[go: up one dir, main page]

JPH0519988B2 - - Google Patents

Info

Publication number
JPH0519988B2
JPH0519988B2 JP60174058A JP17405885A JPH0519988B2 JP H0519988 B2 JPH0519988 B2 JP H0519988B2 JP 60174058 A JP60174058 A JP 60174058A JP 17405885 A JP17405885 A JP 17405885A JP H0519988 B2 JPH0519988 B2 JP H0519988B2
Authority
JP
Japan
Prior art keywords
film
single crystal
hole
semiconductor
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60174058A
Other languages
Japanese (ja)
Other versions
JPS6235550A (en
Inventor
Isao Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60174058A priority Critical patent/JPS6235550A/en
Publication of JPS6235550A publication Critical patent/JPS6235550A/en
Publication of JPH0519988B2 publication Critical patent/JPH0519988B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、単結晶半導体膜および単結晶絶縁
膜を順次積層して半導体立体回路素子を製造する
半導体立体回路素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor three-dimensional circuit element, in which a semiconductor three-dimensional circuit element is manufactured by sequentially laminating a single crystal semiconductor film and a single crystal insulating film.

〔従来の技術〕[Conventional technology]

一般に、能動層用半導体薄膜、電極および配線
用薄膜、絶縁用薄膜を順次積層して立体的な回路
素子を形成し、回路の高密度化、高集積化を図る
ことが行なわれているが、特性の優れた半導体立
体回路素子を得るために、たとえば特願昭58−
229763号の明細書および図面等に記載されている
ように、前記回路素子を構成する各材料に単結晶
状態のものを使用し、各材料を単結晶状態のまま
積層することが試みられている。
In general, semiconductor thin films for active layers, thin films for electrodes and wiring, and thin films for insulation are sequentially laminated to form three-dimensional circuit elements in order to increase the density and integration of circuits. For example, in order to obtain semiconductor three-dimensional circuit elements with excellent characteristics,
As described in the specification and drawings of No. 229763, attempts have been made to use single-crystal materials for each of the materials constituting the circuit element, and to laminate each material in the single-crystal state. .

そして従来、たとえば最上層にpn接合型フオ
トセンサ、下層にMOSトランジスタを備えた半
導体立体回路素子の製造は次のような手順に従つ
て行なわれる。まず、第2図aに示すように、た
とえばn形の単結晶シリコン膜1上にシリコン酸
化膜を拡散マスクとして不純物を拡散し、p形の
ソース領域2およびドレイン領域3を形成し、前
記シリコン酸化膜を除去したのち、CVD法によ
りゲート絶縁膜としての単結晶スピネル膜4を形
成し、形成したスピネル膜4を通してシリコン膜
1とスピネル膜4との界面を酸化してシリコン酸
化膜5を形成し、スピネル膜4とシリコン酸化膜
5との2重ゲート絶縁膜6を形成し、ソース領域
2、ドレイン領域3上の絶縁膜6にコンタクトホ
ール7を形成し、その後CVD法によりスピネル
膜4上およびコンタクトホール7内に単結晶シリ
コン膜を形成して選択エツチングし、所定パター
ンのゲート電極8および配線層9を形成する。
Conventionally, a semiconductor three-dimensional circuit element having, for example, a pn junction type photo sensor in the uppermost layer and a MOS transistor in the lower layer is manufactured according to the following procedure. First, as shown in FIG. 2a, impurities are diffused onto, for example, an n-type single crystal silicon film 1 using a silicon oxide film as a diffusion mask to form a p-type source region 2 and a drain region 3. After removing the oxide film, a single crystal spinel film 4 is formed as a gate insulating film by the CVD method, and the interface between the silicon film 1 and the spinel film 4 is oxidized through the formed spinel film 4 to form a silicon oxide film 5. Then, a double gate insulating film 6 of a spinel film 4 and a silicon oxide film 5 is formed, a contact hole 7 is formed in the insulating film 6 on the source region 2 and drain region 3, and then a contact hole 7 is formed on the spinel film 4 by CVD method. A single crystal silicon film is then formed in the contact hole 7 and selectively etched to form a gate electrode 8 and a wiring layer 9 in a predetermined pattern.

