JPH0520179B2 - - Google Patents
Info
- Publication number
- JPH0520179B2 JPH0520179B2 JP8707284A JP8707284A JPH0520179B2 JP H0520179 B2 JPH0520179 B2 JP H0520179B2 JP 8707284 A JP8707284 A JP 8707284A JP 8707284 A JP8707284 A JP 8707284A JP H0520179 B2 JPH0520179 B2 JP H0520179B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- bending
- circular receiving
- bent
- receiving mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/02—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
- B21D7/024—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
この発明は、直状の管(テーパー管、角管、丸
管など)を円弧、放物線、楕円等の任意の曲線状
に曲げる方法に係り、とくに高精度の加工ができ
る曲げ加工法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method of bending a straight pipe (tapered pipe, square pipe, round pipe, etc.) into an arbitrary curved shape such as a circular arc, parabola, or ellipse. , especially regarding bending methods that allow for highly accurate processing.
<従来技術>
管曲げの方法としては、従来より種々のものが
知られる。代表的なものを列挙すれば次のとおり
である。<Prior Art> Various methods of pipe bending have been known in the past. Typical examples are listed below.
圧縮曲げ:第1図に示すように固定した曲げ
型Aに対し管Pをプレス型Bにより押し付けな
がら曲げ型の彎曲に沿わせるようにして曲げる
方法。 Compression bending: As shown in FIG. 1, a method in which the pipe P is pressed against a fixed bending die A using a press die B and is bent along the curvature of the bending die.
引曲げ:圧縮曲げにおけるプレス型の傾動を
曲げ型の回動に変更したようなもので、第2図
(イは加工前の状態、ロは加工進行中の状態)
に示すように曲げ型Aを可回転となしこれに管
Pの特定点を固定型34にて固定しこの状態で
曲げ型Aを回動させ、曲げ型とそれに対応する
プレス型Bとの間から恰も管を順次引き出すよ
うにして曲げる方法。必要に応じマンドレル3
5が使用される。 Draw bending: This is similar to changing the tilting of the press mold in compression bending to the rotation of the bending mold, as shown in Figure 2 (A is the state before processing, B is the state in progress)
As shown in the figure, the bending die A is made rotatable, and a specific point of the pipe P is fixed to it with a fixed die 34, and in this state, the bending die A is rotated to create a space between the bending die and the corresponding press die B. A method of bending the tubes by pulling them out one after another. Mandrel 3 if necessary
5 is used.
プレス曲げ:第3図に示すように管Pを左右
一対の受座36,36に差し渡してセツトしそ
の中央部をプレス型Bで押圧して曲げる方法。 Press bending: As shown in FIG. 3, a method in which a pipe P is placed across a pair of left and right receiving seats 36, 36, and the center portion is pressed by a press die B to bend the pipe P.
ロール曲げ:第4図に示すように千鳥配置の
3つの駆動成形ロール37,37,37間に管
Pを通して順次曲げる方法。 Roll bending: A method of sequentially bending the pipe P by passing it between three driven forming rolls 37, 37, 37 arranged in a staggered manner as shown in FIG.
引張り曲げ:第5図に示すように固定の曲げ
型Aに管Pを押し付けてその両端を引張りなが
ら曲げる方法。 Tensile bending: A method of pressing the pipe P against a fixed bending die A and bending it while pulling both ends of the pipe, as shown in Fig. 5.
ハンブルグ曲げ:第6図に示す如く先太りの
キセル状マンドレル38に定寸の管Pをその基
端側から挿入し先端部を通過させて曲げる方
法。 Hamburg bending: As shown in FIG. 6, a method in which a pipe P of a fixed size is inserted from the proximal end into a pipe-like mandrel 38 with a thickened tip, and the tip is passed through and bent.
以上のような方法はしかし、それぞれに難点が
ある。 However, each of the above methods has its own drawbacks.
とくに圧縮曲げやプレス曲げは、加工に伴う管
の偏平化やしわの発生が問題となる。ロール曲げ
以外は何れの方法も、曲げ半径等加工条件が変わ
る毎に金型(ハンブルグ曲げではマンドレル)の
サイズ替えを行う種類のもので、多くの金型(マ
ンドレル)を準備する必要があるとともに段取り
替えに手間、時間がかかる。それにそもそもこの
種の方法は、その本来の狙いが円弧曲げにあり、
他の、例えば楕円曲げ等については殆ど考慮され
ていない。またロール曲げについても、成形ロー
ルの相互位置関係を変えることで曲げ半径を調節
することが可能ではあるが、曲げ半径の選択は比
較的大きな値の範囲に限られる。この他、とくに
ハンブルグ曲げなどは、予め定寸に切断された短
尺の管にしか適用できず、例えば長尺ポールの一
端側にだけ曲りを与える類いの加工などは全く行
い得ず、この方法は専らエルボの製造にのみ利用
されているのが実際である。 In particular, compression bending and press bending pose a problem in that the tube becomes flattened and wrinkles occur during processing. In all methods other than roll bending, the size of the mold (or mandrel in Hamburg bending) is changed each time the bending radius or other processing conditions change, and it is necessary to prepare many molds (mandrels). Changing setups takes time and effort. Moreover, the original aim of this type of method is circular bending,
Other methods, such as elliptical bending, are hardly considered. Regarding roll bending, although it is possible to adjust the bending radius by changing the mutual positional relationship of the forming rolls, the selection of the bending radius is limited to a relatively large range of values. In addition, Hamburg bending, in particular, can only be applied to short pipes that have been cut to a certain size in advance; for example, processing that only bends one end of a long pole cannot be performed at all, and this method cannot be used at all. In fact, it is used exclusively for the manufacture of elbows.
