JPH05195222A - Formation of chemical adsorption film - Google Patents
Formation of chemical adsorption filmInfo
- Publication number
- JPH05195222A JPH05195222A JP896792A JP896792A JPH05195222A JP H05195222 A JPH05195222 A JP H05195222A JP 896792 A JP896792 A JP 896792A JP 896792 A JP896792 A JP 896792A JP H05195222 A JPH05195222 A JP H05195222A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- film
- forming
- substrate
- compd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Chemical Vapour Deposition (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、強固な薄膜を安全にか
つ短時間に形成することのできる薄膜形成方法に関する
もので、とりわけ、撥水性、親水性、新機能性表面、例
えば、臭い、ガスなどの化学センサーに非常に有用であ
る単分子膜の化学吸着膜形成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming method capable of forming a strong thin film safely and in a short time, and particularly to a water-repellent, hydrophilic, new functional surface such as odor, The present invention relates to a method for forming a chemisorption film of a monomolecular film, which is very useful for a chemical sensor such as gas.
【0002】[0002]
【従来の技術】化学吸着膜は一端に上述した機能性をも
たせ、もう一端に反応基を設けた分子を基材表面の活性
基と反応させ化学的に結合させた強固な膜である。2. Description of the Related Art A chemisorption film is a strong film in which a molecule having the above-mentioned functionality at one end and a reactive group at the other end is reacted with an active group on the surface of a base material and chemically bonded.
【0003】従来の化学吸着膜の形成方法は、クロロシ
ラン系化合物、例えば、(化2)を用い、2×10-3〜
5×10-2Mol/l程度の濃度で溶かした80%n−
へキサン、12%四塩化炭素、8%クロロホルム溶液を
使い、基材をその溶液の中に浸漬させることにより化学
吸着膜を形成していた。A conventional method for forming a chemisorption film is to use a chlorosilane compound, for example, (Chemical Formula 2), from 2 × 10 -3 to
80% n- dissolved at a concentration of about 5 × 10 -2 Mol / l
Hexane, 12% carbon tetrachloride, 8% chloroform solution was used, and the substrate was immersed in the solution to form a chemisorption film.
【0004】[0004]
【化2】 [Chemical 2]
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
化学吸着膜形成方法では、溶液浸漬というウェット方法
であるため、(1)溶液に溶ける基材は使えない、
(2)吸着(膜形成)に時間がかかる、(3)塩素系溶
剤を多量に使う、などの問題を有していた。とりわけ
(3)の問題については最近、地球環境汚染への関心が
急速に高まっているため非常に大きな課題となってい
る。However, in the conventional chemical adsorption film forming method, since it is a wet method of solution dipping, (1) a base material soluble in a solution cannot be used,
(2) Adsorption (film formation) takes time, and (3) a large amount of chlorine-based solvent is used. In particular, regarding the problem (3), interest in global environmental pollution has been rapidly increasing in recent years, which has become a very big problem.
【0006】本発明は、上記従来方法の課題を解決する
ものであり、手軽に、敏速に、かつ安全に単分子膜を形
成できる化学吸着膜形成方法を提供することを目的とす
るものである。The present invention is intended to solve the above-mentioned problems of the conventional method, and an object of the present invention is to provide a method for forming a chemical adsorption film capable of easily, promptly and safely forming a monomolecular film. ..
【0007】[0007]
【課題を解決するための手段】本発明は上記の目的を達
成するために、減圧下で基材にクロロシラン系化合物、
メトキシシラン系化合物およびエトキシシラン系化合物
の少なくとも一つを気相により吸着させるものである。In order to achieve the above object, the present invention provides a substrate containing a chlorosilane compound under reduced pressure,
At least one of a methoxysilane compound and an ethoxysilane compound is adsorbed in a gas phase.
【0008】[0008]
【作用】したがって本発明の化学吸着膜形成方法によれ
ば、溶剤を使用しないため安全性が向上するだけでな
く、従来使うことができなかった溶剤に侵されるような
基材の上にも膜を形成することが可能となる。Therefore, according to the method for forming a chemisorption film of the present invention, not only the solvent is not used, but the safety is improved, and the film is formed on the base material which is hitherto unusable by the solvent. Can be formed.