つぎに、第2図bに示すように、CVD法によ
りスピネル膜4、電極8および配線層9上に層間
絶縁膜としての単結晶スピネル膜10を形成し、
同図cに示すように、CVD法によりスピネル膜
10上に単結晶シリコン膜11を形成したのち、
選択エツチングにより、配線層9上のシリコン膜
11およびスピネル膜10にスルーホール12を
形成し、同図dに示すように、シリコン膜11の
上面、スルーホール12の内面およびスルーホー
ル12を露出した配線層9の上面を酸化してシリ
コン酸化膜13を形成し、シリコン膜11上のシ
リコン酸化膜13を一部除去してシリコン膜11
を露出させ、残つたシリコン酸化膜13を拡散マ
スクとしてシリコン膜11の露出部分に1018
1020cm-3濃度の不純物を拡散させて拡散層14を
形成し、シリコン膜11と拡散層14との境界部
分にpn接合15を形成する。
Next, as shown in FIG. 2b, a single crystal spinel film 10 as an interlayer insulating film is formed on the spinel film 4, the electrode 8 and the wiring layer 9 by CVD method,
As shown in figure c, after forming a single crystal silicon film 11 on the spinel film 10 by CVD method,
By selective etching, a through hole 12 was formed in the silicon film 11 and spinel film 10 on the wiring layer 9, and as shown in FIG. The upper surface of the wiring layer 9 is oxidized to form a silicon oxide film 13, and the silicon oxide film 13 on the silicon film 11 is partially removed to form the silicon film 11.
Using the remaining silicon oxide film 13 as a diffusion mask, 10 18 ~
A diffusion layer 14 is formed by diffusing impurities at a concentration of 10 20 cm -3 , and a pn junction 15 is formed at the boundary between the silicon film 11 and the diffusion layer 14 .

このとき、拡散層14の形成工程中に、拡散層
14の上面が酸化されてシリコン酸化膜16が形
成されるため、拡散層14およびシリコン酸化膜
16の形成後、第2図dに示すように、スルーホ
ール12に露出した配線層9上の前記シリコン酸
化膜13を選択エツチングにより除去すると同時
に、シリコン酸化膜16にコンタクトホール17
を形成する。
At this time, during the formation process of the diffusion layer 14, the upper surface of the diffusion layer 14 is oxidized to form the silicon oxide film 16, so after the formation of the diffusion layer 14 and the silicon oxide film 16, as shown in FIG. At the same time, the silicon oxide film 13 on the wiring layer 9 exposed in the through hole 12 is removed by selective etching, and a contact hole 17 is formed in the silicon oxide film 16.
form.

さらに、第2図eに示すように、シリコン酸化
膜13,16上およびスルーホール12、コンタ
クトホール17内にアルミニウム配線層18を形
成し、シリコン膜1、ソース領域2、ドレイン領
域3、絶縁膜6、電極8および配線層9からなる
下層のMOSトランジスタと、シリコン膜11お
よび拡散層14からなるpn接合型のフオトセン
サとが配線層18により電気的に接続され、反射
防止用のシリコン酸化膜16を介したpn接合1
5への入射光により発生する光電流がMOSトラ
ンジスタ等に伝達される。
Furthermore, as shown in FIG. 2e, an aluminum wiring layer 18 is formed on the silicon oxide films 13 and 16 and in the through holes 12 and contact holes 17, and the silicon film 1, the source region 2, the drain region 3, and the insulating film are formed. 6. A lower layer MOS transistor consisting of an electrode 8 and a wiring layer 9 and a pn junction type photo sensor consisting of a silicon film 11 and a diffusion layer 14 are electrically connected by a wiring layer 18, and a silicon oxide film 16 for antireflection is connected. p-n junction 1 via
A photocurrent generated by the incident light on 5 is transmitted to a MOS transistor or the like.

