JPH05203884A - Optical element - Google Patents
Optical elementInfo
- Publication number
- JPH05203884A JPH05203884A JP4011115A JP1111592A JPH05203884A JP H05203884 A JPH05203884 A JP H05203884A JP 4011115 A JP4011115 A JP 4011115A JP 1111592 A JP1111592 A JP 1111592A JP H05203884 A JPH05203884 A JP H05203884A
- Authority
- JP
- Japan
- Prior art keywords
- optical component
- light
- optical
- distribution
- light absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 94
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000002834 transmittance Methods 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000011358 absorbing material Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Mechanical Light Control Or Optical Switches (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えばレ−ザ共振器
に使用して好適な光学素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element suitable for use in, for example, a laser resonator.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】一般
に、散乱光,軸外光を規制し光ビ−ム品質を向上させる
ために、絞りが用いられる。しかし、これは光ビ−ムの
損失を必要以上に招き易く、損失が大きい割りに回折の
影響等により効果が得難く、使用し難い。2. Description of the Related Art Generally, a diaphragm is used to regulate scattered light and off-axis light and improve the quality of an optical beam. However, this is more likely to cause an optical beam loss than necessary, and it is difficult to obtain an effect due to the influence of diffraction and the like, although the loss is large, and it is difficult to use.
【0003】又、レ−ザ共振器内に絞りを設けてレ−ザ
発振時の横モ−ドを規制し、良質のレ−ザ光(例えば単
一モ−ドのレ−ザ光)を得る試みがなされている。絞り
を用いた場合は、絞りの大きさは変えられるが、その減
衰率分布は変更不能であり、その分布も光軸からの距離
に対し段階状に変化することとなる。つまり、この方法
ではレ−ザ光の品質を細かく制御することは不可能であ
り、効果の割りに出力の損失が大きいなどの問題点があ
る。更に、絞りの径を小さくし光を規制すればする程、
回折による影響が現われ、規制に限界がある。この発明
は、光の強度分布を積極的に変更することが簡単に出来
る光学素子を提供することを目的とする。Further, a diaphragm is provided in the laser resonator to regulate the lateral mode at the time of laser oscillation so that a high-quality laser light (for example, a single mode laser light) can be obtained. Attempts to get are made. When the diaphragm is used, the size of the diaphragm can be changed, but the attenuation factor distribution cannot be changed, and the distribution also changes stepwise with respect to the distance from the optical axis. That is, with this method, it is impossible to finely control the quality of the laser light, and there is a problem that the output loss is large relative to the effect. Furthermore, the more the aperture diameter is reduced and the light is regulated,
The effects of diffraction appear, and there are limits to regulations. An object of the present invention is to provide an optical element which can easily change the intensity distribution of light easily.
【0004】[0004]
【課題を解決するための手段】この発明は、特定の波長
を吸収する光吸収媒質からなり両面が任意の面に形成さ
れた少なくとも1つの第1光学部品と、特定の波長を透
過する材質からなり両面が任意の面に形成された任意の
数の第2光学部品と、上記第1光学部品と第2光学部品
を保持する保持機構と、上記第1光学部品と第2光学部
品との相互間隔を可変する移動機構と、上記第1光学部
品と第2光学部品とを冷却する冷却機構とを具備し、上
記第1光学部品と第2光学部品との相互間隔を調整して
透過率を調整可能とした光学素子である。According to the present invention, at least one first optical component made of a light absorbing medium absorbing a specific wavelength and having both surfaces formed on arbitrary surfaces, and a material transmitting a specific wavelength are used. And an arbitrary number of second optical components each having both surfaces formed on arbitrary surfaces, a holding mechanism that holds the first optical component and the second optical component, and the first optical component and the second optical component. A moving mechanism that varies the distance and a cooling mechanism that cools the first optical component and the second optical component are provided, and the transmittance is adjusted by adjusting the mutual distance between the first optical component and the second optical component. It is an adjustable optical element.
