[go: up one dir, main page]

JPH05193312A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH05193312A
JPH05193312A JP4233125A JP23312592A JPH05193312A JP H05193312 A JPH05193312 A JP H05193312A JP 4233125 A JP4233125 A JP 4233125A JP 23312592 A JP23312592 A JP 23312592A JP H05193312 A JPH05193312 A JP H05193312A
Authority
JP
Japan
Prior art keywords
bead
rim
tire
groove
bead base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4233125A
Other languages
Japanese (ja)
Other versions
JP3152371B2 (en
Inventor
Yasuo Osawa
靖雄 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP23312592A priority Critical patent/JP3152371B2/en
Publication of JPH05193312A publication Critical patent/JPH05193312A/en
Application granted granted Critical
Publication of JP3152371B2 publication Critical patent/JP3152371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To sufficiently improve proofing of a tire against slipping off of a rim and/or smoothness against a rim without making the tire and rim assembly work difficult. CONSTITUTION:A shape, which is similar to a circular arc shaped protrusion made when a bead portion 23 is pressed outward with a uniform pressure, is turned reversely and a recessed groove 38 is formed on a bead base part 36. Thus, when the bead base part 36 is so deformed as to overlap on one circular cone surface (outside surface of a rim) by virtue of equipping it to a rim, the contact pressure between the bead base part 36 and the outside surface of the rim becomes so uniform that sliding of the tire 21 in the shaft direction or in the circumference direction may be strongly restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ビードベース部の形
状を改良して耐リム外れ性、耐リム滑り性を向上させた
空気入りタイヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic tire in which the shape of a bead base is improved to improve rim detachment resistance and rim slip resistance.

【0002】[0002]

【従来の技術】一般に、タイヤの耐リム外れ性、リム滑
り性を向上させるには、タイヤのビードベース部とリム
外表面と間の摩擦抵抗力を大きくすればよいことは良く
知られていることであるが、このような摩擦抵抗力はタ
イヤからリムに与えられる垂直力にタイヤとリムと間の
摩擦係数を乗じて求められる。そして、このような摩擦
抵抗力を正確に求めるには、ビードベース部とリム外表
面との接触領域を多数の単位領域に分割するとともに、
各単位領域における垂直力、摩擦係数を求めた後、これ
ら垂直力に摩擦係数を乗じて各単位領域における摩擦抵
抗力を求め、各単位領域における摩擦抵抗力を接触領域
全域に亘って積分すればよい。ここで、タイヤからリム
に与えられる垂直力の合計が一定であるとすると、各単
位領域における垂直力が互いに異なっている場合(接圧
がビードベース部において不均一である場合)と、各単
位領域における垂直力が同一である場合(接圧がビード
ベース部において均一である場合)とで、いずれが摩擦
抵抗力が大きくなるかといえば、ゴムー固体表面間での
垂直圧力と摩擦係数とがメイヤーの実験結果(反比例曲
線類似の曲線で示される)のような関係にあるため、接
圧が均一である場合の方が摩擦抵抗力は大となる。
2. Description of the Related Art In general, it is well known that the friction resistance between the bead base portion of the tire and the outer surface of the rim may be increased in order to improve the rim detachment resistance and the rim slipperiness of the tire. However, such a frictional resistance force is obtained by multiplying the vertical force applied from the tire to the rim by the friction coefficient between the tire and the rim. Then, in order to accurately obtain such a frictional resistance force, while dividing the contact area between the bead base portion and the outer surface of the rim into a large number of unit areas,
After obtaining the vertical force and friction coefficient in each unit area, multiply these friction forces by the friction coefficient to obtain the friction resistance force in each unit area, and integrate the friction resistance force in each unit area over the entire contact area. Good. Here, assuming that the total of the vertical forces applied from the tire to the rim is constant, when the vertical forces in each unit area are different from each other (when the contact pressure is nonuniform in the bead base portion), When the normal force in the area is the same (when the contact pressure is uniform in the bead base portion), which is the larger frictional resistance force is the normal pressure between the rubber and the solid surface and the friction coefficient. Since the relationship is as in the Mayer's experimental result (shown by a curve similar to the inverse proportional curve), the frictional resistance becomes larger when the contact pressure is uniform.