<発明の目的>
本発明は、円弧をはじめ、放物線や楕円等、あ
らゆる種類の曲線に沿う管曲げを同一の設備にて
金型変更等の段取り替えなしで行うことができ、
しかもとくに曲げ形状の加工精度が良好で、曲げ
に伴う管の偏平化やしわ発生に対しても有効な曲
げ加工方法の提供を目的とする。<Purpose of the invention> The present invention is capable of bending pipes along all kinds of curves, including circular arcs, parabolas, and ellipses, using the same equipment without changing setups such as changing molds.
Moreover, it is an object of the present invention to provide a bending method that has particularly good processing accuracy in bending shapes and is effective against flattening and wrinkles of the tube due to bending.
<発明の構成>
すなわち本発明は、特定の一平面上で任意の位
置に移動可能な把持装置により被曲げ管をその曲
げようとする部分以外の位置で掴持し、その被曲
げ部分を前記把持装置の移動平面と平行の面内で
旋回する円形受型とこれと対をなす直状の押型と
の間に挟み込むようにしてセツトし、その直状押
型を円形受型に対し圧接状態を保ちつつその外周
に沿つて漸進的に傾動させ、この傾動運動と前記
円形受型の旋回運動と把持装置の平面運動の各運
動を司どる駆動装置の速度制御系に目標曲げ形状
からその各駆動装置の応答遅れを予め加味して必
要な指示速度として割り出した速度値を指令信号
として入力するとともに、各駆動装置の駆動実績
を連続的に検出しその実績値の目標値に対する誤
差を逐次求めて比例積分制御により前記指示速度
に補正を加えるようにして、直状押型、円形受
型、把持装置の運動をそれぞれ目標曲げ形状に合
致し相互に同期するように管理しながら管曲げを
遂行することを特徴とする管の曲げ加工方法を要
旨とする。本発明の成形方法は基本的には、いわ
ゆる圧縮曲げにロール曲げを組合せたようなもの
であり、円形受型と直状押型、それに管そのもの
を保持する把持装置の3者に所要の運動を与えな
がら管曲げを行うというものである。かかる方法
では成形過程における上記3者の位置管理が加工
精度上重要な意味をもつことになり、したがつて
本発明では併せて、それら3者の位置を同期制御
する方法をも特定したものである。<Structure of the Invention> That is, the present invention grips a pipe to be bent at a position other than the part to be bent by a gripping device movable to any position on a specific plane, and holds the pipe to be bent at a position other than the part to be bent. It is set so as to be sandwiched between a circular receiving mold rotating in a plane parallel to the plane of movement of the gripping device and a straight pressing mold forming a pair therewith, and the straight pressing mold is pressed against the circular receiving mold. The target bending shape is then gradually tilted along its outer circumference, and the speed control system of the drive device that controls this tilting motion, the rotational motion of the circular receiving mold, and the planar motion of the gripping device is controlled from the target bending shape to each drive. The speed value determined as the required command speed by taking into account the response delay of the device in advance is input as a command signal, and the driving performance of each drive device is continuously detected and the error of the actual value with respect to the target value is sequentially determined. Bending the pipe is performed by correcting the indicated speed using proportional-integral control and managing the movements of the straight press die, circular receiving die, and gripping device so that they each match the target bending shape and are synchronized with each other. The gist of this paper is a pipe bending method characterized by the following. The forming method of the present invention is basically a combination of so-called compression bending and roll bending, and requires the necessary movement of three parts: a circular receiving mold, a straight pressing mold, and a gripping device that holds the tube itself. This involves bending the tube while applying the force. In such a method, the position control of the above-mentioned three persons during the molding process has an important meaning in terms of processing accuracy. Therefore, the present invention also specifies a method for synchronously controlling the positions of these three persons. be.
<実施例>
以下、本発明の方法を具体的かつ詳細に説明す
る。<Example> Hereinafter, the method of the present invention will be explained specifically and in detail.
第7図は本発明の成形法を実施するための装置
を模式に示す平面図である。 FIG. 7 is a plan view schematically showing an apparatus for carrying out the molding method of the present invention.
図において、1は曲げようとする直状の管P
(丸管)を把持する把持装置で、これは固定片2
と該固定片に対し進退する可動片3との間に管P
をおき油圧シリンダ4にて可動片3を押圧操作し
て両片間に管を挟圧保持する構造である。この把
持装置は特定の一平面上で任意の位置に移動可能
に設ける必要がある。図示では、各々独立した駆
動源7,9が付設されたスクリユー軸5,6を備
える2つのテーブル8,10を組合せた構造がと
られている。すなわち、把持装置1はまずテーブ
ル8のスクリユー軸5にねじ係合し、同テーブル
上のガイド8a,8aに沿つて駆動され、更にこ
のテーブル8自体が、それと直角配置のもう一つ
のテーブル10のスクリユー軸6に係合しそのテ
ーブル10上のガイド10a,10aに沿つて駆
動される構造である。駆動源7,9としては制御
性の高いD.Cモータがよい。以下、駆動源につい
ては全て同様である。 In the figure, 1 is the straight pipe P to be bent.
This is a gripping device that grips the (round tube), and this is the fixed piece 2
A pipe P is provided between the movable piece 3 that moves forward and backward with respect to the fixed piece.
