selectivity growth temperature, V /
III Ratio dependence and growth rate dependence are shown by the density of GaAs crystal grains on the mask. If the conditions are not satisfied and the density of GaAs polycrystal grains greatly exceeds 1x10 7 cm -2 , the GaAs polycrystal grows over the mask surface.

【0022】図4(a)において,As圧力8.5x10-6Tor
r, GaAs成長速度0.55μm/hの条件でGaAs結晶を基板
上に成長した場合のSiO2膜マスク上のGaAs多結晶粒の密
度の成長温度依存性を示す。
As shown in FIG. 4A, the As pressure is 8.5 × 10 −6 Tor.
The growth temperature dependence of the density of GaAs polycrystal grains on the SiO 2 film mask when GaAs crystals are grown on a substrate under the conditions of r and GaAs growth rate of 0.55 μm / h is shown.

【0023】低温側でGaAs多結晶粒の密度が大きくなる
のは, 低温側ではマスク上でのIII族材料分子とV族材
料分子の滞在時間が長くなり, 両者が衝突し結合する確
率が高くなるためである。高温側では両者が衝突する前
に再蒸発するのでマスク上の成長は起こらない。
On the low temperature side, the density of the GaAs polycrystal grains becomes high because the staying time of the group III material molecules and the group V material molecules on the mask is long on the low temperature side, and the probability of collision and binding of both is high. This is because On the high temperature side, the two are re-evaporated before they collide with each other, so that growth on the mask does not occur.

【0024】図4(b)において,GaAs成長速度0.55μ
m/h,成長温度 550℃の条件でGaAs結晶を基板上に成
長した場合のSiO2膜マスク上のGaAs多結晶粒の密度のAs
圧依存性を示す。
In FIG. 4B, the GaAs growth rate is 0.55 μm.
As of the density of GaAs polycrystal grains on the SiO 2 film mask when GaAs crystals were grown on the substrate under the conditions of m / h and growth temperature of 550 ° C.
Shows pressure dependence.

【0025】高V/III 比側でGaAs多結晶粒の密度が大
きくなるのは, V族材料のビーム強度, 又は流量を増加
すると, マスク上でのV族濃度が高くなるため, III 族
材料分子と衝突し結合する確率が高くなるためである。
On the high V / III ratio side, the density of GaAs polycrystal grains increases because the beam intensity of the V group material or the flow rate of the V group material increases the V group concentration on the mask. This is because the probability of collision and binding with molecules increases.

【0026】図4(c)において,As圧力8.5x10-6Tor
r, 成長温度 550℃の条件で GaAs結晶を基板上に成長
した場合のSiO2膜マスク上のGaAs多結晶粒の密度の成長
速度依存性を示す。
As shown in FIG. 4C, the As pressure is 8.5 × 10 -6 Tor.
The growth rate dependence of the density of GaAs polycrystal grains on the SiO 2 film mask when GaAs crystals are grown on a substrate at r and a growth temperature of 550 ° C is shown.

【0027】成長速度が高い程,GaAs多結晶粒の密度が
高くなるのは, III 族材料の流量を増加すれと,マスク
上でIII 族材料分子の濃度が上がり,V族材料分子と衝
突し結合する確率が高くなるためである。成長速度を低
くすれば,GaAs多結晶粒の密度は低くなるが, 成長時間
が長くなるため実用的ではない。
The higher the growth rate, the higher the density of GaAs polycrystal grains is that as the flow rate of the group III material increases, the concentration of the group III material molecules on the mask increases and collides with the group V material molecules. This is because the probability of combination increases. If the growth rate is lowered, the density of GaAs polycrystal grains will be reduced, but the growth time will be longer, which is not practical.

【0028】図1に本発明の成長方法を示す。III 族材
料照射時には,V族材料を照射しないか,又は照射量を
少なくしているので,マスク上への多結晶成長は起こら
ない。その時,マスク開口部にはV族原子が存在するの
でIII 族材料分子の吸着,或いは,少量のV族材料の照
射が有る場合には結晶の成長が起こる。この時表面には
III 族材料分子の分解が不完全なため,炭化水素基が存
在する。この炭化水素基を次のV族材料照射時に除去す
るので,III 族材料照射量は1原子層を大きく越えない
方が良い。
FIG. 1 shows the growth method of the present invention. At the time of irradiating the group III material, the group V material is not irradiated or the irradiation amount is reduced, so that the polycrystalline growth on the mask does not occur. At that time, since group V atoms exist in the mask opening, crystal growth occurs when there is adsorption of group III material molecules or irradiation of a small amount of group V material. At this time on the surface
Hydrocarbon groups are present due to incomplete decomposition of group III material molecules. Since this hydrocarbon group is removed during the next irradiation of the group V material, it is preferable that the irradiation amount of the group III material does not greatly exceed one atomic layer.