【0003】このため、従来、ビードベース部における
接圧を均一化すべく、ビードベース部が2つの円錐面か
らなるような空気入りタイヤが提案された。このものは
図6に示すように、ビードベース部71に周方向に延びる
凹溝74を形成し、該凹溝74を軸方向中央部で交差する2
個の円錐面72、73とから構成することにより、横断面
(タイヤの回転軸線を含む平面を切断面とした断面)を
三角形状をしたものである。そして、このように凹溝74
をビードベース部71に形成したタイヤ75をリム組みする
と、変形容易なビードヒール76近傍およびビードトウ77
近傍のゴムはリム外表面78に押されて半径方向外側に向
かって大きく変形(拡径)し、これにより発生した大き
な圧縮力の反力が接圧としてリム表面78に作用する。一
方、ビード79の半径方向内側のゴムは、非伸張性のビー
ド79に拘束されて変形が困難であるため、リム外表面78
に押されて僅かでも変形(拡径)すると、内部に大きな
圧縮力が発生するが、前記ビードヒール76、ビードトウ
77近傍が変形している途中まで凹溝74が潰れることでリ
ム外表面78に接触せず、途中からリム外表面78に接触す
るため内部に発生する圧縮力は前記ビードヒール76、ビ
ードトウ77近傍のゴム中に発生する圧縮力に近似するの
である。これにより、ビードベース部71全域における接
圧が均一化し、タイヤ75の耐リム外れ性、滑り性が向上
するのである。
For this reason, conventionally, in order to equalize the contact pressure in the bead base portion, a pneumatic tire in which the bead base portion has two conical surfaces has been proposed. As shown in FIG. 6, this product has a groove 74 extending in the circumferential direction in a bead base portion 71, and the groove 74 intersects at the central portion in the axial direction.
By comprising the individual conical surfaces 72, 73, the cross section (cross section having a plane including the rotation axis of the tire as a cut surface) has a triangular shape. And like this, the groove 74
When the tire 75 formed on the bead base 71 is assembled on the rim, the deformable bead heel 76 and the bead toe 77 are easily deformed.
The rubber in the vicinity is pressed by the outer surface 78 of the rim and largely deforms (expands) outward in the radial direction, and the reaction force of the large compression force generated thereby acts on the rim surface 78 as a contact pressure. On the other hand, the rubber on the inner side of the bead 79 in the radial direction is constrained by the non-stretchable bead 79 and is difficult to be deformed.
When it is pressed by and deformed (expanded) even slightly, a large compressive force is generated inside, but the bead heel 76, bead toe
Since the concave groove 74 is crushed to the middle of the vicinity of 77 and does not contact the outer surface 78 of the rim but contacts the outer surface 78 of the rim from the middle, the compressive force generated inside is in the vicinity of the bead heel 76 and the bead toe 77. It is close to the compressive force generated in rubber. As a result, the contact pressure is made uniform in the entire area of the bead base portion 71, and the rim detachment resistance and slipperiness of the tire 75 are improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空気入りタイヤにあっては、耐リム外れ性、
耐リム滑り性をある程度向上させることができるもの
の、その向上効果は充分なものではなかった。
However, in such a conventional pneumatic tire, the rim detachment resistance,
Although the rim slip resistance can be improved to some extent, the improvement effect was not sufficient.

【0005】[0005]

【課題を解決するための手段】このため、前述のように
凹溝74が断面三角形状のときには、耐リム外れ性、耐リ
ム滑り性の向上効果が充分でない理由を探求して検討を
重ねた結果、凹溝74が断面三角形状のときには、内圧充
填時におけるビードベース部71全域の接圧を充分に均一
にすることはできず、接圧が場所によってかなりばらつ
いていることが知見された。
For this reason, when the groove 74 has a triangular cross section as described above, the reason why the effect of improving the rim detachment resistance and the rim slip resistance is not sufficient is sought and investigated. As a result, it was found that when the groove 74 had a triangular cross section, the contact pressure in the entire area of the bead base portion 71 at the time of filling with internal pressure could not be made sufficiently uniform, and the contact pressure varied considerably depending on the location.