【0005】[0005]
【作用】この発明によれば、安価で簡単な構造で透過率
分布を任意の分布とすることが出来、且つ容易にこの分
布を変更することが可能である。この結果、光の強度分
布を積極的に変更することが簡単に出来、この発明の光
学素子をレ−ザ共振器内に用いた場合は、横モ−ドを積
極的に制御することが可能である。According to the present invention, the transmittance distribution can be set to an arbitrary distribution with an inexpensive and simple structure, and this distribution can be easily changed. As a result, it is easy to positively change the intensity distribution of the light, and when the optical element of the present invention is used in the laser resonator, the lateral mode can be positively controlled. Is.
【0006】[0006]
【実施例】以下、図面を参照して、この発明の一実施例
を詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
【0007】用いられる光学部品の数は任意で良いが、
ここでは簡単のため吸収材質にて作られた光学部品(光
吸収光学部品)、透過材質にて作られた光学部品(光透
過光学部品)を各1枚づつ用いた場合について説明す
る。即ち、この発明による光学素子は図1および図2に
示すように構成され、図2は各光学部品の相互間隔を調
整した場合を示している。The number of optical components used may be arbitrary,
Here, for simplification, a case where one optical component (light absorbing optical component) made of absorbing material and one optical component (light transmitting optical component) made of transmitting material are used respectively will be described. That is, the optical element according to the present invention is configured as shown in FIGS. 1 and 2, and FIG. 2 shows a case where the mutual intervals of the optical components are adjusted.
【0008】図中の符号1は固定された光吸収光学部品
であり、この光吸収光学部品1と対向して対応形状で同
軸上に光透過光学部品2が軸心に沿って移動可能に配設
されている。そして、光吸収光学部品1は保持機構3に
保持され、光透過光学部品2は保持機構4に保持され、
保持機構3の外側には更に冷却機構5が設けられてい
る。既述のように、光透過光学部品2は軸心に沿って移
動可能であるが、保持機構4が図示しない移動機構によ
り駆動されて移動する。Reference numeral 1 in the figure denotes a fixed light-absorbing optical component, and a light-transmitting optical component 2 is arranged coaxially in a corresponding shape facing the light-absorbing optical component 1 so as to be movable along the axis. It is set up. The light absorbing optical component 1 is held by the holding mechanism 3, the light transmitting optical component 2 is held by the holding mechanism 4,
A cooling mechanism 5 is further provided outside the holding mechanism 3. As described above, the light transmitting optical component 2 is movable along the axis, but the holding mechanism 4 is driven by a moving mechanism (not shown) to move.
【0009】上記の場合、冷却機構5としては例えば放
熱板やパイプで水冷することが考えられる。移動機構と
しては、例えば保持機構3と保持機構4の各対向面にそ
れぞれネジを切り、両者を螺合するようにすれば良い。
又、上記と逆に光透過光学部品2を固定し、光吸収光学
部品1を移動可能にすることも出来る。In the above case, it is conceivable that the cooling mechanism 5 is water cooled, for example, by a heat radiating plate or a pipe. As the moving mechanism, for example, the facing surfaces of the holding mechanism 3 and the holding mechanism 4 may be threaded, respectively, and the two may be screwed together.
In contrast to the above, the light transmitting optical component 2 may be fixed and the light absorbing optical component 1 may be movable.
【0010】ところで、光吸収光学部品1は、ある波長
の光に対して適当な吸収係数を持つ材質で作られている
とする。片側の面は平面で、もう片側の面は平面側の面
に垂直な回転軸(中心軸)を持つ平面側に凸の回転放物
面となるように研磨されているとする。又、光透過光学
部品2は光吸収光学部品1と同じある波長の光を透過す
る材質で作られているとする。片側の面は平面で、もう
片側の面は光吸収光学部品1と同じ曲率の平面側の面に
垂直な回転軸(中心軸)を持ち平面側に凹の回転放物面
となるように研磨されているとする。By the way, it is assumed that the light absorbing optical component 1 is made of a material having an appropriate absorption coefficient for light of a certain wavelength. It is assumed that the surface on one side is a flat surface and the surface on the other side is polished so as to be a paraboloid of revolution that is convex toward the flat surface having a rotation axis (center axis) perpendicular to the surface on the flat surface side. Further, it is assumed that the light transmitting optical component 2 is made of a material that transmits light of the same wavelength as the light absorbing optical component 1. The surface on one side is a flat surface, and the surface on the other side has a rotation axis (center axis) perpendicular to the surface on the flat side having the same curvature as the light absorbing optical component 1 It has been done.
【0011】更に双方共、表面は無反射処理を施され、
屈折率は同じである。これらは、それぞれの保持機構
3,4に保持される。それらの保持機構3,4は、光吸
収光学部品1および光透過光学部品2の双方の中心軸が
一致するように組み合わせることが出来、更に中心軸を
一致させたままそれらの距離を可変することが可能であ
る。Furthermore, in both cases, the surface is subjected to antireflection treatment,
The refractive index is the same. These are held by the respective holding mechanisms 3 and 4. The holding mechanisms 3 and 4 can be combined so that the central axes of both the light absorbing optical component 1 and the light transmitting optical component 2 coincide with each other, and their distances can be varied while the central axes coincide with each other. Is possible.
【0012】これらの部品により構成された光学素子の
中心軸からの距離x(中心軸について対称であるので、
xが正の場合のみを考える)の位置に、強度Io の光学
素子の中心軸に対して平行な光が光吸収光学部品の平面
側から入射したとする。今、光吸収光学部品透過直後の
光の強度I(x)は、透過距離L(x)によって変化す
る。この関係は、一般にThe distance x from the central axis of the optical element composed of these parts (since it is symmetric about the central axis,
It is assumed that light parallel to the central axis of the optical element having the intensity Io enters from the plane side of the light absorbing optical component at a position (only when x is positive). Now, the intensity I (x) of light immediately after passing through the light absorbing optical component changes depending on the transmission distance L (x). This relationship is generally
【0013】[0013]
【数1】 で[Equation 1] so
【0014】[0014]
【数2】 [Equation 2]
【0015】となる。但し、f1 (x),f2 (x)は
それぞれ光吸収光学部品1の双方の面の方程式、この実
施例の場合はf1 (x)=0,f2 (x)=x2 、kは
光吸収光学部品1の吸収係数である。[0015] However, f 1 (x) and f 2 (x) are equations of both surfaces of the light absorbing optical component 1, respectively. In the case of this embodiment, f 1 (x) = 0 and f 2 (x) = x 2 , K are absorption coefficients of the light absorbing optical component 1.
【0016】つまり、この実施例の場合、透過率分布は
ガウス分布となっている。当然、この分布状態は、f1
(x),f2 (x)を適当に選ぶことによって任意に変
更が可能である。又、光吸収光学部品1と光透過光学部
品2の距離を可変することにより、容易にその分布を変
更することが可能である。That is, in this embodiment, the transmittance distribution is a Gaussian distribution. Naturally, this distribution state is f 1
It can be arbitrarily changed by appropriately selecting (x) and f 2 (x). Further, by changing the distance between the light absorbing optical component 1 and the light transmitting optical component 2, the distribution can be easily changed.
【0017】光吸収光学部品1のみを用いた場合、光吸
収光学部品1は凹レンズとしても機能するため、有効系
内に入射した光は発散してしまう。これが不都合な場合
は、図1および図2に示すように、同じ曲率を持ち凸レ
ンズとして機能する光透過光学部品を用いれば、光ビ−
ム径を変えずに強度分布だけが変わった光ビ−ムを得る
ことが出来る。又、光吸収光学部品1と光透過光学部品
2の相互間隔を変化させることにより、容易に強度分布
を変化させることが可能となる。When only the light absorbing optical component 1 is used, the light absorbing optical component 1 also functions as a concave lens, so that the light incident on the effective system is diverged. If this is inconvenient, as shown in FIGS. 1 and 2, if a light transmitting optical component having the same curvature and functioning as a convex lens is used, a light beam is emitted.
It is possible to obtain an optical beam whose intensity distribution is changed without changing the beam diameter. Further, the intensity distribution can be easily changed by changing the mutual distance between the light absorbing optical component 1 and the light transmitting optical component 2.
【0018】但し、光吸収光学部品1は光を吸収するた
め温度が上昇するので、既述のように入力が大きい場合
は適当な冷却機構5を設ける必要があり、光を減衰した
くない箇所では光吸収光学部品1を可能な限り薄くする
か、孔を開ける必要がある。上記実施例では、平行光を
強度分布だけを変更した平行光に変換する光学素子を示
したが、実施例の平面に研磨された面を適当な曲面に研
磨する、光吸収光学部品1と光透過光学部品2の曲面の
曲率を変える、光吸収光学部品1と光透過光学部品2の
曲面の種類を変える等により、レンズとしての機能を持
たせることも可能である。又、用いられる曲面は回転放
物面である必要はなく、任意の曲面、複数の曲面あるい
は平面を組み合わせた複合面、更にはその一部に孔を開
けた光学部品などとしても良い。図3(a)〜(e)に
各種の変形例を示す。図中の符号1は光吸収光学部品、
2は光透過光学部品である。However, since the temperature of the light absorbing optical component 1 absorbs light, the temperature rises. Therefore, as described above, when the input is large, it is necessary to provide an appropriate cooling mechanism 5, and it is not necessary to attenuate the light. Then, it is necessary to make the light absorption optical component 1 as thin as possible or to make a hole. In the above-mentioned embodiment, the optical element for converting the parallel light into the parallel light in which only the intensity distribution is changed has been described. It is also possible to provide a function as a lens by changing the curvature of the curved surface of the transmissive optical component 2 or changing the types of curved surfaces of the light absorbing optical component 1 and the light transmitting optical component 2. The curved surface used does not have to be a paraboloid of revolution, and may be an arbitrary curved surface, a composite surface combining a plurality of curved surfaces or flat surfaces, or an optical component having a hole in a part thereof. Various modified examples are shown in FIGS. Reference numeral 1 in the drawing is a light absorbing optical component,
Reference numeral 2 is a light transmitting optical component.
【0019】又、上記実施例では、表面は全て無反射処
理が施されているとしたが、反射面を用いることにより
反射率が任意の分布を持ち、且つこの分布が容易に変更
可能な反射鏡を作ることが出来る。即ち、図3(e)の
符号6は光吸収光学部品1に形成された反射面を示して
いる。この反射面6を形成しないで、光吸収光学部品1
の右側に反射ミラ−を設けても良い。又、光透過光学部
品2に反射面を形成した場合、光透過材質を用いる必要
がない場合は、任意の材質を用いて構わない。Further, in the above-mentioned embodiment, the entire surface has been subjected to the antireflection treatment. However, by using the reflecting surface, the reflectance has an arbitrary distribution, and this distribution can be easily changed. You can make a mirror. That is, reference numeral 6 in FIG. 3 (e) indicates a reflecting surface formed on the light absorbing optical component 1. Without forming the reflecting surface 6, the light absorbing optical component 1
A reflection mirror may be provided on the right side of the. Further, when a reflecting surface is formed on the light transmitting optical component 2, and if it is not necessary to use a light transmitting material, any material may be used.
【0020】[0020]
【発明の効果】この発明によれば、安価で簡単な構造で
透過率分布を任意の分布とすることが出来、且つ容易に
この分布を変更することが出来る。この結果、光の強度
分布を積極的に変更することが簡単に出来、この発明の
光学素子をレ−ザ共振器内に用いた場合は、横モ−ドを
積極的に制御することが可能である。According to the present invention, the transmittance distribution can be set to an arbitrary distribution with an inexpensive and simple structure, and this distribution can be easily changed. As a result, it is easy to positively change the intensity distribution of the light, and when the optical element of the present invention is used in the laser resonator, the lateral mode can be positively controlled. Is.
【図1】この発明の一実施例に係る光学素子を示す概略
断面図。FIG. 1 is a schematic sectional view showing an optical element according to an embodiment of the present invention.
【図2】図1の光学素子において光学部品の相互間隔を
調整した場合を示す概略断面図。FIG. 2 is a schematic cross-sectional view showing a case where the mutual spacing of optical components is adjusted in the optical element of FIG.
【図3】この発明の5つの変形例を示す概略断面図。FIG. 3 is a schematic sectional view showing five modified examples of the present invention.
1…光吸収光学部品、2…光透過光学部品、3,4…保
持機構、5…冷却機構、6…反射面。DESCRIPTION OF SYMBOLS 1 ... Light absorption optical component, 2 ... Light transmission optical component, 3, 4 ... Holding mechanism, 5 ... Cooling mechanism, 6 ... Reflection surface.
Claims (1)
り両面が任意の面に形成された少なくとも1つの第1光
学部品と、特定の波長を透過する材質からなり両面が任
意の面に形成された任意の数の第2光学部品と、上記第
1光学部品と第2光学部品を保持する保持機構と、上記
第1光学部品と第2光学部品との相互間隔を可変する移
動機構と、上記第1光学部品と第2光学部品とを冷却す
る冷却機構とを具備し、 上記第1光学部品と第2光学部品との相互間隔を調整し
て透過率を調整可能としたことを特徴とする光学素子。1. At least one first optical component made of a light absorbing medium that absorbs a specific wavelength and having both surfaces formed on an arbitrary surface, and both surfaces made of a material that transmits a specific wavelength, formed on an arbitrary surface. An arbitrary number of second optical components, a holding mechanism that holds the first optical component and the second optical component, and a moving mechanism that changes the mutual distance between the first optical component and the second optical component, A cooling mechanism for cooling the first optical component and the second optical component is provided, and the transmittance can be adjusted by adjusting the mutual distance between the first optical component and the second optical component. Optical element to do.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4011115A JPH05203884A (en) | 1992-01-24 | 1992-01-24 | Optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4011115A JPH05203884A (en) | 1992-01-24 | 1992-01-24 | Optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05203884A true JPH05203884A (en) | 1993-08-13 |
Family
ID=11769014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4011115A Pending JPH05203884A (en) | 1992-01-24 | 1992-01-24 | Optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05203884A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1046933A1 (en) * | 1999-04-21 | 2000-10-25 | Asulab S.A. | Optical device with absorption gradient and selective spectral filtering, and objective and camera comprising the same |
KR100593429B1 (en) * | 1998-02-20 | 2006-10-24 | 칼 짜이스 에스엠테 아게 | Projection exposure apparatus and optical device of microlithography by passive thermal compensation |
-
1992
- 1992-01-24 JP JP4011115A patent/JPH05203884A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593429B1 (en) * | 1998-02-20 | 2006-10-24 | 칼 짜이스 에스엠테 아게 | Projection exposure apparatus and optical device of microlithography by passive thermal compensation |
EP1046933A1 (en) * | 1999-04-21 | 2000-10-25 | Asulab S.A. | Optical device with absorption gradient and selective spectral filtering, and objective and camera comprising the same |
US6545828B2 (en) | 1999-04-21 | 2003-04-08 | Asulab S.A. | Optical device with absorption gradient and selective spectral filtering and lens assembly and camera fitted with such a device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6191880B1 (en) | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement | |
US5285318A (en) | Illumination system having an aspherical lens | |
US4623225A (en) | Anamorphic prism for beam shaping | |
US4984872A (en) | Wide viewing angle avionics liquid crystal display | |
JP3522117B2 (en) | Self-guided optical circuit | |
US5309339A (en) | Concentrator for laser light | |
JP2003035822A (en) | Polariscope and microlithography projection system provided with the same | |
US3905675A (en) | Optical systems having stop means for preventing passage of boundary wave radiation | |
KR100379246B1 (en) | Continuous Neutral Density Filter Capable of Controlling the Intensity Distribution of Light Beam According to the Thickness of Filter | |
ITTO940773A1 (en) | LIGHT GUIDE LIGHTING SYSTEM SUITABLE TO REALIZE A THIN LIGHTING DEVICE | |
JPH1152299A (en) | Space filter for high-output laser beam | |
US4978183A (en) | Holographic optic element collimator and method and apparatus for manufacture | |
JP3067491B2 (en) | Projection exposure equipment | |
JPH05203884A (en) | Optical element | |
CN114122899B (en) | Wavelength locking system | |
JPH075337A (en) | Device for adjustment of transmission quantity of light | |
US5005938A (en) | Optical wavelength convertical apparatus | |
US4486096A (en) | Device for measuring incident light | |
CN210534439U (en) | Display optical device and head-mounted apparatus | |
EP1130449B1 (en) | Polarization converter | |
JP3555888B2 (en) | Self-guided optical circuit | |
JPS60167201A (en) | Method of producing optical unit for lamp structure | |
US5353155A (en) | Methods and apparatus for combining arrays of light beams | |
EP0290445A1 (en) | Apparatus incorporating phase conjugate mirrors | |
JPH07154018A (en) | Laser beam transmitter |