The structure is such that the pipe is held under pressure between the two pieces by pressing the movable piece 3 with the hydraulic cylinder 4. This gripping device needs to be movable to any position on a specific plane. In the illustrated structure, two tables 8 and 10 are combined, each having screw shafts 5 and 6 to which independent drive sources 7 and 9 are attached. That is, the gripping device 1 is first threadedly engaged with the screw shaft 5 of the table 8 and is driven along the guides 8a, 8a on the same table, and this table 8 itself is then driven along the other table 10 arranged at right angles thereto. It has a structure that engages with the screw shaft 6 and is driven along guides 10a, 10a on the table 10. As the drive sources 7 and 9, DC motors with high controllability are preferable. The same applies to all drive sources hereinafter.
12は上記把持装置と適当に離れて位置する円
形の受型で、外周に被曲げ管Pの曲げようとする
部分の外径に対応する形状の半円溝13を有して
いる。図示はテーパ管を曲げ対象とした例であ
る。この円形受型はそれより大径の円形をなし外
周に歯車15を備えた固定のベツド14に同心的
に置かれ、ベツド中央に固定の軸16を中心に旋
回可能になつている。この受型の旋回運動は、前
記把持装置1の移動平面と平行の面内で行われる
ようにする。この円形受型は外郭円と同心の円形
歯車17を有し、これに前記ベツド14上に設置
の駆動源18に減速機19を介して結合した小歯
車20が噛み合わされて、駆動されるよう設けら
れている。 Reference numeral 12 denotes a circular receiving die located at an appropriate distance from the gripping device, and has a semicircular groove 13 on its outer periphery having a shape corresponding to the outer diameter of the portion of the pipe P to be bent. The illustration shows an example in which a tapered pipe is to be bent. This circular receiving mold has a larger diameter and is placed concentrically on a fixed bed 14 having a gear 15 on its outer periphery, and is rotatable about a shaft 16 fixed at the center of the bed. This pivoting motion of the receiving mold is made to be performed in a plane parallel to the plane of movement of the gripping device 1. This circular receiving mold has a circular gear 17 concentric with the outer circle, and a small gear 20 connected to a drive source 18 installed on the bed 14 via a reducer 19 is meshed with the circular gear 17 to be driven. It is provided.
21は上記円形金型12と同軸回転する旋回架
台で、円形金型12の回転中心軸16に基端部で
回転可能に支持されている。この架台21は、そ
の上に設置した駆動源22に減速機23を介して
結合した小径の駆動歯車24が前記固定ベツド外
周の大歯車15に噛み合わされ、駆動歯車24が
大歯車15に沿つてベツド周囲を移動することに
より旋回するよう設けられている。 Reference numeral 21 denotes a rotating mount that rotates coaxially with the circular mold 12, and is rotatably supported at its base end by the rotation center axis 16 of the circular mold 12. In this frame 21, a small-diameter drive gear 24 connected to a drive source 22 installed on the frame via a reducer 23 is meshed with a large gear 15 on the outer periphery of the fixed bed, and the drive gear 24 is driven along the large gear 15. It is provided to rotate by moving around the bed.
25は上記旋回架台21に設置した直状押型
で、円形金型と同じように被曲げ管Pの曲げよう
とする部分の外径に対応する形状の半円溝26を
有し、前記円形受型12とは互いの半円溝13,
26を向き合わせた格好になつている。この直状
押型25は支持装置27を介して旋回架台21上
に設置してあり、この支持装置27は架台21に
対しては当該架台の旋回軌跡の法線方向に設けた
ガイド21a,21aに沿つて、つまり円形受型
12の半径方向に摺動可能であり、また直状押型
25に対しては該押型の上下両側面に対応する計
4個の支持ローラ28a,28aにより押型が自
身の長手方向に沿つてスライドできるようにして
ある。すなわち、直状押型25は前記円形受型1
2の半径方向に進退可能でかつ自身の長手方向に
摺動可能である。 Reference numeral 25 denotes a straight press die installed on the above-mentioned rotating frame 21, which has a semicircular groove 26 of a shape corresponding to the outer diameter of the portion of the pipe P to be bent, similar to the circular die, and is attached to the above-mentioned circular receiver. The mold 12 and the mutual semicircular groove 13,
26 facing each other. This straight press die 25 is installed on the turning frame 21 via a support device 27, and this support device 27 is connected to guides 21a, 21a provided in the normal direction of the turning locus of the frame 21. In other words, it can slide along the circular receiving mold 12 in the radial direction, and for the straight pressing mold 25, the pressing mold can be slid on its own by a total of four support rollers 28a, 28a corresponding to the upper and lower sides of the pressing mold. It is designed to be able to slide along the longitudinal direction. That is, the straight mold 25 is the same as the circular receiving mold 1.
It can move forward and backward in the radial direction of 2 and can slide in its own longitudinal direction.
直状押型25の背面にはラツク歯30が長手方
向に沿つて設けられ、これに旋回架台21上の駆
動源31に結合した小歯車32が噛み合わされて
おり、この小歯車32の駆動により直状押型25
をスライドさせて任意の位置に位置決め可能にな
つている。 Rack teeth 30 are provided along the longitudinal direction on the back surface of the straight mold 25, and a small gear 32 connected to a drive source 31 on the rotating frame 21 is meshed with the rack teeth 30. Shape mold 25
It is possible to position it in any position by sliding it.