【0006】この結果、接圧を確実に均一化するにはど
のようにすればよいかと、本発明者は種々の検討を重
ね、その検討の中で、以下のようなことを知見した。即
ち、図7に示すように、ビード部82の内面に接する形状
がリムのフランジに類似している金属環90にビード部82
をはめ込むとともに、タイヤ81のビード部82の半径方向
内側に圧力流体を封入したブラダ83を挿入し、その後、
該ブラダ83内に圧力流体をさらに注入してブラダ83によ
り単一円錐面状のビードベース部84に一定圧(目標とす
る接圧)を加え半径方向外側に押し広げる。このとき、
ビードヒール85、ビードトウ86近傍のゴムは変形容易で
あるため、半径方向外側へ大きく変形するが、ビード87
の半径方向内側のゴムは該ビード87が伸びにくいため変
形が困難で、ビードベース部84の軸方向中央部が断面略
円弧状に盛り上がるのである。そして、このときのビー
ドベース部84とブラダ83との接圧はいずれの位置もパス
カルの原理により完全に同一(均一)である。このた
め、この時点でのビードヒール85とビードトウ86とを結
ぶ円錐面88より半径方向内側に位置している断面略円弧
状の膨出部89と同一形状を前記円錐面88を対称面として
ビードベース部84に凹溝として形成しておけば、リム組
みによってこのような凹溝を有するビードベース部がリ
ム外表面に乗り上げ、これによってビードベース部が半
径方向外側に押し広げられビードベース部全体が1つの
円錐面(リム外表面)に重なり合ったとき、即ちリムの
外表面にビードベース部全体が密着したとき、ビードベ
ース部とリム外表面との間の接圧は、完全に均一の目標
接圧となるはずである。なお、このようにリム外表面に
ビードベース部全体が密着したとき、ビードヒール、ビ
ードトウ近傍のゴムは最初から変形しているため、変形
量は大であり接圧も大であるが、凹溝部分のゴムは途中
からの小さな量の変形であっても、伸びにくいビードに
より変形が制限されているため、接圧は大となり、これ
により、接圧はビードベース部全体で均一となるのであ
る。
As a result, the inventor of the present invention has conducted various studies to find out how to make the contact pressure surely uniform, and in the examination, he found out the following. That is, as shown in FIG. 7, the bead 82 is attached to the metal ring 90 whose shape contacting the inner surface of the bead 82 is similar to the flange of the rim.
While inserting the, insert the bladder 83 filled with the pressure fluid inside the bead portion 82 of the tire 81 in the radial direction, after that,
A pressure fluid is further injected into the bladder 83, and a constant pressure (target contact pressure) is applied to the bead base portion 84 having a single conical surface by the bladder 83 to spread it outward in the radial direction. At this time,
The rubber in the vicinity of the bead heel 85 and the bead toe 86 is easily deformed, so it is largely deformed radially outward, but the bead 87
The rubber on the inner side in the radial direction is difficult to deform because the bead 87 is hard to stretch, and the axial center portion of the bead base portion 84 rises in a substantially arcuate cross section. The contact pressure between the bead base portion 84 and the bladder 83 at this time is completely the same (uniform) at any position according to the principle of Pascal. Therefore, the same shape as the bulging portion 89 having a substantially arcuate cross-section located radially inward of the conical surface 88 connecting the bead heel 85 and the bead toe 86 at this point has a bead base with the conical surface 88 as a symmetrical surface. If it is formed as a groove in the portion 84, the bead base portion having such a groove rides on the outer surface of the rim by the rim assembly, whereby the bead base portion is pushed outward in the radial direction and the entire bead base portion is formed. When overlapping with one conical surface (rim outer surface), that is, when the entire bead base is in close contact with the outer surface of the rim, the contact pressure between the bead base and the rim outer surface is a completely uniform target contact. It should be pressure. When the entire bead base is brought into close contact with the outer surface of the rim in this way, the rubber near the bead heel and bead toe is deformed from the beginning, so the amount of deformation is large and the contact pressure is large, but Even if the rubber is deformed by a small amount from the middle, the deformation is limited by the bead that is difficult to stretch, so that the contact pressure becomes large, so that the contact pressure becomes uniform over the entire bead base portion.