なお、第2図には図示されていないが、シリコ
ン膜1の下層には、前記したMOSトランジスタ
の駆動用シフトレジスタおよび信号比較用等の演
算回路部が設けられて立体回路素子が構成されて
いる。
Although not shown in FIG. 2, the lower layer of the silicon film 1 is provided with a shift register for driving the aforementioned MOS transistors and an arithmetic circuit section for signal comparison, thereby forming a three-dimensional circuit element. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記した方法では、pn接合15を拡
散により形成するため、拡散層14の不純物濃度
が1018〜1020cm-3と高くなり、拡散層14の光吸
収係数が大きくなつてフオトセンサの高感度化に
限界が生じ、さらにスルーホール12の形成の際
に、シリコン膜11およびスピネル膜10をそれ
ぞれ異なる条件でエツチングする必要があり、し
かもシリコン膜11のエツチングの終点検知およ
びスピネル膜10のエツチングの終点検知を別途
行なわなければならず、スルーホール12の形成
が非常に煩雑になるなどの問題点がある。
However, in the method described above, since the pn junction 15 is formed by diffusion, the impurity concentration of the diffusion layer 14 is as high as 10 18 to 10 20 cm -3 , and the light absorption coefficient of the diffusion layer 14 becomes large, resulting in an increase in the height of the photo sensor. There is a limit to the sensitivity, and furthermore, when forming the through hole 12, it is necessary to etch the silicon film 11 and the spinel film 10 under different conditions. There are problems in that the end point of the through hole 12 must be detected separately, and the formation of the through hole 12 becomes very complicated.

また、下層のMOSトランジスタと上層のフオ
トセンサとを接続する配線層18がpn接合15
の一部を被うように形成され、しかもスルーホー
ル12のスペースを確保しなければならないた
め、フオトセンサの有効受光面積が制限されて大
きな光電流を取り出すことができず、たとえば前
記したフオトセンサをマトリクス状に多数配列し
て固体撮像素子を形成するような場合、分解能の
優れた高精度の固体撮像素子を得るには、各画素
領域をより微細にして画素数をできるだけ多くす
る必要があるが、各画素それぞれに相当する前記
立体回路素子のフオトセンサの有効受光面積の関
係上、ある程度以上に前記フオトセンサを小型化
することができず、画素数を多くすることができ
ないという問題点が生じる。
Further, the wiring layer 18 connecting the lower layer MOS transistor and the upper layer photo sensor is connected to the p-n junction 15.
Since the photo sensor is formed so as to cover a part of the through hole 12 and space must be secured for the through hole 12, the effective light receiving area of the photo sensor is limited and a large photocurrent cannot be extracted. When forming a solid-state image sensor by arranging a large number of pixels in a shape, in order to obtain a high-precision solid-state image sensor with excellent resolution, it is necessary to make each pixel area smaller and increase the number of pixels as much as possible. Due to the effective light-receiving area of the photo sensor of the three-dimensional circuit element corresponding to each pixel, a problem arises in that the photo sensor cannot be miniaturized beyond a certain level and the number of pixels cannot be increased.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされ、スル
ーホールの形成工程の簡略化およびpn接合領域
の拡大を図るものであり、単結晶半導体膜に形成
した半導体素子上にpn接合を有する半導体素子
を形成する半導体立体回路素子の製造方法におい
て、前記半導体素子を覆うように単結晶絶縁膜を
形成する工程と、前記半導体素子の一部と接続を
取るためのスルーホールを前記単結晶絶縁膜に形
成する工程と、前記単結晶絶縁膜上および前記ス
ルーホール内にp形またはn形の第1の単結晶半
導体膜を形成する工程と、前記第1の単結晶半導
体膜上にn形またはp形の第2の単結晶半導体膜
を積層してpn接合を形成する工程とを含むこと
を特徴とする半導体立体回路素子の製造方法であ
る。
The present invention has been made with the above points in mind, and aims to simplify the process of forming through holes and expand the pn junction region, and provides a semiconductor element having a pn junction on a semiconductor element formed in a single crystal semiconductor film. A method for manufacturing a semiconductor three-dimensional circuit element comprising the steps of forming a single crystal insulating film to cover the semiconductor element, and forming a through hole in the single crystal insulating film for connecting with a part of the semiconductor element. forming a p-type or n-type first single-crystal semiconductor film on the single-crystal insulating film and in the through hole; This is a method for manufacturing a semiconductor three-dimensional circuit element, comprising the steps of: stacking second single crystal semiconductor films of a shape to form a pn junction.