【0029】V族材料照射時には,III 族材料を照射し
ないか,又は照射量を少なくしているので,マスク上へ
の多結晶成長は起こらない。マスク開口部では表面に残
留する炭化水素基がV族材料照射により除去され,V族
原子面の形成,或いは少量のIII 族照射がある場合には
結晶の成長が起こる。1サイクルあたりに供給するV族
材料とIII 族材料の比は,連続供給成長の場合の所望の
純度の得られるV/III 比と同程度とすることにより,
炭素取り込みの少ない成長が可能となる。
At the time of irradiating the group V material, the group III material is not irradiated or the irradiation amount is reduced, so that no polycrystal growth on the mask occurs. At the mask opening, the hydrocarbon groups remaining on the surface are removed by the irradiation of the group V material, and the crystal growth occurs when the group V atomic plane is formed or a small amount of the group III irradiation is performed. By setting the ratio of the group V material and the group III material to be supplied per cycle to be approximately the same as the V / III ratio at which the desired purity can be obtained in the case of continuous supply growth,
Growth with less carbon uptake is possible.

【0030】それぞれの間の待ち時間は,それぞれの切
り換えが確実に行われるための時間であり,各材料のマ
スク上での滞在時間を越える方が良い。これらを繰り返
すことにより,結晶成長の選択性を保ちつつ高純度の結
晶を成長することができる。
The waiting time between each is the time for each switching to be surely performed, and it is better to exceed the staying time of each material on the mask. By repeating these steps, a high-purity crystal can be grown while maintaining the crystal growth selectivity.

【0031】[0031]

【実施例】図2は本発明に用いたガスソースMBE装置
の概略図である。図において,1は超高真空チャンバ,
2は基板,3は基板ホルダ,4は基板加熱ヒータ,5は
シャッタ,6は金属ソース用Kセル,7はガスセル,8
はソースガス,9は流量制御装置,10は液体窒素シュラ
ウド, 11は真空ポンプである。
EXAMPLE FIG. 2 is a schematic view of a gas source MBE apparatus used in the present invention. In the figure, 1 is an ultra high vacuum chamber,
2 is a substrate, 3 is a substrate holder, 4 is a substrate heater, 5 is a shutter, 6 is a metal source K cell, 7 is a gas cell, 8
Is a source gas, 9 is a flow controller, 10 is a liquid nitrogen shroud, and 11 is a vacuum pump.

【0032】ソース材料として,トリエチルガリウム(T
EGa)と金属砒素(As)を用い, GaAsを成長した場合の実施
例を示す。GaAs基板を洗浄後, CVD法,フォトリソグ
ラフィ法によりSiO2マスクを形成する。この基板を図2
に示すガスソースMBE装置の成長室に導入する。Asを
照射しながら, 基板温度 600℃, 3分間でGaAs基板表面
の自然酸化膜を除去し, 基板温度を成長温度である 550
℃にしてGaAs結晶の成長を開始した。
As a source material, triethylgallium (T
An example is shown in which GaAs is grown using EGa) and metallic arsenic (As). After cleaning the GaAs substrate, a SiO 2 mask is formed by the CVD method and the photolithography method. This board is shown in Figure 2.
It is introduced into the growth chamber of the gas source MBE device shown in. While irradiating As, the native oxide film on the GaAs substrate surface was removed at a substrate temperature of 600 ° C for 3 minutes, and the substrate temperature was set to a growth temperature of 550
At ℃, the growth of GaAs crystal was started.

【0033】As圧力は1.5x10-4Torrとした。TEGaは水素
キャリアを用い, 成長室に導入した。TEGaの流量を 2.5
sccmとし, 通常の成長モード, 即ち, 同時供給モードで
成長を行った場合, 成長速度は 0.6μm/hであり,As
圧力が高いのでマスク上も全面が多結晶膜で覆われた。
The As pressure was 1.5 × 10 −4 Torr. TEGa was introduced into the growth chamber using a hydrogen carrier. TEGA flow rate is 2.5
When the growth rate is 0.6 μm / h when the growth is performed in the normal growth mode, that is, the simultaneous supply mode, with sccm, the As
Since the pressure was high, the entire surface of the mask was covered with the polycrystalline film.

【0034】また, 第1の実施例と実効的成長速度の等
しい0.28μm/hで成長した場合も,マスク上全面がGa
As多結晶膜で覆われた。本発明の第1の実施例では, TE
Ga, 及びAsの照射時間を, 共に1層分の成長に要する
1.8秒とした。As照射中はTEGa照射は行わなかった。
Further, when the growth is performed at the same effective growth rate of 0.28 μm / h as in the first embodiment, the entire surface of the mask is Ga
As covered with a polycrystalline film. In the first embodiment of the present invention, the TE
Irradiation time of Ga and As is required for growth of one layer
It was set to 1.8 seconds. TEGa irradiation was not performed during As irradiation.