【0007】この発明は、前述の知見に基づいてなされ
たもので、リムに着座される一対のビード部と、これら
ビード部からほぼ半径方向外側に向かって延びる一対の
サイドウォール部と、これらサイドウォール部間を連ね
る略円筒状のトレッド部と、を備えた空気入りタイヤに
おいて、前記ビード部のビードトウからビードヒールに
至るビードベース部表面に、周方向に延びるとともに横
断面が略円弧状をしている凹溝を形成し、該凹溝の最深
部とビード部に埋設されたビードとを半径方向に重なり
合わせるようにした空気入りタイヤである。
The present invention has been made on the basis of the above-mentioned findings, and a pair of bead portions to be seated on the rim, a pair of sidewall portions extending outward from the bead portions in a substantially radial direction, and these side portions. In a pneumatic tire including a substantially cylindrical tread portion that connects between wall portions, a bead base portion surface from a bead toe to a bead heel of the bead portion extends in the circumferential direction and has a substantially arc-shaped cross section. It is a pneumatic tire in which a concave groove is formed, and a deepest portion of the concave groove and a bead embedded in a bead portion are radially overlapped with each other.

【0008】[0008]

【作用】まず、前述した空気入りタイヤをリムに装着す
るが、このとき、ビードベース部の内径は一般の空気入
りタイヤのビードベース部内径と同一であるため、リム
組み作業の困難性に変化はない。次に、前記空気入りタ
イヤ内に内圧を充填すると、各ビード部はリム外表面に
摺接しながら軸方向外側へ移動する。このとき、リム外
表面は軸方向外側に向かうに従い徐々に大径となった円
錐面であるため、該リム外表面に押されて変形容易なビ
ードヒール近傍およびビードトウ近傍のゴムは半径方向
外側に向かって大きく変形(拡径)する。一方、ビード
の半径方向内側のゴムは、前記ビードヒール、ビードト
ウ近傍が変形している途中まで凹溝が潰れることでリム
外表面に接触せず、途中からリム外表面に接触し、外側
に向かって変形(拡径)される。ここで、前述の凹溝は
横断面が略円弧状をしており、しかもその最深部がビー
ドと半径方向に重なり合う位置であるため、その形状お
よび形成位置は、前述の膨出部と同一形状を円錐面を対
称面としてビードベース部に形成した仮想凹溝に近似し
ている。このため、前述のようにビード部のゴムが変形
して、ビードベース部全体が1つの円錐面(リム外表
面)に重なり合ったとき、即ちリム外表面にビードベー
ス部全体が密着したときには、ビードベース部とリム外
表面との間の接圧は充分に均一となり、これらの間の摩
擦抵抗力がほぼ最大値となる。この結果、タイヤの軸方
向滑りおよび周方向滑りが強力に抑制されて耐リム外れ
性、滑り性が確実に向上するのである。なお、このよう
にリム外表面にビードベース部全体が密着したとき、ビ
ードヒール、ビードトウ近傍のゴムは最初から変形して
いるため、変形量は大であり接圧も大であるが、凹溝部
分のゴムは途中からの小さな量の変形であっても、伸び
にくいビードに変形が制限されているため、接圧は大と
なり、これにより、接圧は前述のようにビードベース部
全体で充分に均一となるのである。
First, the pneumatic tire described above is mounted on the rim. At this time, since the inner diameter of the bead base portion is the same as the inner diameter of the bead base portion of a general pneumatic tire, it becomes difficult to assemble the rim. There is no. Next, when the pneumatic tire is filled with the internal pressure, each bead portion moves outward in the axial direction while slidingly contacting the outer surface of the rim. At this time, since the outer surface of the rim is a conical surface whose diameter gradually increases toward the outer side in the axial direction, the rubber near the bead heel and the bead toe that is easily deformed by the outer surface of the rim is directed toward the outer side in the radial direction. And greatly deform (expand). On the other hand, the rubber on the inner side in the radial direction of the bead does not contact the outer surface of the rim due to the crushing of the groove until the vicinity of the bead heel and the toe of the bead is deformed, but contacts the outer surface of the rim from the middle and goes outward. It is deformed (expanded). Here, the above-mentioned concave groove has a substantially arcuate transverse cross section, and since the deepest part thereof is a position where it overlaps with the bead in the radial direction, its shape and forming position are the same as those of the aforementioned bulging part. Is approximated to an imaginary groove formed in the bead base with the conical surface as the symmetrical surface. Therefore, when the rubber of the bead portion is deformed as described above and the entire bead base portion overlaps with one conical surface (rim outer surface), that is, when the entire bead base portion is in close contact with the rim outer surface, the bead The contact pressure between the base portion and the outer surface of the rim becomes sufficiently uniform, and the frictional resistance force between them becomes almost maximum. As a result, axial slippage and circumferential slippage of the tire are strongly suppressed, and rim detachment resistance and slipperiness are reliably improved. When the entire bead base is brought into close contact with the outer surface of the rim in this way, the rubber near the bead heel and bead toe is deformed from the beginning, so the amount of deformation is large and the contact pressure is large, but Even if the rubber is deformed by a small amount from the middle, the deformation is limited to the bead that is difficult to stretch, so the contact pressure becomes large, and as a result, the contact pressure is sufficient in the entire bead base. It becomes uniform.