〔作用〕[Effect]

したがつて、この発明では、単結晶絶縁膜にス
ルーホールが形成され、単結晶絶縁膜上およびス
ルーホール内にp形またはn形の第1の単結晶半
導体膜が形成されたのち、第1の単結晶半導体膜
上にn形またはp形の第2の単結晶半導体膜が形
成され、単結晶半導体膜にスルーホールを形成す
る必要がなく、スルーホールの形成工程が簡略化
されるとともに、スルーホール内の第1の単結晶
半導体膜がpn接合と下層デバイスとの配線層と
して兼用され、上、下層間の新たな配線層が不要
となり、pn接合領域が最大限まで拡大される。
Therefore, in the present invention, a through hole is formed in a single crystal insulating film, a p-type or n-type first single crystal semiconductor film is formed on the single crystal insulating film and in the through hole, and then a first p-type or n-type single crystal semiconductor film is formed. A second n-type or p-type single crystal semiconductor film is formed on the single crystal semiconductor film, and there is no need to form a through hole in the single crystal semiconductor film, and the through hole forming process is simplified. The first single crystal semiconductor film within the through hole is used as a wiring layer between the pn junction and the lower layer device, eliminating the need for a new wiring layer between the upper and lower layers, and expanding the pn junction area to the maximum extent.

さらに、pn接合が拡散ではなく第2の単結晶
半導体膜の積層により形成され、上層側の第2の
単結晶半導体膜の不純物濃度が拡散の場合に比べ
て大幅に低減される。
Furthermore, the pn junction is formed by stacking the second single crystal semiconductor films instead of by diffusion, and the impurity concentration of the second single crystal semiconductor film on the upper layer side is significantly reduced compared to the case of diffusion.

〔実施例〕〔Example〕

つぎに、この発明を、最上層にpn接合型フオ
トセンサ、下層にMOSトランジスタを備えた半
導体立体回路素子を製造する場合の1実施例を示
した第1図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIG. 1, which shows one embodiment of manufacturing a semiconductor three-dimensional circuit element having a pn junction type photo sensor in the uppermost layer and a MOS transistor in the lower layer.

まず、第1図aに示すように、前記した第2図
aの場合と同様に、たとえばn形の単結晶シリコ
ン膜19上にシリコン酸化膜を拡散マスクとした
不純物の拡散によりp形のソース領域20、ドレ
イン領域21を形成し、前記シリコン酸化膜を除
去したのち、単結晶スピネル膜22、およびシリ
コン膜19とスピネル膜22との界面酸化による
シリコン酸化膜23からなる2重ゲート絶縁膜2
4を形成し、ソース、ドレイン領域20,21上
の絶縁膜24にコンタクトホール25を形成し、
その後スピネル膜22上およびコンタクトホール
25内にp形の単結晶シリコン膜を形成して選択
エツチングし、所定パターンのゲート電極26お
よび配線層27を形成して下層のMOSトランジ
スタ28を形成する。
First, as shown in FIG. 1A, as in the case of FIG. After forming the region 20 and the drain region 21 and removing the silicon oxide film, a double gate insulating film 2 consisting of a single crystal spinel film 22 and a silicon oxide film 23 formed by oxidation of the interface between the silicon film 19 and the spinel film 22 is formed.
4, and a contact hole 25 is formed in the insulating film 24 on the source and drain regions 20 and 21.
Thereafter, a p-type single crystal silicon film is formed on the spinel film 22 and in the contact hole 25 and selectively etched to form a gate electrode 26 and a wiring layer 27 in a predetermined pattern, thereby forming a lower layer MOS transistor 28.