【0035】TEGa, 及びAsのSiO2上での 550℃での滞在
時間は, 本発明者の検討の結果, 数十ミリ秒程度以下で
あることが分かっている。実施例では, 各材料照射後,
0.1 秒の待ち時間を設けた。
As a result of studies conducted by the present inventors, the residence time of TEGa and As on SiO 2 at 550 ° C. has been found to be several tens of milliseconds or less. In the example, after irradiation of each material,
A waiting time of 0.1 seconds was provided.

【0036】これを 947サイクル (59分58.6秒) 行い,
0.28μmのGaAsを成長させた試料を観察したところ, Ga
As多結晶粒密度は 500cm-2未満となった。尚, 残留不純
物濃度は, p型キャリア濃度として,1x1015cm-3以下
と, 高純度の結晶が得られた。
This is performed for 947 cycles (59 minutes 58.6 seconds),
Observation of a sample on which 0.28 μm GaAs was grown revealed that Ga
As polycrystalline grain density was less than 500 cm -2 . The residual impurity concentration was 1 × 10 15 cm -3 or less as the p-type carrier concentration, and high-purity crystals were obtained.

【0037】次に,本発明の第2の実施例では,Asの照
射時間, 及び待ち時間は第1の実施例と同様とし,TEGa
の照射を 7.5sccm, 待ち時間を 0.6秒とした。こうして
も, 1回分のTEGa照射量は第1の実施例と等しくなる。
こうすれば,実効的成長速度は0.42μm/hとなり,Ga
Asの成長時間を短縮できる。
Next, in the second embodiment of the present invention, the irradiation time of As and the waiting time are the same as those in the first embodiment, and TEGa
The irradiation time was 7.5 sccm and the waiting time was 0.6 seconds. Even in this case, the TEGA irradiation dose for one time becomes equal to that in the first embodiment.
By doing this, the effective growth rate becomes 0.42 μm / h, and
As growth time can be shortened.

【0038】尚, 第1,第2の実施例では,材料の照射
量を1層分の成長に要する量としたが,そのように決め
る必要はなく,照射量は1層分を大きく越えなければ,
任意に設定して良い。
In the first and second embodiments, the dose of material is set to the amount required for growth of one layer, but it is not necessary to determine as such, and the dose must greatly exceed one layer. For example,
You can set it arbitrarily.

【0039】但し,Asの照射量は表面に残留する炭化水
素基を除去するために, 連続供給成長の場合の所望の純
度の得られるV/III 比と同程度とすることが必要とな
る。又,実施例では, TEGa照射中は, Asの照射は行わ
ず, Asの照射中はTEGaの照射は行わなかったが, GaAs多
結晶粒の密度が増加しない程度の少量の照射を行っても
良い。
However, in order to remove the hydrocarbon groups remaining on the surface, it is necessary that the irradiation amount of As be approximately the same as the V / III ratio that gives the desired purity in the case of continuous supply growth. Further, in the example, As irradiation was not performed during TEGa irradiation and TEGa irradiation was not performed during As irradiation, but even a small amount of irradiation that does not increase the density of GaAs polycrystal grains may be performed. good.

【0040】[0040]

【発明の効果】以上説明したように,本発明によれば,
生産性を損なうことなく,SiO2等のマスクの選択性を保
ちつつ,高純度のGaAs等の化合物半導体の結晶を成長す
ることが可能となるため, 化合物半導体装置の性能向上
に寄与するところが大きい。
As described above, according to the present invention,
Since it is possible to grow high-purity compound semiconductor crystals such as GaAs while maintaining the selectivity of masks such as SiO 2 without sacrificing productivity, it greatly contributes to the performance improvement of compound semiconductor devices. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 ガスソースMBE装置の概略図FIG. 2 is a schematic diagram of a gas source MBE device.