29は上記直状押型25を円形受型の外周に押
し付ける押圧機構で、前記支持装置27に組込ま
れたローラ28b,28bを介して直状押型25
の背面を押圧するようになつている。云う迄もな
くローラ28bは押型を長手方向可摺動に保つた
ままで押圧操作することを可能にするためのもの
である。この押圧機構29は、油圧シリンダで、
押圧みのならず、押型25を円形受型12から離
反させるのにも使用する。 Reference numeral 29 denotes a pressing mechanism for pressing the straight mold 25 onto the outer periphery of the circular receiving mold.
It is designed to press against the back of the Needless to say, the roller 28b is provided to enable pressing operation while keeping the mold movable in the longitudinal direction. This pressing mechanism 29 is a hydraulic cylinder,
It is used not only for pressing, but also for separating the pressing mold 25 from the circular receiving mold 12.
本発明の管曲げ方法は、以上のような構成にな
る装置を用い、次のようにして曲げ加工を行うも
のである。 In the tube bending method of the present invention, bending is performed in the following manner using the apparatus configured as described above.
まず所定の位置にセツトした把持装置1に曲
げようとする管Pをその曲げ対象部以外の個所
で把持させ、同時にその管Pを円形受型12と
直状押型25間に挟み込むようにしてセツトす
る。この際、管Pの成形開始位置M外周が円形
受型12の半円溝13に内接し、直状押型25
は半円溝26がそのような管Pに軸方向に巾を
もつて対応しかつその前面が円形受型12の外
周に接するようにする。図示のように曲げ対象
がテーパ管のような場合には、とくに成形開始
位置Mに、同位置の外径と一致する内径の半円
溝13,26部位を正確に対応させるようにす
ることが肝心である。このような受型、押型の
セツトは、それぞれ駆動源18,31を使つて
行えばよい。 First, the pipe P to be bent is held by the gripping device 1 set at a predetermined position at a point other than the part to be bent, and at the same time, the pipe P is sandwiched between the circular receiving mold 12 and the straight pressing mold 25, and set. do. At this time, the outer periphery of the forming start position M of the pipe P is inscribed in the semicircular groove 13 of the circular receiving mold 12, and the straight pressing mold 25
The semicircular groove 26 corresponds to such a pipe P with a width in the axial direction, and its front surface is in contact with the outer periphery of the circular receiving mold 12. When the object to be bent is a tapered pipe as shown in the figure, it is especially important to make the forming start position M correspond accurately to the semicircular grooves 13 and 26 whose inner diameter matches the outer diameter at the same position. That's the important thing. The receiving mold and the pressing mold can be set using the driving sources 18 and 31, respectively.
管と装置各部の位置関係をこのように設定し
た上で、押圧機構29を働かせて直状押型25
を円形受型12の外周に所定の力で押し付け
る。 After setting the positional relationship between the tube and each part of the device as described above, the pressing mechanism 29 is operated to press the straight mold 25.
is pressed against the outer periphery of the circular receiving mold 12 with a predetermined force.
上記セツト完了後、旋回架台21を駆動源2
2にて旋回させ、直状押型25を円形受型12
に対する圧接状態を保持させつつその外周に沿
わせながら漸進的に傾動させてゆく。このと
き、同時進行的に円形受型12と把持装置1と
を、駆動源18,7,9によつて駆動し、これ
らの運動、すなわち直状押型25の傾動、円形
受型12の旋回、把持装置1の平面運動を、目
標曲げ形状に合わせて管理する。 After completing the above setting, move the rotating mount 21 to the drive source 2.
2, and rotate the straight mold 25 into the circular receiving mold 12.
While maintaining the state of pressure contact with the object, the object is gradually tilted along the outer periphery of the object. At this time, the circular receiving mold 12 and the gripping device 1 are simultaneously driven by the driving sources 18, 7, and 9, and these movements, namely, the tilting of the straight pressing mold 25, the turning of the circular receiving mold 12, The planar motion of the gripping device 1 is managed in accordance with the target bending shape.
第8図,第9図はその管理の具体例を2つ示
したもので、第8図は円弧曲げ、第9図は楕円
曲げ、の各場合を示す。すなわち図において、
P1→P2…は直状押型25の円形受型12の外
周上への接触点の推移で直状押型25の傾動運
動を示し、Q1→Q2…は円形受型12の外周上
の一点の推移、つまり同受型の旋回運動を、ま
たM1→M2…は管Pの曲げ開始点の推移で把持
装置1の平面運動を、それぞれ表わし、P,
Q,M相互間において添字ナンバーが同じもの
は互いに同時点での位置を意味する。 FIGS. 8 and 9 show two specific examples of this management, with FIG. 8 showing arc bending and FIG. 9 showing elliptical bending. That is, in the figure,
P 1 →P 2 ... shows the tilting movement of the straight mold 25 due to the transition of the contact point of the straight mold 25 on the outer periphery of the circular receiving mold 12, and Q 1 →Q 2 ... shows the tilting movement of the straight mold 25 on the outer periphery of the circular receiving mold 12. M 1 →M 2 ... represents the transition of one point, that is, the rotational movement of the receiving mold, and the transition of the bending start point of the pipe P represents the planar movement of the gripping device 1, and P,
The same subscript number between Q and M means the positions at the same time.
このように直状押型25、円形受型12および
把持装置1の運動を相互に同期させて管理するこ
とにより、目標に合致した任意の曲線に沿う曲げ
形状を出すことができる。この場合成形後の管の
スプリングバツク量を予め考慮しその分を見込ん
で成形を行う必要があるのは云う迄もない。 By managing the movements of the straight mold 25, the circular receiving mold 12, and the gripping device 1 in synchronization with each other in this way, it is possible to produce a bent shape that follows an arbitrary curve that meets the target. In this case, it goes without saying that it is necessary to consider in advance the amount of spring back of the tube after molding and to carry out the molding taking into account this amount.