つぎに、第1図bに示すように、CVD法によ
り、スピネル膜22、電極26および配線層27
上に層間絶縁膜としての単結晶スピネル膜29を
形成し、同図cに示すように、選択エツチングに
よりスピネル膜29にスルーホール30を形成し
たのち、同図dに示すように、CVD法により、
950℃の温度でスピネル膜29上およびスルーホ
ール30内に第1の単結晶半導体膜であるp形の
単結晶シリコン膜31を、ジボラン〔B2H6〕ガ
スをドーピングガスとして1018cm-3の濃度のホウ
素〔B〕をドーピングしながら厚さ3μmに形成
し、ドーピングしたシリコン膜31を所定形状に
選択エツチングする。
Next, as shown in FIG. 1b, the spinel film 22, electrode 26 and wiring layer 27 are
A single-crystal spinel film 29 as an interlayer insulating film is formed on top, and a through hole 30 is formed in the spinel film 29 by selective etching as shown in figure c, and then a through hole 30 is formed by CVD method as shown in figure d. ,
A p-type single crystal silicon film 31, which is the first single crystal semiconductor film, was deposited on the spinel film 29 and in the through hole 30 at a temperature of 950° C. using diborane [B 2 H 6 ] gas as a doping gas for 10 18 cm - The silicon film 31 is formed to a thickness of 3 μm while doping with boron [B] at a concentration of 3 μm, and the doped silicon film 31 is selectively etched into a predetermined shape.

さらに、第1図eに示すように、CVD法によ
り、950℃の温度でシリコン膜31上に第2の単
結晶半導体膜であるn形の単結晶シリコン膜32
を、ホスフイン〔PH3〕ガスをドーピングガスと
して1015cm-3の濃度のリン〔P〕をドーピングし
ながら厚さ5μmに形成し、両シリコン膜31,3
2の境界部分にpn接合33を形成したのち、ド
ーピングしたシリコン膜32の上面を鏡面研摩し
て平坦化し、その後シリコン膜32の上面を酸化
して反射防止膜としてのシリコン酸化膜34を形
成して最上層のpn接合型フオトセンサ35を形
成する。
Furthermore, as shown in FIG. 1e, an n-type single crystal silicon film 32, which is a second single crystal semiconductor film, is deposited on the silicon film 31 at a temperature of 950° C. by the CVD method.
was formed to a thickness of 5 μm while doping phosphorus [P] at a concentration of 10 15 cm −3 using phosphine [PH 3 ] gas as a doping gas, and both silicon films 31, 3
After forming a pn junction 33 at the boundary between the doped silicon films 32 and 2, the top surface of the doped silicon film 32 is mirror-polished to make it flat, and then the top surface of the silicon film 32 is oxidized to form a silicon oxide film 34 as an antireflection film. The uppermost pn junction type photo sensor 35 is formed.

なお、第1図には図示されていないが、前記し
た第2図の場合と同様に、シリコン層19の下層
には、MOSトランジスタ28の駆動用シフトレ
ジスタおよび信号比較用等の演算回路部が設けら
れて立体回路素子が構成されている。
Although not shown in FIG. 1, in the lower layer of the silicon layer 19, there is a shift register for driving the MOS transistor 28 and an arithmetic circuit section for signal comparison, etc., as in the case of FIG. 2 described above. A three-dimensional circuit element is constituted by the three-dimensional circuit element.

したがつて、MOSトランジスタ28とフオト
センサ35とがスルーホール30内のシリコン膜
31により電気的に接続されるため、従来のよう
なアルミニウム配線層18を設ける必要がなく、
しかもスルーホール30をスピネル膜29に形成
するだけでよく、スルーホール30の形成工程が
従来の場合に比べて簡略化されるとともに、フオ
トセンサ35側に配線層やスルーホールが不要に
なつた分だけpn接合33領域を最大限まで拡大
することができ、同じ面積の基板上に形成した
pn接合33と従来のpn接合15とからそれぞれ
出力される光電流を比較した結果、前者は後者よ
りも約25%高くなり、高出力のフオトセンサ35
を得ることができる。
Therefore, since the MOS transistor 28 and the photo sensor 35 are electrically connected by the silicon film 31 in the through hole 30, there is no need to provide an aluminum wiring layer 18 as in the conventional case.
Moreover, it is only necessary to form the through hole 30 in the spinel film 29, which simplifies the process of forming the through hole 30 compared to the conventional case, and eliminates the need for a wiring layer or through hole on the photo sensor 35 side. It is possible to expand the pn junction 33 area to the maximum, and it can be formed on the same area of the substrate.
As a result of comparing the photocurrents output from the pn junction 33 and the conventional pn junction 15, the former is about 25% higher than the latter, and the high output photo sensor 35
can be obtained.