【0009】[0009]

【実施例】以下、この発明の第1実施例を図面に基づい
て説明する。図1において、21は空気入りタイヤであ
り、このタイヤ21は、ビード22がそれぞれ埋設された一
対のビード部23と、これらビード部23からほぼ半径方向
外側に向かって延びるサイドウォール部24と、これらサ
イドウォール部24の半径方向外端同士を連ねる略円筒状
のトレッド部25と、を有する。また、このタイヤ21は一
方のビード部23から他方のビード部に亘って延びるトロ
イダル状をしたカーカス層26によって補強されており、
このカーカス層26の幅方向両端部は前記ビード22の回り
に軸方向内側から軸方向外側に向かって折り返されてい
る。前記カーカス層26の半径方向外側にはベルト層27が
配置され、これらベルト層27の半径方向外側には外表面
に多数の溝28が形成されたトレッドゴム30が配置されて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 21 denotes a pneumatic tire. The tire 21 includes a pair of bead portions 23 each having a bead 22 buried therein, and a sidewall portion 24 extending from the bead portions 23 toward the outer side in the substantially radial direction. And a substantially cylindrical tread portion 25 that connects the outer ends of the sidewall portions 24 in the radial direction. Further, the tire 21 is reinforced by a toroidal carcass layer 26 extending from one bead portion 23 to the other bead portion,
Both ends in the width direction of the carcass layer 26 are folded back around the beads 22 from the inner side in the axial direction toward the outer side in the axial direction. A belt layer 27 is arranged on the outer side in the radial direction of the carcass layer 26, and a tread rubber 30 having a large number of grooves 28 formed on the outer surface thereof is arranged on the outer side in the radial direction of these belt layers 27.