なお、上記成形過程において直状押型25はそ
れと圧接状態にある円形受型12の旋回動に合わ
せて長手方向にスライドさせるようにするもので
あるが、この運動については円形受型12の動き
による従動、駆動源31による積極駆動の何れと
してもよい。ただし、加工精度の点から云えば積
極駆動とし円形受型12の運動に確実に同調させ
るようにするのが好ましい。円形受型12の旋回
と直状押型25のスライド運動間における確実な
同期は、両型に相互噛み合いのラツク歯を付設す
ることによつても達成することができる。 In addition, in the above-mentioned molding process, the straight mold 25 is slid in the longitudinal direction in accordance with the rotational movement of the circular receiving mold 12 that is in pressure contact with it; however, this movement is caused by the movement of the circular receiving mold 12. Either driven driving or active driving by the driving source 31 may be used. However, from the point of view of machining accuracy, it is preferable to use active drive to ensure synchronization with the movement of the circular receiving mold 12. Reliable synchronization between the pivoting of the circular receiving mold 12 and the sliding movement of the straight mold 25 can also be achieved by providing both molds with interlocking lock teeth.
ところで、以上のような成形法においては、成
形過程における装置駆動系、つまり直状押型1
2、円形受型25、把持装置1の運動の管理精度
が加工精度を支配することになるが、この3者の
運動を相互に正確に同期させることは実際上非常
に難しい。すなわち、各運動を司どる駆動源
(D.Cモータ)の速度制御における応答に遅れが
あること、各駆動系毎に慣性モーメントが異な
るため指示速度に対する実績速度の遅れ時間がま
ちまちであること、駆動系単位で指示速度の変
化パターンもまるで異なること、等がその原因と
云うことができる。 By the way, in the above molding method, the device drive system in the molding process, that is, the straight mold 1
2. The accuracy of controlling the movements of the circular receiving mold 25 and the gripping device 1 governs the machining accuracy, but it is actually very difficult to accurately synchronize the movements of these three with each other. In other words, there is a delay in the speed control response of the drive source (DC motor) that controls each movement, the moment of inertia differs for each drive system, so the delay time between the actual speed and the commanded speed varies, and the drive system This can be attributed to the fact that the change pattern of the indicated speed is completely different depending on the unit.
本発明に基く制御方法は、このような装置駆動
系の運動を高精度に同期制御することを可能にす
るものである。以下、その制御について詳細に説
明する。 The control method based on the present invention makes it possible to synchronously control the movement of such a device drive system with high precision. The control will be explained in detail below.
上記装置駆動系の運動については、直状押型2
5の傾動は前記旋回架台21の回転角β、円形受
型12の旋回運動は自身の回転角γ、そして把持
装置1の平面運動は直交する2本のスクリユー軸
5,6に沿う方向への変位(X),(Y)にてそれ
ぞれ規定できる。つまり、4軸(β,γ,X,
Y)に関する位置変化でもつて管曲げ形状を特定
することができるものである。 Regarding the movement of the device drive system mentioned above, the straight pressing die 2
The tilting movement of 5 is due to the rotation angle β of the rotating frame 21, the rotational movement of the circular receiving mold 12 is due to its own rotation angle γ, and the planar movement of the gripping device 1 is due to the direction along the two orthogonal screw axes 5 and 6. Each can be defined by displacement (X) and (Y). In other words, 4 axes (β, γ, X,
It is possible to specify the pipe bending shape even by changing the position with respect to Y).
ところで、一般に機械的装置における作動遅れ
を解消するには予めその駆動系の応答遅れ特性を
考慮して早めに制御系への指示を出してやること
である。 By the way, in general, in order to eliminate operational delays in mechanical devices, it is necessary to take into account the response delay characteristics of the drive system in advance and issue instructions to the control system early.
そこで上記β,γ,X,Yの4軸についての駆
動系の応答特性を実測調査したところ、各モータ
への速度指示に対する応答の遅れは、第10図に
示すように、いわゆる2次遅れ系の特性に酷似し
ており、2次遅れ系のモデルとして近似すれば制
御精度上十分なものが得られることが判つた。 Therefore, when we actually measured and investigated the response characteristics of the drive system for the four axes β, γ, It was found that sufficient control accuracy can be obtained by approximating it as a second-order lag system model.
ここに、速度指示の入力と応答出力の関係を数
式化すれば、下式
o(t)=∫t pg(t−τ)・i(t)dτ
o(t):時刻tにおける出力
i(t):時刻tにおける入力
g(t):入力と出力との間の関係を示す関数
τ:時刻を表わす変数
となる。これをラプラス変換すると、
O(s)=I(S)×G(S)
G(s):伝達関数(設備に固有)
と表わされ、この式より目標出力O(S)を得る
には入力I(S)をO(S)/G(S)とすればよ
いことが分る。したがつて、O(S)/G(S)を
逆ラプラス変換して目標出力を得るための時刻t
の入力i′(t)を予め算出し、この速度値を制御
系に入力として与えてやるようにすれば、基本的
にはモータ速度の履歴が目標に一致し、(X,Y,
β,γ)の軌跡が目標に合致したものとなるはず
である。 Here, if the relationship between the speed instruction input and the response output is expressed mathematically, the following formula o(t)=∫ t p g(t-τ)・i(t)dτ o(t): Output i at time t (t): Input at time t g(t): Function showing the relationship between input and output τ: Variable representing time. When this is Laplace transformed, it is expressed as O(s)=I(S)×G(S) G(s): Transfer function (specific to the equipment). To obtain the target output O(S) from this formula, It can be seen that the input I(S) should be O(S)/G(S). Therefore, the time t for obtaining the target output by inverse Laplace transform of O(S)/G(S)
If the input i'(t) of is calculated in advance and this speed value is given as input to the control system, basically the motor speed history will match the target and
The trajectory of β, γ) should match the target.