【0009】また減圧状態のもとで気相により化合物を
吸着させるため、瞬時にして膜を形成することができ、
従来困難であったピンホールのない膜が短時間で形成可
能となる。Further, since the compound is adsorbed in the gas phase under reduced pressure, a film can be instantly formed,
A pinhole-free film, which was difficult in the past, can be formed in a short time.
【0010】[0010]
【実施例】以下、本発明の一実施例について撥水性を中
心に図面を参照しながら説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings, focusing on water repellency.
【0011】(実施例1)図1は本発明の化学吸着膜形
成方法を実施するために使用する装置の概略図であり、
図2は化学吸着膜の拡大模式図である。(Embodiment 1) FIG. 1 is a schematic view of an apparatus used for carrying out the chemical adsorption film forming method of the present invention.
FIG. 2 is an enlarged schematic view of the chemical adsorption film.
【0012】図において、1は真空容器、2は密閉容器
内に入っている(化2)で示すフッ素含有のクロロシラ
ン系化合物、3はAl基板3aよりなる基材である。In the figure, 1 is a vacuum container, 2 is a fluorine-containing chlorosilane compound shown in Chemical formula 2 and 3 is a substrate made of an Al substrate 3a.
【0013】まず、真空容器1内を1Paになるまで排
気する。次に密閉容器のコック4を開き、(化2)の原
液2を気化させることにより図2に示すように、Al基
板3aの表面はアルミニウムの自然酸化膜5が形成され
ているのでその表面で(化3)に示す結合が形成され、
フッ素含有のクロロシラン系化合物による単分子膜より
なる化学吸着膜6が形成される。First, the inside of the vacuum container 1 is evacuated to 1 Pa. Next, the cock 4 of the closed container is opened, and the stock solution 2 of (Chemical Formula 2) is vaporized to form a natural oxide film 5 of aluminum on the surface of the Al substrate 3a as shown in FIG. The bond shown in (Chemical Formula 3) is formed,
The chemical adsorption film 6 formed of a monomolecular film of a fluorine-containing chlorosilane compound is formed.
【0014】[0014]
【化3】 [Chemical 3]
【0015】このようにしてできたAl基板3a上の化
学吸着膜の評価を行うに当たり、Al基板3aの表面の
撥水性を調べるため、水の接触角を測定した。比較検討
のため、本実施例で使用したAl基板3aと同じAl基
板に溶液を使って吸着させた膜の撥水性についても調べ
た。なお、溶媒は80%n−ヘキサン、12%四塩化炭
素、8%クロロホルムの混合溶媒とし、濃度は1×10
-2Mol/lとした。In evaluating the chemical adsorption film thus formed on the Al substrate 3a, the contact angle of water was measured in order to examine the water repellency of the surface of the Al substrate 3a. For comparison, the water repellency of the film that was adsorbed to the same Al substrate 3a used in this example using a solution was also examined. The solvent was a mixed solvent of 80% n-hexane, 12% carbon tetrachloride and 8% chloroform, and the concentration was 1 × 10.
-2 Mol / l.
【0016】測定結果を(表1)に示す。The measurement results are shown in (Table 1).
【0017】[0017]
【表1】 [Table 1]
【0018】(表1)から明らかなように、本実施例1
による化学吸着膜6は溶液を使って吸着させた膜と同等
の接触角を有している。また製膜時間は、溶液を使って
吸着させた場合、3時間かかったのに対し、本実施例の
方法では、5分以内であり、製膜時間を非常に短くする
ことができる。As is clear from Table 1, this Example 1
The chemically adsorbed film 6 has a contact angle equivalent to that of a film adsorbed by using a solution. The film-forming time was 3 hours when the solution was used for adsorption, whereas it was 5 minutes or less in the method of this example, and the film-forming time can be extremely shortened.
【0019】(実施例2)次に本発明の第2の実施例に
ついて図1,図3を用いて説明する。(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIGS.
【0020】実施例1で説明した図1と同じ構成で基材
3としてポリメチルメタクリレート基板(以下、PMM
A基板という。)3bを用いた。このPMMA基板3b
はあらかじめ、酸素ガスによりプラズマ処理を行い、表
面を親水化させている。以下、実施例1と同様に真空容
器1内を1Paになるまで排気し、(化2)の原液2を
気化させると、親水化されたPMMA基板3bの表面に
はOH基があらかじめ形成されているのでその表面で
(化3)の結合が形成され、クロロシラン系化合物によ
る単分子膜よりなる化学吸着膜6が形成される。A polymethylmethacrylate substrate (hereinafter referred to as PMM) having the same structure as that of FIG.