さらに、pn接合33は両シリコン膜31,3
2のCVD法による積層により形成されるため、
入射側のシリコン膜32の不純物濃度を従来の拡
散の場合よりも大幅に低減することができ、入射
側のシリコン膜32の量子効率が視感度ピーク波
長λ=555nmにおいて従来の78%から93%に向上
するとともに、シリコン膜32の波長λ=555nm
の入射光に対する光吸収係数も約7×103cm-1
従来より小さくなり、フオトセンサ35の高感度
化、微細化が可能になる。
Furthermore, the pn junction 33 is connected to both silicon films 31, 3.
Since it is formed by lamination using the CVD method in step 2,
The impurity concentration of the silicon film 32 on the incident side can be significantly reduced compared to conventional diffusion, and the quantum efficiency of the silicon film 32 on the incident side has increased from 78% to 93% at the luminous efficiency peak wavelength λ = 555 nm. At the same time, the wavelength λ of the silicon film 32 is 555 nm.
The light absorption coefficient for incident light is also about 7×10 3 cm −1 , which is smaller than that of the conventional photo sensor 35, making it possible to increase the sensitivity and miniaturize the photo sensor 35.

また、フオトセンサ35の分光感度の設定を、
シリコン膜32の膜厚調整によるpn接合33の
接合深さの調整により容易に行なうことができ
る。
In addition, the setting of the spectral sensitivity of the photo sensor 35 is
This can be easily done by adjusting the junction depth of the pn junction 33 by adjusting the thickness of the silicon film 32.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体立体回路素子
の製造方法によると、スルーホール30の形成工
程を簡略化することができるとともに、pn接合
33領域を最大限まで拡大してフオトセンサ35
の有効受光面積を拡大することができ、しかも
pn接合33が拡散ではなくシリコン膜31,3
2のCVD法による積層により形成されるため、
フオトセンサ35の入射側のシリコン膜32の光
吸収係数を低減することが可能となり、フオトセ
ンサ35の高感度化および微細化を図ることがで
き、高精度の固体撮像素子等の製造に適するとい
う利点を有し、その効果は非常に顕著である。
As described above, according to the method of manufacturing a semiconductor three-dimensional circuit element of the present invention, the process of forming the through hole 30 can be simplified, and the pn junction 33 area can be expanded to the maximum to allow the photo sensor 35
It is possible to expand the effective light-receiving area of the
pn junction 33 is not diffused but silicon film 31,3
Since it is formed by lamination using the CVD method in step 2,
It is possible to reduce the light absorption coefficient of the silicon film 32 on the incident side of the photo sensor 35, and the photo sensor 35 can be made highly sensitive and miniaturized. The effect is very noticeable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eはこの発明の半導体立体回路素子
の製造方法の1実施例の製造工程を示す断面図、
第2図a〜eは従来の半導体立体回路素子の製造
工程を示す断面図である。 19,31,32……単結晶シリコン膜、29
……単結晶スピネル膜、30……スルーホール、
33……pn接合。
1A to 1E are cross-sectional views showing the manufacturing process of one embodiment of the method for manufacturing a semiconductor three-dimensional circuit element of the present invention;
FIGS. 2a to 2e are cross-sectional views showing the manufacturing process of a conventional semiconductor three-dimensional circuit element. 19, 31, 32... Single crystal silicon film, 29
...Single crystal spinel film, 30...Through hole,
33... pn junction.