ところが、一般にモータの回転数は電圧変化、
気温変化等の不可避的外乱のためにある程度のば
らつきは避けられないものであり、したがつて上
記の予測制御だけでは現実には十分な結果は望め
ない。 However, in general, the rotation speed of a motor depends on changes in voltage,
Some degree of variation is unavoidable due to unavoidable disturbances such as temperature changes, and therefore, in reality, sufficient results cannot be expected from the above predictive control alone.
しかるに、上記予測制御を基に、いわゆる比例
積分制御の手法に従つて、下式
i″(t)=i′(t)+a・Δx(t)+b∫t pΔx(s)ds
a,b:定数(調整パラメータ)
Δx:目標位置と実績位置の差
によりモータ指示速度i′(t)に補正を加える制
御を併用すれば、実用上十分な制御精度を得るこ
とが可能である。比例積分制御適用下では通常、
目標値の変化に対し実績値は遅れをもちつつ目標
値に近づいてゆく形となりその意味での誤差は残
ることになるが、予め指示速度に系それ自体の応
答遅れが加味されていて実績値が目標値にほぼ一
致せられるときには、もともと外乱に基く微小な
誤差しか存在せず、このため比例積分制御により
高精度の制御が実現できるものである。 However, based on the above predictive control and according to the so-called proportional-integral control method, the following formula i″(t)=i′(t)+a・Δx(t)+b∫ t p Δx(s)ds a, b : Constant (adjustment parameter) Δx: By using control that corrects the motor instruction speed i'(t) based on the difference between the target position and the actual position, it is possible to obtain practically sufficient control accuracy.Proportional integral Under control applications, typically
In response to changes in the target value, the actual value will approach the target value with a delay, and in this sense an error will remain, but since the response delay of the system itself has been taken into account in advance to the indicated speed, the actual value When almost coincides with the target value, there is originally only a minute error due to disturbance, and therefore high precision control can be achieved by proportional-integral control.
すなわち、本発明に係る制御方法は以上の事実
に基くものであり、具体的な手法は次のとおりで
ある。 That is, the control method according to the present invention is based on the above facts, and the specific method is as follows.
前出第7図に制御に用いる機器を模式に示した
が、同図において331,332…は曲げ加工機の
前記X,Y,β,γの各軸に対応する駆動モータ
に結合したパルス発生器で、駆動モータの実績回
転量に応じた数のパルスを発振する。34は上記
各駆動モータの速度制御系。35はこの速度制御
系34に指示を与える計算機である。この計算機
の処理内容を、第11図にブロツクダイヤグラム
にて示す。 The equipment used for control is schematically shown in Figure 7 above, in which 33 1 , 33 2 ... are connected to the drive motors corresponding to the X, Y, β, and γ axes of the bending machine. A pulse generator generates a number of pulses according to the actual rotation amount of the drive motor. 34 is a speed control system for each of the drive motors mentioned above. 35 is a computer that gives instructions to this speed control system 34. The processing contents of this computer are shown in a block diagram in FIG.
加工に当つてはまず、計算機35により予め与
えられた曲げ形状に関する情報から、加工機の各
駆動系の応答遅れを加味して各駆動系への指示速
度i′(t)を計算する。すなわち、第11図のブ
ロツクダイヤグラムのA部の演算を行う。 In machining, first, the computer 35 calculates the instruction speed i'(t) to each drive system from information on the bending shape given in advance, taking into account the response delay of each drive system of the processing machine. That is, the calculation in part A of the block diagram of FIG. 11 is performed.
次いで、この演算にて求められた指示速度i′(t)
を、各駆動モータの制御系34に入力して、各駆
動モータを速度管理しながら作動させる。このと
きその一方で、各駆動モータに結合したパルス発
生器331,332…からの出力パルスを計算機3
5により逐一カウントし、(X,Y,β,γ)の
実績位置を連続的に検出しておき、その実績位置
の目標位置に対する誤差(ΔX,ΔY,Δβ,Δγ)
を求めて比例積分制御により前記指示速度i′(t)に
補正を加えるようにする。この演算は第11図の
B部に示される。 Next, the indicated speed i′(t) obtained by this calculation
is input to the control system 34 of each drive motor, and each drive motor is operated while controlling its speed. At this time, on the other hand, the computer 3 calculates the output pulses from the pulse generators 33 1 , 33 2 . . . connected to each drive motor.
5, the actual position of (X, Y, β, γ) is continuously detected, and the error (ΔX, ΔY, Δβ, Δγ) of the actual position with respect to the target position is calculated.
is calculated and correction is applied to the commanded speed i'(t) using proportional-integral control. This calculation is shown in part B of FIG.
このような速度制御を、(X,Y,β,γ)が
目標軌跡の最終位置にくるまで継続して行いなが
ら、管曲げを遂行するものである。 The pipe is bent while continuously performing such speed control until (X, Y, β, γ) reaches the final position of the target trajectory.