A substrate. ) 3b was used. This PMMA substrate 3b
Has previously been subjected to plasma treatment with oxygen gas to make the surface hydrophilic. Then, as in Example 1, the inside of the vacuum container 1 was evacuated to 1 Pa and the stock solution 2 of (Chemical Formula 2) was vaporized to form OH groups on the surface of the hydrophilized PMMA substrate 3b in advance. Therefore, the bond of (Chemical Formula 3) is formed on the surface, and the chemical adsorption film 6 made of a monomolecular film of the chlorosilane compound is formed.
【0021】このようにしてできたPMMA基板3b上
の化学吸着膜6の撥水性を実施例1と同様に調べるため
に水の接触角を測定した。なお、溶液を使った化学吸着
膜形成方法ではPMMA基板3bが溶剤に溶けるため、
膜形成が不可能であるのは明らかである。接触角の測定
結果を(表2)に示す。The contact angle of water was measured in order to investigate the water repellency of the chemical adsorption film 6 on the PMMA substrate 3b thus formed in the same manner as in Example 1. In the chemical adsorption film forming method using a solution, the PMMA substrate 3b is dissolved in a solvent,
It is clear that film formation is impossible. The measurement results of the contact angle are shown in (Table 2).
【0022】[0022]
【表2】 [Table 2]
【0023】(表2)から明らかなように、実施例2に
よる化学吸着膜6は溶剤に侵されるような基材に対して
も膜形成できる点で非常に優れた効果がある。As is clear from (Table 2), the chemical adsorption film 6 according to Example 2 has a very excellent effect in that it can be formed on a substrate that is corroded by a solvent.
【0024】なお、実施例1または実施例2においてク
ロロシラン系化合物2として(化2)を用いたが、他の
フッ素含有クロロシラン系化合物、例えば、(化4)や
(化5)などを用いても同じ効果を得ることが可能であ
る。Although (Chemical Formula 2) was used as the chlorosilane-based compound 2 in Example 1 or Example 2, other fluorine-containing chlorosilane-based compounds such as (Chemical Formula 4) and (Chemical Formula 5) were used. Can achieve the same effect.
【0025】[0025]
【化4】 [Chemical 4]
【0026】[0026]
【化5】 [Chemical 5]
【0027】また本実施例では、撥水性をもたせた化学
吸着膜6の形成方法を例に挙げて説明したが、先に述べ
た他の機能性(例えば、親水性)については、(化6)
や(化7)などを用いた化学吸着膜の形成方法によって
も同様の優れた効果を得ることができる。In the present embodiment, the method for forming the chemical adsorption film 6 having water repellency has been described as an example, but other functionalities (for example, hydrophilicity) described above are described in )
The same excellent effect can be obtained by a method of forming a chemical adsorption film using or (Chemical Formula 7).
【0028】[0028]
【化6】 [Chemical 6]
【0029】[0029]
【化7】 [Chemical 7]
【0030】また本実施例では吸着させる化合物として
クロロシラン系化合物を用いたが、メトキシシラン系化
合物、またはエトキシシラン系化合物、またはクロロシ
ラン系を含めた混合系化合物であっても同様の効果を得
ることができる。Although a chlorosilane-based compound is used as the compound to be adsorbed in this embodiment, a similar effect can be obtained with a methoxysilane-based compound, an ethoxysilane-based compound, or a mixed-system compound including a chlorosilane-based compound. You can
【0031】なお、クロロシラン系化合物の分子量が大
きくなる、すなわち、炭素の数が大きくなると蒸発しに
くくなるが、原液を適度に加熱することで対応できる。
ただし直鎖状の場合で炭素の数が25程度までが望まし
い。It should be noted that when the molecular weight of the chlorosilane compound becomes large, that is, when the number of carbons becomes large, it becomes difficult to evaporate, but it can be dealt with by appropriately heating the stock solution.
However, in the case of a straight chain, a carbon number of up to about 25 is desirable.
【0032】さらに、実施例では減圧状態を1Paとし
たが、50Paまでは同様の結果が得られた。50Pa
を超えると、気化させることが困難になるばかりか、真
空容器1内の残留水分と気化した化合物が反応してしま
い、基材3の表面と化学吸着膜6とが強固に結合しなく
なる。したがって50Pa以下の減圧状態が好ましい。Furthermore, although the reduced pressure state was set to 1 Pa in the examples, similar results were obtained up to 50 Pa. 50 Pa
When it exceeds, not only it becomes difficult to vaporize, but the residual water in the vacuum container 1 reacts with the vaporized compound, so that the surface of the substrate 3 and the chemical adsorption film 6 are not firmly bonded. Therefore, a reduced pressure state of 50 Pa or less is preferable.