【図3】 GaAs結晶中のp型キャリア濃度FIG. 3 Concentration of p-type carrier in GaAs crystal

【図4】 SiO2マスク上のGaAs多結晶粒密度FIG. 4 GaAs polycrystal grain density on SiO 2 mask

【符号の説明】[Explanation of symbols]

1 超高真空チャンバ 2 基板 3 基板ホルダ 4 基板加熱ヒータ 5 シャッタ 6 金属ソース用Kセル 7 ガスセル 8 ソースガス 9 流量制御装置 10 液体窒素シュラウド 11 真空ポンプ 1 Ultra High Vacuum Chamber 2 Substrate 3 Substrate Holder 4 Substrate Heater 5 Shutter 6 K Cell for Metal Source 7 Gas Cell 8 Source Gas 9 Flow Control Device 10 Liquid Nitrogen Shroud 11 Vacuum Pump

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 III 族材料として有機金属を用い,基板
上にマスクを形成し,ガスソースMBE法によって成長
を行うIII −V族化合物半導体の選択成長において,II
I 族材料照射とV族材料照射を交互に行い,III 族材料
照射後には,マスク上でのIII 族材料の滞在時間以上の
待ち時間(τ1)後にV族材料照射を行い,V族材料照射
後にはマスク上でのV族材料の滞在時間以上の待ち時間
(τ2)後にIII 族材料照射を行うことを特徴とする半導
体結晶の成長方法。
1. A selective growth of a III-V group compound semiconductor in which a metal is used as a group III material, a mask is formed on a substrate, and growth is performed by a gas source MBE method.
Irradiation of group I material and irradiation of group V material are performed alternately. After irradiation of group III material, irradiation of group V material is performed after waiting time (τ 1 ) longer than the staying time of group III material on the mask (τ 1 ). A method for growing a semiconductor crystal, characterized in that after the irradiation, the irradiation of the group III material is performed after a waiting time (τ 2 ) longer than the residence time of the group V material on the mask.
【請求項2】 前記III 族材料照射時には少量のV族材
料照射を併せて行い,前記V族材料照射時には少量のII
I 族材料照射を併せて行うことを特徴とする請求項1記
載の半導体結晶の成長方法。
2. A small amount of group V material is also irradiated during the irradiation of the group III material, and a small amount of II is irradiated during the irradiation of the group V material.
2. The method for growing a semiconductor crystal according to claim 1, wherein the irradiation with the group I material is also performed.
【請求項3】 1サイクル当たりに供給する前記III 族
材料と前記V族材料の比(V/III )は,連続供給の場
合の所望の純度を得られる前記III 族材料と前記V族材
料の比と同程度であることを特徴とする請求項1及び請
求項2記載の半導体結晶の成長方法。
3. The ratio (V / III) of the group III material to the group V material fed per cycle is such that the desired purity in the case of continuous feeding can be obtained by the group III material and the group V material. 3. The method for growing a semiconductor crystal according to claim 1, wherein the ratio is about the same as the ratio.
JP1148492A 1992-01-27 1992-01-27 Semiconductor crystal growth method Withdrawn JPH05206028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148492A JPH05206028A (en) 1992-01-27 1992-01-27 Semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148492A JPH05206028A (en) 1992-01-27 1992-01-27 Semiconductor crystal growth method

Publications (1)

Publication Number Publication Date
JPH05206028A true JPH05206028A (en) 1993-08-13

Family

ID=11779330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148492A Withdrawn JPH05206028A (en) 1992-01-27 1992-01-27 Semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JPH05206028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049104A (en) * 1998-05-29 2000-02-18 Sharp Corp Crystal growth method of compound semiconductor and compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049104A (en) * 1998-05-29 2000-02-18 Sharp Corp Crystal growth method of compound semiconductor and compound semiconductor device

Similar Documents

Publication Publication Date Title
US8482104B2 (en) Method for growth of indium-containing nitride films
EP0576566A1 (en) A method for the preparation and doping of highly insulating monocrystalline gallium nitride thin films
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JP2001044123A (en) Method for growing semiconductor layer
WO2002017369A1 (en) Method of fabricating group-iii nitride semiconductor crystal, metho of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
GB2162862A (en) Process for forming monocrystalline thin film of compound semiconductor
JP2003332234A (en) Sapphire substrate having nitrided layer and method of manufacturing the same
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
JPH0782991B2 (en) Method of growing compound semiconductor single crystal thin film
KR20020065892A (en) Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JP2897821B2 (en) Method for growing semiconductor crystalline film
US6419742B1 (en) method of forming lattice matched layer over a surface of a silicon substrate
JP2004307253A (en) Method for manufacturing semiconductor substrate
JPH05206028A (en) Semiconductor crystal growth method
JP2011082306A (en) Zinc oxide-based semiconductor light emitting element and method of manufacturing the same
JP2006515713A (en) MBE growth of p-type nitride semiconductor materials
JPH06177059A (en) Method for growing indium gallium nitride
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JP2003171200A (en) Crystal growth method for compound semiconductor and compound semiconductor device
JPH02221196A (en) Formation of thin film of iii-v compound semiconductor
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPH01215014A (en) Growth of semiconductor crystal
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JP2577543B2 (en) Single crystal thin film growth equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408