以上の本発明に基く制御方法の精度の高さを、
具体的数値を挙げて示せば以下のとおりである。
すなわち、第12図は通常の比例積分制御のみに
よつた場合の精度をシミユレーシヨンで検討した
その結果であり、他方第13図は上記本発明に基
く制御を実機に適用してその制御精度を調べた結
果を示す。比例積分制御のみの例では、β,γの
精度が±2.3°以内、X,Yについては15mm以内と
きわめて悪く実際上実用不可の結果が出たが、本
発明例ではβ,γは0.3°以内、X,Yも3mm以内
と大巾な精度向上が認められ、実用上十分な精度
が得られた。 The high accuracy of the control method based on the present invention is as follows.
Specific numerical values are listed below.
That is, Fig. 12 shows the results of a simulation study of the accuracy when using only normal proportional-integral control, while Fig. 13 shows the result of applying the control based on the present invention to an actual machine and examining its control accuracy. The results are shown below. In the example using only proportional-integral control, the accuracy of β and γ was within ±2.3°, and the accuracy of X and Y was within 15 mm, which was extremely poor and impractical, but in the example of the present invention, β and γ were 0.3°. Within 3 mm, X and Y were also within 3 mm, which showed a significant improvement in accuracy, and sufficient accuracy was obtained for practical use.
以上の説明から明らかなように本発明の方法に
よれば、円弧をはじめ、楕円、放物線等、任意の
曲線状に管曲げを行うことが可能であり、しかも
良好な精度の曲げ加工が遂行できる他、管曲げの
過程において管の曲げ行進中の部位はつねに円形
受型と直状押型との間に完全に包囲された形とな
るから、加工に伴う管の偏平化やしわ発生が効果
的に防止される等、すぐれた効果が期待できるも
のである。 As is clear from the above explanation, according to the method of the present invention, it is possible to bend a pipe into any curved shape such as a circular arc, an ellipse, a parabola, etc., and the bending process can be performed with good accuracy. In addition, during the bending process, the part of the pipe that is being bent is always completely surrounded by the circular receiving mold and the straight stamping mold, which effectively prevents flattening and wrinkles of the pipe during processing. It can be expected to have excellent effects, such as prevention.
第1図は圧縮曲げの説明図、第2図は引曲げの
説明図で、イは管セツト状態、ロは加工中の状態
を各示す。第3図はプレス曲げの説明図、第4図
はロール曲げの説明図、第5図は引張り曲げの説
明図、第6図はハンブルグ曲げの説明図、第7図
は本発明法を実施するための曲げ加工装置の模式
平面図並びにその制御系を示すブロツク図、第8
図、第9図は本発明法により管曲げを行う場合の
同上装置各駆動系の管理のし方を示す説明図で、
第8図は円弧曲げ、第9図は楕円曲げ、の各例を
示す。第10図は第7図に示した加工装置の速度
制御における応答遅れの状況を示す図、第11図
は本発明の制御方法に基く計算機処理を示すブロ
ツクダイヤグラム、第12図、第13図は第7図
に示した装置の各駆動系(β,γ,X,Y)に関
する位置制御精度を示す図で、第12図は比例積
分制御のみの場合、第13図は本発明に基く予測
制御+比例積分制御適用の場合をそれぞれ示し、
両図ともイはγ軸誤差、ロはβ軸誤差、ハはX軸
誤差、ニはY軸誤差、を表わす。
図中、1……把持装置、5,6……スクリユー
軸、7,9……駆動源、8,10……テーブル、
12……円形受型、13……半円溝、14……ベ
ツド、18……駆動源、21……旋回架台、22
……駆動源、25……直状押型、26……半円
溝、27……支持機構、29……押圧機構、31
……駆動源、33……パルス発生器、34……速
度制御器、35……計算機。
Fig. 1 is an explanatory diagram of compression bending, and Fig. 2 is an explanatory diagram of tension bending, where A shows the tube set state and B shows the state during processing. Fig. 3 is an explanatory diagram of press bending, Fig. 4 is an explanatory diagram of roll bending, Fig. 5 is an explanatory diagram of tension bending, Fig. 6 is an explanatory diagram of Hamburg bending, and Fig. 7 is an explanatory diagram of implementing the method of the present invention. A schematic plan view of a bending device for the purpose and a block diagram showing its control system, No. 8
Figure 9 is an explanatory diagram showing how to manage each drive system of the same device when bending a pipe by the method of the present invention.
FIG. 8 shows an example of arc bending, and FIG. 9 shows an example of elliptical bending. FIG. 10 is a diagram showing the state of response delay in speed control of the processing device shown in FIG. 7, FIG. 11 is a block diagram showing computer processing based on the control method of the present invention, and FIGS. 12 and 13 are FIG. 7 is a diagram showing the position control accuracy regarding each drive system (β, γ, X, Y) of the device shown in FIG. + Shows the case of applying proportional-integral control,
In both figures, A represents the γ-axis error, B represents the β-axis error, C represents the X-axis error, and D represents the Y-axis error. In the figure, 1...Gripping device, 5, 6...Screw shaft, 7, 9...Drive source, 8, 10...Table,
12...Circular receiving mold, 13...Semicircular groove, 14...Bed, 18...Drive source, 21...Swivel frame, 22
... Drive source, 25 ... Straight pressing die, 26 ... Semicircular groove, 27 ... Support mechanism, 29 ... Pressing mechanism, 31
... Drive source, 33 ... Pulse generator, 34 ... Speed controller, 35 ... Computer.