【0033】なお、化学吸着させる化合物は上記実施例
のもの以外に(化8)の一般式で示される化合物であれ
ばどのような化合物を用いても同様の効果を得ることが
できる。The same effect can be obtained by using any compound as long as it is a compound represented by the general formula (formula 8) other than the compounds to be chemically adsorbed.
【0034】[0034]
【化8】 [Chemical 8]
【0035】[0035]
【発明の効果】上記実施例より明らかなように本発明
は、基材にクロロシラン化合物系、メトキシシラン系化
合物、およびエトキシシラン系化合物の少なくとも一つ
を化学吸着させる際に、減圧状態で、気相により行うこ
とにより、溶剤を使用しないため、作業の安全性が向上
するだけでなく、溶剤に侵されるような基材に対しても
膜形成を行うことができるようになる。さらに従来法に
比べ、膜形成を短時間で行うことができるため、実用的
効果は多大である。EFFECTS OF THE INVENTION As is clear from the above examples, the present invention is characterized in that when a substrate is subjected to chemisorption of at least one of a chlorosilane compound, a methoxysilane compound and an ethoxysilane compound, Since the solvent is not used by performing the phase, not only the safety of the work is improved, but also the film formation can be performed on the base material that is corroded by the solvent. Further, as compared with the conventional method, the film formation can be performed in a short time, so that the practical effect is great.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例における化学吸着膜形成方法
に使用する装置の概略図FIG. 1 is a schematic view of an apparatus used for a method for forming a chemisorption film according to an embodiment of the present invention.
【図2】本発明の第1の実施例における化学吸着膜の拡
大模式図FIG. 2 is an enlarged schematic diagram of a chemical adsorption film according to the first embodiment of the present invention.
【図3】同第2の実施例における化学吸着膜の拡大模式
図FIG. 3 is an enlarged schematic view of a chemical adsorption film in the second embodiment.
2 クロロシラン系化合物 3 基材 3a Al基板 3b ポリメチルメタクリレート(PMMA)基板 2 Chlorosilane compound 3 Base material 3a Al substrate 3b Polymethylmethacrylate (PMMA) substrate
Claims (5)
メトキシシラン系化合物、およびエトキシシラン系化合
物の少なくとも一つを気相により吸着させる化学吸着膜
形成方法。1. A chlorosilane compound on a substrate under reduced pressure,
A method for forming a chemisorption film in which at least one of a methoxysilane compound and an ethoxysilane compound is adsorbed in a vapor phase.
んだ混合ガスを導入し、プラズマ処理を行う工程と、前
記減圧下と同一または異なる減圧下でプラズマ処理を行
った前記基材にクロロシラン系化合物、メトキシシラン
系化合物、およびエトキシシラン系化合物の少なくとも
一つを蒸発させて気相により吸着させる工程とからなる
化学吸着膜形成方法。2. A step of introducing a mixed gas containing at least oxygen gas into a base material under reduced pressure and performing plasma treatment, and a step of performing plasma treatment on the base material subjected to plasma treatment under the same or different reduced pressure from the reduced pressure. A method for forming a chemisorption film, which comprises a step of evaporating at least one of a chlorosilane compound, a methoxysilane compound, and an ethoxysilane compound to be adsorbed in a gas phase.
求項1または2記載の化学吸着膜形成方法。3. The method for forming a chemisorption film according to claim 1, wherein the substrate is a substrate having a hydrophilic group on its surface.
を持つものである請求項1または2記載の化学吸着膜形
成方法。 【化1】 4. The method for forming a chemisorption film according to claim 1 or 2, wherein the compound to be chemisorbed has the general formula (Formula 1). [Chemical 1]
求項1または2記載の化学吸着膜形成方法。5. The method for forming a chemical adsorption film according to claim 1, wherein the reduced pressure state under reduced pressure is 50 Pa or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP896792A JPH05195222A (en) | 1992-01-22 | 1992-01-22 | Formation of chemical adsorption film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP896792A JPH05195222A (en) | 1992-01-22 | 1992-01-22 | Formation of chemical adsorption film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05195222A true JPH05195222A (en) | 1993-08-03 |
Family
ID=11707459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP896792A Pending JPH05195222A (en) | 1992-01-22 | 1992-01-22 | Formation of chemical adsorption film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05195222A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000034408A1 (en) * | 1998-12-10 | 2000-06-15 | Toray Industries, Inc. | Optical article, method for preparing optical article and organic silicon compound |
JP2010007168A (en) * | 2008-06-30 | 2010-01-14 | Seiko Epson Corp | Surface treatment apparatus and surface treatment method |
-
1992
- 1992-01-22 JP JP896792A patent/JPH05195222A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000034408A1 (en) * | 1998-12-10 | 2000-06-15 | Toray Industries, Inc. | Optical article, method for preparing optical article and organic silicon compound |
EP1055718A1 (en) * | 1998-12-10 | 2000-11-29 | Toray Industries, Inc. | Optical article, method for preparing optical article and organic silicon compound |
EP1055718A4 (en) * | 1998-12-10 | 2005-01-05 | Toray Industries | Optical article, method for preparing optical article and organic silicon compound |
JP2010007168A (en) * | 2008-06-30 | 2010-01-14 | Seiko Epson Corp | Surface treatment apparatus and surface treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xi et al. | A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine) | |
Salonen et al. | Thermally carbonized porous silicon and its recent applications | |
Chen et al. | Measurement of oxide film growth on Mg and Al surfaces over extended periods using XPS | |
Mirji | Octadecyltrichlorosilane adsorption kinetics on Si (100)/SiO2 surface: contact angle, AFM, FTIR and XPS analysis | |
Wu | Nature and stability of mercury thin films on glassy carbon electrodes under fast-scan anodic stripping voltammetry | |
CN108486544B (en) | Preparation method and application of graphene zinc oxide micro-nano grading functional material with self-cleaning and super-lyophobic characteristics | |
Stern et al. | Studies of L-DOPA and related compounds adsorbed from aqueous solutions at platinum (100) and platinum (111): electron energy-loss spectroscopy, Auger spectroscopy, and electrochemistry | |
Schrader | Ultrahigh-vacuum techniques in the measurement of contact angles. II. Water on gold | |
Onoe et al. | How many [2+ 2] four-membered rings are formed on a C 60 molecule when photopolymerization is saturated? | |
Morimoto et al. | The relation between the amounts of chemisorbed and physisorbed water on zinc oxide | |
Twardowski et al. | Chemically mediated grain growth in nanotextured Au, Au/Cu thin films: Novel substrates for the formation of self-assembled monolayers | |
Pujari et al. | Tribology and stability of organic monolayers on CrN: a comparison among silane, phosphonate, alkene, and alkyne chemistries | |
Tsai et al. | Preconditioning gold substrates influences organothiol self-assembled monolayer (SAM) formation | |
Lakshminarayanan et al. | Hydrophobicity-induced drying transition in alkanethiol self-assembled monolayer—water interface | |
JPH05195222A (en) | Formation of chemical adsorption film | |
Satriano et al. | Oxygen plasma‐induced conversion of polysiloxane into hydrophilic and smooth SiOx surfaces | |
Azioune et al. | Deposition of polysiloxane‐like nanofilms onto an aluminium alloy by plasma polymerized hexamethyldisiloxane: characterization by XPS and contact angle measurements | |
Wang et al. | Humidity-accelerated spreading of ionic liquids on a mica surface | |
Sano et al. | Formation of uniform ferrocenyl-terminated monolayer covalently bonded to Si using reaction of hydrogen-terminated Si (1 1 1) surface with vinylferrocene/n-decane solution by visible-light excitation | |
Montes et al. | Long-lasting low fluorinated stainless steel hierarchical surfaces for omniphobic, anti-fouling and anti-icing applications | |
Sneddon et al. | Electrochemical and in situ scanning force microscopy investigation of anion effects on Ag (111) electrode surfaces | |
JP2007515263A (en) | Controlled interfacial chemical gradient | |
EP1807551B1 (en) | Titanium oxide based hybrid material, respective preparation process and uses | |
Chan-Park et al. | Surface characterization of nickel alloy plasma-treated by O2/CF4 mixture | |
Calzaferri et al. | Quasi-reversible silver zeolite electrode prepared by photochemical modification |