Claims (1)

【特許請求の範囲】 1 単結晶半導体膜に形成した半導体素子上に
pn接合を有する半導体素子を形成する半導体立
体回路素子の製造方法において、 前記半導体素子を覆うように単結晶絶縁膜を形
成する工程と、前記半導体素子の一部と接続を取
るためのスルーホールを前記単結晶絶縁膜に形成
する工程と、前記単結晶絶縁膜上および前記スル
ーホール内にp型またはn型の第1の単結晶半導
体膜を形成する工程と、前記第1の単結晶半導体
膜上にn型またはp型の第2の単結晶半導体膜を
積層してpn接合を形成する工程とを含むことを
特徴とする半導体立体回路素子の製造方法。
[Claims] 1. On a semiconductor element formed on a single crystal semiconductor film
A method for manufacturing a semiconductor three-dimensional circuit element in which a semiconductor element having a pn junction is formed includes a step of forming a single crystal insulating film to cover the semiconductor element, and forming a through hole for connecting with a part of the semiconductor element. a step of forming a p-type or n-type first single crystal semiconductor film on the single crystal insulating film and in the through hole; and a step of forming the first single crystal semiconductor film on the single crystal insulating film and in the through hole. A method for manufacturing a semiconductor three-dimensional circuit element, comprising the step of laminating a second n-type or p-type single crystal semiconductor film thereon to form a pn junction.
JP60174058A 1985-08-09 1985-08-09 Manufacture of semiconductor stereoscopic circuit element Granted JPS6235550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174058A JPS6235550A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor stereoscopic circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174058A JPS6235550A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor stereoscopic circuit element

Publications (2)

Publication Number Publication Date
JPS6235550A JPS6235550A (en) 1987-02-16
JPH0519988B2 true JPH0519988B2 (en) 1993-03-18

Family

ID=15971881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174058A Granted JPS6235550A (en) 1985-08-09 1985-08-09 Manufacture of semiconductor stereoscopic circuit element

Country Status (1)

Country Link
JP (1) JPS6235550A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328384A (en) * 1976-08-27 1978-03-16 Fujitsu Ltd Production method of semiconductor device
JPS5338278A (en) * 1976-09-20 1978-04-08 Fujitsu Ltd Semiconductor device
JPS5342689A (en) * 1976-09-30 1978-04-18 Fujitsu Ltd Semiconductor device
JPS5812481A (en) * 1981-07-15 1983-01-24 Toshiba Corp Solidstate image pickup element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328384A (en) * 1976-08-27 1978-03-16 Fujitsu Ltd Production method of semiconductor device
JPS5338278A (en) * 1976-09-20 1978-04-08 Fujitsu Ltd Semiconductor device
JPS5342689A (en) * 1976-09-30 1978-04-18 Fujitsu Ltd Semiconductor device
JPS5812481A (en) * 1981-07-15 1983-01-24 Toshiba Corp Solidstate image pickup element

Also Published As

Publication number Publication date
JPS6235550A (en) 1987-02-16

Similar Documents

Publication Publication Date Title
JP5038554B2 (en) Image sensor having capacitor structure and manufacturing method thereof
US5410175A (en) Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate
KR100485892B1 (en) Cmos image sensor and the method for fabricating thereof
CN112331684B (en) Image sensor and method of forming same
EP1748490A1 (en) Fabrication method for epitaxially grown solid-state image sensing devices and such devices
CN112133715A (en) Image sensor structure
CN215578562U (en) Pixel structure of image sensor and image sensor
JPH0519988B2 (en)
KR100595876B1 (en) Manufacturing method of photodiode of image sensor
US20060008937A1 (en) Technique for fabricating multilayer color sensing photodetectors
JP3036747B2 (en) Method for manufacturing solid-state imaging device
JP3276906B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2830215B2 (en) Method for manufacturing charge transfer device
TWI782650B (en) Manufacturing method of backside illuminated image sensor
JP2000124435A5 (en)
JPS61285760A (en) Photoelectric conversion device
JPH05182992A (en) Manufacture of solid-state image sensing element
KR100688584B1 (en) CMOS image sensor and manufacturing method thereof
JP4531537B2 (en) Semiconductor device and manufacturing method thereof
JPH06296008A (en) Manufacture of solid-state image pickup element
JPH05183184A (en) Method for manufacturing solid-state imaging device
CN116130495A (en) A back-illuminated image sensor and its forming method
JPH04137664A (en) Photoelectric converter
JP2003197896A (en) Method for manufacturing solid state imaging element
JPS62269355A (en) Solid-state image sensing element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term