Claims (1)
持装置により被曲げ管をその曲げようとする部分
以外の位置で掴持し、その被曲げ部分を前記把持
装置の移動平面と平行の面内で旋回する円形受型
とこれと対をなす直状の押型との間に挟み込むよ
うにしてセツトし、その直状押型を円形受型に対
し圧接状態を保ちつつその外周に沿つて漸進的に
傾動させ、その傾動運動と前記円形受型の旋回運
動そして把持装置の平面運動の各運動を司る駆動
装置の速度制御系に目標曲げ形状からその各駆動
装置の応答遅れを予め加味して必要な指示速度と
して割り出した速度値を指令信号として入力する
とともに、各駆動装置の駆動実績を連続的に検出
しその実績値の目標値に対する誤差を逐次求めて
比例積分制御により前記指示速度に補正を加える
ようにして、直状押型、円形受型、把持装置の運
動をそれぞれ目標曲げ形状に対応し相互に同期す
るように管理しながら管曲げを遂行することを特
徴とする管の曲げ加工方法。1. A gripping device movable to any position on a specific plane grips the pipe to be bent at a position other than the portion to be bent, and the bent portion is held in a plane parallel to the plane of movement of the gripping device. The circular receiving mold is placed between the rotating circular receiving mold and the straight pressing mold that forms a pair with it, and the straight pressing mold is gradually pressed along the outer circumference of the circular receiving mold while keeping it in pressure contact with the circular receiving mold. The speed control system of the driving device that governs the tilting movement, the turning movement of the circular receiving mold, and the planar movement of the gripping device is adjusted in advance by taking into account the response delay of each driving device based on the target bending shape. In addition to inputting the speed value determined as the designated speed as a command signal, the driving performance of each drive device is continuously detected, the error of the actual value with respect to the target value is sequentially determined, and the said command speed is corrected by proportional-integral control. A method for bending a tube, characterized in that the tube is bent while controlling the movements of a straight die, a circular receiving die, and a gripping device so as to correspond to a target bending shape and to be synchronized with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707284A JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Tube bending method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707284A JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Tube bending method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60231527A JPS60231527A (en) | 1985-11-18 |
JPH0520179B2 true JPH0520179B2 (en) | 1993-03-18 |
Family
ID=13904736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8707284A Granted JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Tube bending method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60231527A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617753A (en) * | 1995-10-06 | 1997-04-08 | Pines Manufacturing | Low force auto-open tooling for tube bending machine |
JP4907080B2 (en) * | 2004-12-27 | 2012-03-28 | 住友金属工業株式会社 | Method for tensile bending of deformed pipe and processed automotive parts |
JP2006310125A (en) * | 2005-04-28 | 2006-11-09 | Auto Network Gijutsu Kenkyusho:Kk | Shield conductive path, method for manufacturing shield conductive path, shield pipe, and bending machine for shield pipe |
JP5162102B2 (en) * | 2006-05-10 | 2013-03-13 | 新日鐵住金株式会社 | Bending method of deformed pipe, bending apparatus thereof, and bending product using them |
JP4946206B2 (en) * | 2006-06-27 | 2012-06-06 | 住友金属工業株式会社 | Bending method and apparatus for deformed pipe, and processed automotive parts |
JP5040189B2 (en) * | 2006-06-27 | 2012-10-03 | 住友金属工業株式会社 | Bending method of deformed pipe and processed automotive parts |
JP5038819B2 (en) * | 2007-08-22 | 2012-10-03 | 有限会社東和工業 | Bending method for flared tube |
IT1391476B1 (en) * | 2008-10-28 | 2011-12-23 | Cml Int Spa | CURVATURI MACHINE WITH PERFECT TRANSMISSION OF THE MOTORCYCLE TO THE MATRIX |
JP4653856B1 (en) * | 2010-06-04 | 2011-03-16 | 武州工業株式会社 | Pipe bending machine and method for bending a spiral pipe using the pipe bending machine |
-
1984
- 1984-04-27 JP JP8707284A patent/JPS60231527A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60231527A (en) | 1985-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0633076B1 (en) | Tube bending apparatus and method | |
US4412442A (en) | Method for bending a metal pipe | |
JPS5938048B2 (en) | Continuous bending method and device for long materials | |
CN101707940A (en) | Method and device for profile bending | |
JPH0520179B2 (en) | ||
JPS5841980B2 (en) | Numerical control wire cut electrical discharge machine | |
US5481891A (en) | Tube bending apparatus and method | |
JPH0147249B2 (en) | ||
JP2001526116A (en) | Screw manufacturing method and apparatus for performing the method | |
JPS61245928A (en) | Bending device | |
JP2000126821A (en) | Method for bending and device therefor | |
JPS59212124A (en) | Bending device | |
CN107521275A (en) | A kind of Drawing-Core tubing embossing method and equipment | |
JP2001239321A (en) | Steel pipe bending equipment and method thereof | |
JP2875947B2 (en) | End bending method and apparatus before spring forming of NC coiling machine | |
CN207257200U (en) | A kind of Drawing-Core tubing emebosser | |
JPH11226656A (en) | Press-bending hot bender | |
JP2009190047A (en) | Spring forming machine | |
JPH11156446A (en) | Method for three-dimensionally bending pipe or the like | |
JP3594262B2 (en) | Metal tube bending method | |
JPH03248719A (en) | Method and device for bending bar like member | |
JP3209549B2 (en) | Metal tube bending method | |
US6688147B2 (en) | Panel curving machine | |
JP2016013574A (en) | Apparatus for working tubes, bars, sections and similar blanks comprising a plurality of machines arranged in line | |
US10232424B2 (en) | Device and method for bending pipes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |