JPH05203573A - Infrared ray gas analyzer - Google Patents
Infrared ray gas analyzerInfo
- Publication number
- JPH05203573A JPH05203573A JP3725892A JP3725892A JPH05203573A JP H05203573 A JPH05203573 A JP H05203573A JP 3725892 A JP3725892 A JP 3725892A JP 3725892 A JP3725892 A JP 3725892A JP H05203573 A JPH05203573 A JP H05203573A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- light
- sample
- gas
- infrared rays
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は大気中や燃焼排ガス中
のガス成分濃度を測定する環境技術や呼吸気の測定等医
療工学及び生物工学の分野で使用可能な赤外線ガス分析
計に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared gas analyzer which can be used in the fields of medical engineering and biotechnology such as environmental technology for measuring the concentration of gas components in the atmosphere or combustion exhaust gas and the measurement of respiratory air.
【0002】[0002]
【従来の技術】この種の赤外線ガス分析計は一般に非分
散赤外ガス分析計NDIRと呼ばれるもので、光源、試
料セル、赤外線検出器とバンドパスフィルタ及びチョッ
パの組合せで光学的な測定系が構成されている。2. Description of the Related Art An infrared gas analyzer of this kind is generally called a non-dispersive infrared gas analyzer NDIR, and an optical measurement system is formed by a combination of a light source, a sample cell, an infrared detector, a bandpass filter and a chopper. It is configured.
【0003】従来の赤外線ガス分析計ではチョッパに種
々な形状、例えば1回転に1周期の光の断続をするもの
や複数周期の光の断続をするもの、更に光路の光束の時
間的変化をその形状によって適切に選定するものなどが
あるが、回転するチョッパは光の断続だけに利用されて
きた。また、バンドパスフィルタを用いる場合は赤外線
検出器の直前、すなわち、試料セルを通過した赤外線の
うちの特定な波長領域の赤外線を検出するように構成さ
れていた。In conventional infrared gas analyzers, various shapes are used for the chopper, for example, one cycle of light is interrupted per revolution, one of which a plurality of cycles of light is interrupted, and the temporal change of the luminous flux of the optical path. Although there are things that can be properly selected depending on the shape, the rotating chopper has been used only for intermittent light. Further, when a bandpass filter is used, it is configured to detect an infrared ray in a specific wavelength region just before the infrared detector, that is, among the infrared rays that have passed through the sample cell.
【0004】図4に従来の赤外線ガス分析計の代表的な
構成を例示する。図4に示す赤外線分析計100は赤外
線源101、反射鏡102、赤外線レンズ103、サン
プルセル104、チョッパホイ―ル105、赤外線セン
サ106及びCDモ―タ107を備え、赤外線源101
からの赤外線をサンプルセル104内のサンプルガスに
照射し、透過光をチョッパホイ―ル105でチョッピン
グして赤外線センサ106で検出するように構成されて
いる。FIG. 4 illustrates a typical configuration of a conventional infrared gas analyzer. The infrared analyzer 100 shown in FIG. 4 includes an infrared source 101, a reflecting mirror 102, an infrared lens 103, a sample cell 104, a chopper wheel 105, an infrared sensor 106 and a CD motor 107.
The sample gas in the sample cell 104 is irradiated with infrared rays from the above, and the transmitted light is chopped by the chopper wheel 105 and detected by the infrared sensor 106.
【0005】[0005]
【発明が解決しようとする課題】従来のNDIRの構成
では光源の赤外線の波長領域の広い範囲に亘って試料ガ
スの各成分が赤外線を吸収する。このために試料ガスは
熱的に励起され、特に吸収能の大きいガス成分を含む場
合には吸収と放射を同時に生じて、吸光度で測定を行う
方式のガス分析計では、干渉と類似な他の成分の影響や
測定成分自体の濃度影響が非線型に現れる問題があっ
た。また、複数の成分の測定には複数の赤外線検出器を
必要として、増幅器やデ―タ処理装置も複雑になる問題
があった。In the conventional NDIR configuration, each component of the sample gas absorbs infrared light over a wide range of the infrared wavelength range of the light source. For this reason, the sample gas is thermally excited, and particularly when it contains a gas component having a high absorptivity, absorption and emission occur at the same time. There is a problem that the influence of the components and the concentration influence of the measured components themselves appear non-linearly. Further, there is a problem that a plurality of infrared detectors are required for measuring a plurality of components, and an amplifier and a data processing device are complicated.
【0006】従来の赤外線ガス分析計の問題点を解決す
るために、本発明は単成分または複数成分の測定におい
て対象成分以外の影響を減少し、または赤外線検出器や
それに関係する増幅器等の個数を可能な限り少なくし
て、しかも高速応答の測定ができる方式を構成すること
を目的としている。In order to solve the problems of the conventional infrared gas analyzer, the present invention reduces the influence of components other than the target component in the measurement of a single component or a plurality of components, or the number of infrared detectors and related amplifiers. The objective is to construct a method that enables measurement of high-speed response with as little as possible.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、この発明の赤外線ガス分析計は、赤外光源と赤外線
検出器との間に試料セルを置いて、試料による赤外領域
の吸光度によってガス成分と濃度を測定する赤外ガス分
析計において、光源と試料セルの間に多層膜バンドパス
フィルタが位置し、このフィルタを参照光用フィルタを
含めて複数個回転体上に配置して、光源からの赤外光を
フィルタを含めた回転体によって、特定な波長域の赤外
光を断続的に試料セルに通過させて、試料により一部吸
光された赤外線を検出器により受光して、参照光と測定
バンドの光との差異を基準としてガス成分と濃度を測定
する事を特徴としている。In order to achieve the above object, an infrared gas analyzer according to the present invention has a sample cell placed between an infrared light source and an infrared detector so that the sample absorbs light in the infrared region. In an infrared gas analyzer that measures gas components and concentrations by means of a multilayer bandpass filter located between the light source and the sample cell, multiple filters including the reference light filter are placed on the rotating body. The infrared light from the light source is intermittently passed through the sample cell by the rotating body including the filter, and the infrared light partially absorbed by the sample is received by the detector. The feature is that the gas component and the concentration are measured on the basis of the difference between the reference light and the light of the measurement band.
【0008】[0008]
【作用】本発明による赤外線ガス分析計では、光源から
試料セルに至る光路においてバンドパスフィルタを作用
させて、特定な比較的狭い波長領域の赤外線だけを試料
セルに通過させて、しかもバンドパスフィルタを回転体
に配置させて、光束のチョッパ作用を同時に行う。更に
赤外線検出器に高感度でしかも応答特性の早いものを用
い、チョッパの速度を上げることをも同時に可能とし
た。これによって高速応答を可能にする。そして複数成
分に対しても同一検出器で測定できる。In the infrared gas analyzer according to the present invention, the bandpass filter is operated in the optical path from the light source to the sample cell so that only the infrared ray in the specific relatively narrow wavelength region passes through the sample cell, and the bandpass filter is used. Are placed on the rotating body to simultaneously perform the chopper action of the light flux. Furthermore, an infrared detector with high sensitivity and quick response characteristics was used, and it was possible to increase the speed of the chopper at the same time. This enables a fast response. The same detector can be used to measure multiple components.
【0009】[0009]
【実施例】以下、本発明の実施例を図1,図2,図3を
参照して説明する。図1は本発明の一実施例を示す赤外
線ガス分析装置の構造図である。光源11から発せられ
た波長2〜10μmの連続スペクトルを持つ赤外線は反
射鏡面12と集光レンズ13によって光束14としてバ
ンドパスフィルタ15,16にほぼ直角に照射される。
バンドパスフィルタ15,16は軸受23で支承されて
いる回転軸22を中心に回転する円板25に設けられた
複数個の窓に装着されて、特定の波長バンドの赤外線だ
けを選択的に通過させる。回転軸22は軸取付部26に
取付けられている。円板25には精密に製作された遮光
マスク19が取付けられていて、光束14はバンドパス
フィルタ15,16と遮光マスク19により特定な波長
バンドの赤外線を時間的に特定な波形変化で通過できる
ようになっている。光束14とほぼ同軸に試料セル31
が配置されて、内部に試料室32を形成し、試料室32
の前後に赤外線透過窓35,36が置かれてバンドパス
フィルタ15と遮光マスク19を通過した赤外線が、試
料室32内の試料ガス30によって吸収され、減衰して
赤外線検出器43に達するように構成されている。赤外
線検出器43はケ―ス42と検出器窓45を備えてお
り、入射赤外線のエネルギ―とその波長領域によって、
電極端子46,47の間の電流または電圧として出力を
得ることができる。Embodiments of the present invention will be described below with reference to FIGS. 1, 2 and 3. FIG. 1 is a structural diagram of an infrared gas analyzer according to an embodiment of the present invention. Infrared light emitted from the light source 11 and having a continuous spectrum with a wavelength of 2 to 10 μm is applied to the bandpass filters 15 and 16 as a light beam 14 at a substantially right angle by the reflecting mirror surface 12 and the condenser lens 13.
The bandpass filters 15 and 16 are attached to a plurality of windows provided on a circular plate 25 that rotates around a rotary shaft 22 supported by a bearing 23, and selectively pass only infrared rays in a specific wavelength band. Let The rotary shaft 22 is attached to the shaft attachment portion 26. A light-shielding mask 19 which is precisely manufactured is attached to the disc 25, and the light beam 14 can pass infrared rays of a specific wavelength band with a specific waveform change with time by the bandpass filters 15 and 16 and the light-shielding mask 19. It is like this. Almost coaxial with the light flux 14, the sample cell 31
Are arranged to form the sample chamber 32 inside, and the sample chamber 32
Infrared rays passing through the bandpass filter 15 and the light shielding mask 19 with infrared transmitting windows 35 and 36 placed in front of and behind are absorbed by the sample gas 30 in the sample chamber 32, attenuated, and reach the infrared detector 43. It is configured. The infrared detector 43 is provided with a case 42 and a detector window 45, and depending on the energy of the incident infrared ray and its wavelength range,
The output can be obtained as a current or voltage between the electrode terminals 46, 47.
【0010】試料セル31にはガスの流入、流出のため
の通路37,38が設けられ、測定対象の試料ガス30
は通路37から試料室32を経由して通路38から流出
できる。回転する円板25の窓に設けられたバンドパス
フィルタ15,16としてある特定な成分用と参照光用
とを図2(a)のように交互に配置して測定した場合に
は、図3(a)のような出力信号が検出器から得られ
る。また、図2(b)の場合の例は参照光用のバンドパ
スフィルタ15と、数種類の成分用バンドパスフィルタ
16,17,18が順次装着されている。更に図2
(c)の例は1つの回転円板25に対して2組の光学系
を利用するもので、試料室32,32′と赤外線検出器
43,43′を2組としている。図3(b),(c)は
図2(b),(c)に対応した検出器の信号出力であ
る。The sample cell 31 is provided with passages 37 and 38 for gas inflow and outflow, and the sample gas 30 to be measured is
Can flow out of the passage 37 from the passage 37 via the sample chamber 32. When the bandpass filters 15 and 16 provided on the window of the rotating disk 25 for specific components and for the reference light are alternately arranged as shown in FIG. The output signal as in (a) is obtained from the detector. Further, in the example of FIG. 2B, a bandpass filter 15 for reference light and several types of component bandpass filters 16, 17 and 18 are sequentially mounted. Furthermore, FIG.
In the example of (c), two sets of optical systems are used for one rotating disk 25, and two sets of sample chambers 32 and 32 'and infrared detectors 43 and 43' are provided. 3B and 3C are signal outputs of the detector corresponding to FIGS. 2B and 2C.
【0011】図2の回転円板25に設けられた複数のタ
イミング信号用光透過孔51とタイミング用光透過孔5
2は、検出器の信号出力のデ―タ処理に利用するもの
で、図示していないフォトカプラやフォトインタラプ
タ、或いはLEDとフォトICを適当な位置に配置して
タイミング信号を得るものである。図3(a),(b)
にはこのタイミング信号も示してある。A plurality of timing signal light transmission holes 51 and a plurality of timing light transmission holes 5 provided in the rotating disk 25 of FIG.
Reference numeral 2 is used for data processing of the signal output of the detector, and is for obtaining a timing signal by arranging an unillustrated photocoupler or photointerrupter, or an LED and a photo IC at appropriate positions. 3 (a), 3 (b)
This timing signal is also shown in FIG.
【0012】赤外線検出器32,32′の信号出力は、
普通には適当に増幅され、高速なA/D変換器によって
デ―タ処理し易い信号とし、計算器により処理すること
ができる。例えば図3(b)図示のものの場合には、参
照用信号Rと成分S1 に相当する信号S1 、成分S2 に
相当する信号S2 があって、1回転に1度の信号パルス
Zによってリセットされて、最初に入るy信号パルスを
基準としてその時点のx信号の10〜50μsの値をベ
―スとし、次の例えば100μsごとのx信号をA/D
変換して10〜20信号程度を集積する。The signal outputs of the infrared detectors 32 and 32 'are
Normally, a signal which is appropriately amplified and is easily processed by a high-speed A / D converter can be processed by a calculator. In case of FIG. 3 (b) shown as, for example, signals S 1 corresponding to the reference signal R and the components S 1, when there is a signal S 2, which corresponds to component S 2, 1 to 1 rotation time signal pulse Z The value of 10 to 50 .mu.s of the x signal at that time is based on the y signal pulse which is reset first, and the next x signal every 100 .mu.s is A / D.
About 10 to 20 signals are converted and integrated.
【0013】この集積値をRとし次のy信号からも同様
にこれをタイミング信号としてx信号を処理して集積値
をS1 とする。更に次のy信号からのx信号を同様に処
理してS2 を得る。S/Rを求め得るような計算処理を
して、それぞれの成分の測定値を求める。そして、例え
ば一般的に0(ゼロ)ガスと呼ばれる測定成分を含まな
い試料ガスの場合のx0 と、既知の濃度の測定成分を含
む校正用ガスと呼ばれる試料ガスの場合のxc との関係
から、測定濃度を求めることができる。すなわち、x0
の場合のS10/Rと,xc の場合のS1c/Rを基準に、
測定濃度の場合のS1 /Rの値が求められる。濃度αと
そのガス成分による赤外線の吸収を示す(S10/R−S
1 /R)の関係は必ずしも線形とはいえないので、普通
には数種類濃度の既知なガスによって校正関係を定めて
おく。この関係を利用して(S1/R)から濃度αを求
めることができる。The integrated value is set as R, and the x signal is processed from the next y signal by using this as a timing signal, and the integrated value is set as S 1 . Further, the x signal from the next y signal is similarly processed to obtain S 2 . A calculation process for obtaining S / R is performed to obtain the measured value of each component. Then, for example, the relationship between x 0 in the case of a sample gas that does not include a measurement component generally called 0 (zero) gas and x c in the case of a sample gas called a calibration gas that includes a measurement component with a known concentration. From this, the measured concentration can be obtained. That is, x 0
Based on S 10 / R in the case of and S 1c / R in the case of x c ,
The value of S 1 / R for the measured concentration is determined. Absorption of infrared rays by the concentration α and its gas component (S 10 / RS)
Since the relationship of 1 / R) is not necessarily linear, a calibration relationship is usually established with known gases of several kinds of concentrations. Using this relationship, the concentration α can be calculated from (S 1 / R).
【0014】このような赤外線検出器の信号出力の方法
は、デジタル方式だけでなくアナログ的な計算処理も可
能である。The signal output method of the infrared detector as described above is not limited to the digital method, and analog calculation processing is possible.
【0015】[0015]
【発明の効果】本発明によれば、赤外線領域に吸収能を
有する各種の成分を含む試料に対して、1組或いは少数
組の光学系によって、多成分の測定ガス濃度を非常に早
い応答速度で正確に測定することができる。しかも測定
ガスに対してバンドパスフィルタを通過した特定な狭い
波長域の赤外線だけを照射してその一部を吸収させる構
造であって、吸収能の大きい成分などの他のガスの干渉
を抑制することができる。According to the present invention, with respect to a sample containing various components having absorption ability in the infrared region, one set or a small number of sets of optical systems can be used to measure the concentration of multi-component gas at a very high response speed. Can be measured accurately. Moreover, it is a structure that irradiates only a specific narrow wavelength band infrared ray that has passed through the bandpass filter to the measurement gas and absorbs a part of it, and suppresses the interference of other gas such as a component having a large absorptivity. be able to.
【0016】この方式の赤外線ガス分析計によれば、例
えば呼気中のCO2 濃度など単成分測定において、10
ms以内での応答が可能である。また自動車排ガス等で
3成分を同時に測定する場合でも、1検出器によって2
0ms以内の応答速度で、他成分の干渉がなく測定する
ことができる。According to this type of infrared gas analyzer, it is possible to measure, for example, a single component such as CO 2 concentration in exhaled breath by 10
It is possible to respond within ms. In addition, even if 3 components are measured simultaneously in automobile exhaust gas, 1 detector will
With a response speed of 0 ms, it is possible to measure without interference of other components.
【0017】このように、早い応答速度で、少数の光学
系や検出装置によって多数の成分や試料について測定で
きるだけでなく、試料ガスに対する赤外線照射はバンド
幅を小さくして全エネルギ―を小さくできるので、吸収
/放射の相互干渉などを生じないで測定することが可能
である。As described above, not only can a large number of components and samples be measured with a small number of optical systems and detectors at a high response speed, but also infrared irradiation of the sample gas can reduce the band width and the total energy. It is possible to measure without causing mutual interference of absorption / emission.
【0018】一方、実施例では試料ガスをセル内に導入
して測定する場合を示したが、試料セルとして直接的に
ガス通路に赤外線用の窓等を設けて測定することも可能
である。On the other hand, in the embodiment, the case where the sample gas is introduced into the cell for measurement is shown, but it is also possible to directly measure the sample cell by providing an infrared window or the like in the gas passage.
【図1】赤外線ガス分析計の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of an infrared gas analyzer.
【図2】回転円板の正面説明図である。FIG. 2 is a front explanatory view of a rotating disc.
【図3】赤外線検出器の出力波形を示すグラフである。FIG. 3 is a graph showing an output waveform of an infrared detector.
【図4】従来の赤外線分析計を示す構成説明図である。FIG. 4 is a structural explanatory view showing a conventional infrared analyzer.
11 光源 12 反射鏡面 13 集光レンズ 14 光束 15 バンドパスフィルタ 16 バンドパスフィルタ 17 バンドパスフィルタ 18 バンドパスフィルタ 19 遮光マスク 22 回転軸 23 軸受 25 円板 26 軸取付部 30 試料ガス 31 試料セル 32,32′ 試料室 35,36 赤外線透過窓 37 通路 38 通路 42 ケ―ス 43,43′ 赤外線検出器 45 検出器窓 46 電極端子 47 電極端子 51 タイミング信号用光透過孔 52 タイミング信号用光透過孔 100 赤外線分析計 101 赤外線源 102 反射鏡 103 赤外線レンズ 104 サンプルセル 105 チョッパホイ―ル 106 赤外線センサ 107 CDモ―タ 11 Light Source 12 Reflecting Mirror Surface 13 Condensing Lens 14 Luminous Flux 15 Bandpass Filter 16 Bandpass Filter 17 Bandpass Filter 18 Bandpass Filter 19 Shading Mask 22 Rotating Shaft 23 Bearing 25 Disc 26 Shaft Mounting Part 30 Sample Gas 31 Sample Cell 32, 32 'Sample chamber 35, 36 Infrared transmission window 37 Passage 38 Passage 42 Case 43, 43' Infrared detector 45 Detector window 46 Electrode terminal 47 Electrode terminal 51 Timing signal light transmission hole 52 Timing signal light transmission hole 100 Infrared analyzer 101 Infrared source 102 Reflector 103 Infrared lens 104 Sample cell 105 Chopper wheel 106 Infrared sensor 107 CD motor
Claims (3)
ルを置いて、試料による赤外領域の吸光度によってガス
成分と濃度を測定する赤外ガス分析計において、光源と
試料セルの間に多層膜バンドパスフィルタが位置し、こ
のフィルタを参照光用フィルタを含めて複数個回転体上
に配置して、光源からの赤外光をフィルタを含めた回転
体によって、特定な波長域の赤外光を断続的に試料セル
に通過させて、試料により一部吸光された赤外線を検出
器により受光して、参照光と測定バンドの光との差異を
基準としてガス成分と濃度を測定する赤外線ガス分析
計。1. In an infrared gas analyzer in which a sample cell is placed between an infrared light source and an infrared detector to measure gas components and concentrations by the absorbance of the sample in the infrared region, between the light source and the sample cell. A multilayer bandpass filter is located in the multi-layer bandpass filter, and a plurality of this filter, including the reference light filter, are arranged on the rotating body, and infrared light from the light source is rotated by the rotating body including the filter in a specific wavelength range. Infrared light is intermittently passed through the sample cell, and the infrared light partially absorbed by the sample is received by the detector, and the gas component and concentration are measured based on the difference between the reference light and the light in the measurement band. Infrared gas analyzer.
転体に配置する多層膜バンドパスフィルタを参照光用と
単一成分用の2種類、または複数成分用の3種類以上と
して、単一成分または複数成分を同一装置によって各々
のガス成分と濃度を測定する赤外線ガス分析計。2. The gas analyzer according to claim 1, wherein the multi-layer bandpass filter to be arranged on the rotating body comprises two types for reference light and a single component, or three or more types for a plurality of components. Infrared gas analyzer that measures the component and concentration of each component or multiple components with the same device.
て、同一の回転体と多層膜バンドパスフィルタの組合に
対して、複数個の赤外線光路を設け、複数個の試料セル
と複数個の赤外線検出器によって、多種類の試料または
多種類の測定レンジについて、単一成分または複数成分
を同時に同一装置によって測定する赤外線ガス分析計。3. The gas analyzer according to claim 1 or 2, wherein a plurality of infrared light paths are provided for a combination of the same rotor and a multilayer film bandpass filter, and a plurality of sample cells and a plurality of sample cells are provided. An infrared gas analyzer that measures a single component or multiple components simultaneously with the same device for multiple types of samples or multiple types of measurement ranges using an infrared detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3725892A JPH05203573A (en) | 1992-01-28 | 1992-01-28 | Infrared ray gas analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3725892A JPH05203573A (en) | 1992-01-28 | 1992-01-28 | Infrared ray gas analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05203573A true JPH05203573A (en) | 1993-08-10 |
Family
ID=12492632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3725892A Pending JPH05203573A (en) | 1992-01-28 | 1992-01-28 | Infrared ray gas analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05203573A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003253A (en) * | 2005-06-22 | 2007-01-11 | Dkk Toa Corp | Gas concentration measuring device |
JP2007212259A (en) * | 2006-02-09 | 2007-08-23 | Dkk Toa Corp | Gas concentration measuring device |
WO2017086555A1 (en) * | 2015-11-16 | 2017-05-26 | 건국대학교 산학협력단 | Compact-type non-dispersive infrared gas analysis device |
US9915604B2 (en) | 2014-07-03 | 2018-03-13 | Murata Manufacturing Co., Ltd. | Gas concentration measurement device |
US9939375B2 (en) | 2014-07-03 | 2018-04-10 | Murata Manufacturing Co., Ltd. | Concentration measurement device |
-
1992
- 1992-01-28 JP JP3725892A patent/JPH05203573A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007003253A (en) * | 2005-06-22 | 2007-01-11 | Dkk Toa Corp | Gas concentration measuring device |
JP2007212259A (en) * | 2006-02-09 | 2007-08-23 | Dkk Toa Corp | Gas concentration measuring device |
US9915604B2 (en) | 2014-07-03 | 2018-03-13 | Murata Manufacturing Co., Ltd. | Gas concentration measurement device |
US9939375B2 (en) | 2014-07-03 | 2018-04-10 | Murata Manufacturing Co., Ltd. | Concentration measurement device |
WO2017086555A1 (en) * | 2015-11-16 | 2017-05-26 | 건국대학교 산학협력단 | Compact-type non-dispersive infrared gas analysis device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003507703A (en) | Infrared spectrometer for measuring isotope ratios | |
US5559333A (en) | Apparatus of non-dispersive infrared analyzer | |
CA2738820C (en) | An arrangement adapted for spectral analysis of high concentrations of gas | |
JPS60105946A (en) | infrared gas analyzer | |
JPH09184803A (en) | Infrared gas analyzer | |
JPH08327545A (en) | Infrared gas analyzer | |
US5731583A (en) | Folded optical path gas analyzer with cylindrical chopper | |
JPH1082740A (en) | Infrared gas analyzer | |
JPH05203573A (en) | Infrared ray gas analyzer | |
JP2001324446A (en) | Apparatus for measuring isotope gas | |
JPH06249779A (en) | Gas analyzer | |
JPS59208445A (en) | Method and device for measuring absorptive component quantity of sample | |
JPH05215685A (en) | Infrared gas analyzer | |
CN115876712A (en) | Sensor, gas purification device and indoor environment system | |
JP3941661B2 (en) | Infrared gas analyzer | |
CA1174076A (en) | Normalized radiometer and method of measuring analytes | |
JP3302208B2 (en) | Infrared analyzer | |
JP3347264B2 (en) | Concentration analyzer | |
EP4276444A1 (en) | Optical co2 concentration meter based on ir light absorption in gas | |
JPH0429399Y2 (en) | ||
JPH0645246Y2 (en) | Infrared gas analyzer | |
JP3918740B2 (en) | Infrared gas analyzer | |
JPH05157689A (en) | Gas analyzer | |
JPH0620131Y2 (en) | Non-dispersive gas analyzer | |
US4606644A (en) | Gas measuring apparatus with means to reduce thermal radiation effects |