【0010】図2、3において、前記ビード部23は半径
方向内端にビードトウ34からビードヒール35に至るビー
ドベース部36を有し、これらのビードベース部36は内径
が軸方向内側から軸方向外側に向かうに従い徐々に大径
となっており、この結果、その表面は略円錐面である。
前記ビードベース部36の軸方向中央部表面には周方向に
連続して延びる凹溝38がそれぞれ形成され、これらの凹
溝38はビードベース部36の表面から半径方向外側(ビー
ド22)に向かって凹んでいる。各凹溝38は横断面(タイ
ヤ21の回転軸線を含む平面を切断面とした断面)が略弧
状を呈するとともに、その表面を1個以上の弧状曲面を
組み合わせて構成、この実施例では、ビードベース部36
の表面の半径方向内側に曲率中心が位置する1個の弧状
曲面から構成している。したがって、この実施例におけ
る凹溝38は軸方向に深さがなだらかに変化、即ち表面に
対する接線はその傾きが連続的に変化している。しか
も、前記凹溝38の最深部39はビード22と半径方向に重な
り合って、即ち、ビード22の軸方向内端41と軸方向外端
42と間の領域に凹溝38の最深部39が位置している。
2 and 3, the bead portion 23 has a bead base portion 36 extending from a bead toe 34 to a bead heel 35 at an inner end in the radial direction. These bead base portions 36 have an inner diameter from the inner side in the axial direction to the outer side in the axial direction. The diameter gradually becomes larger as it goes to, and as a result, its surface is a substantially conical surface.
Recessed grooves 38 extending continuously in the circumferential direction are formed on the surface of the central portion of the bead base portion 36 in the axial direction. The recessed grooves 38 extend radially outward (the beads 22) from the surface of the bead base portion 36. It is dented. Each groove 38 has a substantially arc-shaped cross section (a section including a plane including the rotation axis of the tire 21 as a cut surface), and its surface is formed by combining one or more arc-shaped curved surfaces. In this embodiment, a bead is formed. Base part 36
It is composed of one arcuate curved surface whose center of curvature is located on the inner side in the radial direction of the surface. Therefore, the depth of the groove 38 in this embodiment changes gently in the axial direction, that is, the inclination of the tangent to the surface changes continuously. Moreover, the deepest part 39 of the groove 38 overlaps the bead 22 in the radial direction, that is, the axially inner end 41 and the axially outer end of the bead 22.
The deepest portion 39 of the groove 38 is located in the area between and 42.

【0011】そして、このようなタイヤ21はリム47に装
着されるが、この装着時、ビードベース部36の内径が一
般のタイヤのビードベース部内径と同一であるため、リ
ム組み作業の困難性に変化はない。次に、前記タイヤ21
内に内圧を充填すると、リム47のビードシート部48に着
座したビード部23は該ビードシート部48の外表面に摺接
しながら軸方向外側へ移動するが、このとき、ビードシ
ート部48の外表面は軸方向外側に向かうに従い徐々に大
径となった一般的な円錐面であるため、該ビードシート
部48の外表面に押されて変形容易なビードヒール35近傍
およびビードトウ34近傍のゴムが半径方向外側に向かっ
て大きく変形(拡径)する。一方、ビード22の半径方向
内側のゴムは、前記ビードヒール35、ビードトウ34近傍
が変形している途中まで凹溝38が潰れることでビードシ
ート部48の外表面に接触することはないが、途中からビ
ードシート部48の外表面に接触し、このときからビード
シート部48の外表面に押されて半径方向外側に向かって
変形(拡径)する。ここで、前述の凹溝38は横断面が略
円弧状をしており、しかもその最深部39がビード22と半
径方向に重なり合う位置であるため、各凹溝38の形状お
よび形成位置は、前述の膨出部と同一形状を円錐面を対
称面としてビードベース部36に形成した仮想凹溝に近似
している。このため、前述のようにビード部23のゴムが
変形して、ビードベース部36全体が1つの円錐面(ビー
ドシート部48の外表面)に重なり合ったとき、即ちビー
ドシート部48の外表面にビードベース部36全体が密着し
たときには、ビードベース部36とビードシート部48との
間の接圧は充分に均一となり、これらの間の摩擦抵抗力
がほぼ最大値となる。この結果、タイヤ21の軸方向滑り
および周方向滑りが強力に抑制されて耐リム外れ性、耐
リム滑り性が確実に向上するのである。なお、このよう
にビードシート部48の外表面にビードベース部36全体が
密着したとき、ビードヒール35、ビードトウ34近傍のゴ
ムは最初から変形しているため、変形量は大であり接圧
も大であるが、凹溝38部分のゴムは途中からの小さな量
の変形であっても、伸びにくいビード22に変形が制限さ
れているため、接圧は大となり、これにより、接圧は前
述のようにビードベース部36全体で充分に均一となるの
である。
Such a tire 21 is mounted on the rim 47. At this time, since the inner diameter of the bead base portion 36 is the same as the inner diameter of the bead base portion of a general tire, it is difficult to assemble the rim. Has not changed. Next, the tire 21
When the inside pressure is filled, the bead portion 23 seated on the bead seat portion 48 of the rim 47 moves axially outward while slidingly contacting the outer surface of the bead seat portion 48. Since the surface is a general conical surface whose diameter gradually increases toward the outside in the axial direction, the rubber near the bead heel 35 and the bead toe 34, which is easily deformed by being pressed by the outer surface of the bead seat 48, has a radius. Largely deformed (diameter expansion) toward the outside in the direction. On the other hand, the rubber on the radially inner side of the bead 22 does not come into contact with the outer surface of the bead seat portion 48 by collapsing the groove 38 until the bead heel 35 and the vicinity of the bead toe 34 are deformed, but from the middle. The bead seat portion 48 comes into contact with the outer surface thereof, and from this time, the bead seat portion 48 is pushed by the outer surface of the bead seat portion 48 to be deformed (diameter expansion) outward in the radial direction. Here, the above-mentioned concave groove 38 has a substantially arcuate cross-section, and since the deepest portion 39 thereof is a position overlapping the bead 22 in the radial direction, the shape and forming position of each concave groove 38 are the same as those described above. The same shape as that of the bulging portion is approximated to a virtual concave groove formed in the bead base portion 36 with the conical surface as the symmetrical surface. Therefore, when the rubber of the bead portion 23 is deformed as described above and the entire bead base portion 36 overlaps with one conical surface (the outer surface of the bead seat portion 48), that is, on the outer surface of the bead seat portion 48. When the entire bead base portion 36 comes into close contact, the contact pressure between the bead base portion 36 and the bead seat portion 48 becomes sufficiently uniform, and the frictional resistance force between them becomes almost the maximum value. As a result, axial slippage and circumferential slippage of the tire 21 are strongly suppressed, and rim detachment resistance and rim slip resistance are reliably improved. When the entire bead base portion 36 comes into close contact with the outer surface of the bead seat portion 48 in this way, the rubber in the vicinity of the bead heel 35 and the bead toe 34 is deformed from the beginning, so the deformation amount is large and the contact pressure is also large. However, even if a small amount of deformation of the rubber in the groove 38 is limited from the middle, the deformation is limited to the bead 22 that is difficult to stretch, so that the contact pressure becomes large, and thus the contact pressure is the same as described above. Thus, the entire bead base portion 36 becomes sufficiently uniform.

【0012】ここで、前記凹溝38の幅Hは、ビード22の
幅Lの 0.4倍から 1.5倍の範囲、また凹溝38のビードベ
ース部36表面からの最大深さDは、ビード22と仮想線で
示されている仮想円錐面との最短距離M(ここではビー
ド22から凹溝38の軸方向外側端までの距離)の 0.1倍か
ら 0.5倍の範囲が好ましい。その理由は、凹溝38の最大
深さDおよび幅Hを前記範囲内とすると、後述するよう
にビードベース部36における接圧をいずれの位置におい
てもほぼ同一とすることができ、耐リム滑り性等を確実
に向上させることができるからである。
The width H of the groove 38 is in the range of 0.4 to 1.5 times the width L of the bead 22, and the maximum depth D of the groove 38 from the surface of the bead base 36 is the same as that of the bead 22. A range of 0.1 to 0.5 times the shortest distance M (here, the distance from the bead 22 to the axially outer end of the concave groove 38) to the virtual conical surface indicated by the virtual line is preferable. The reason is that if the maximum depth D and the width H of the concave groove 38 are within the above ranges, the contact pressure at the bead base portion 36 can be made substantially the same at any position, as will be described later, and the rim slip resistance can be improved. This is because it is possible to reliably improve the sex and the like.

【0013】次に、第1試験例を説明する。この試験に
当たっては、ビードベース部71に図6に示すような2個
の円錐面72、73(円錐面72の傾斜角Jは10度、円錐面73
の傾斜角Kは20度)から構成した断面三角形状の凹溝74
を形成した従来タイヤと、従来タイヤと同一の凹溝をビ
ードベース部に形成するとともに、ビードベース部の内
径を従来タイヤより2mm小さくした比較タイヤと、ビー
ドベース部36の内径は従来タイヤと同一であるが、ビー
ドベース部36に図2に示すような凹溝38(幅Hは幅Lの
1.0倍、最大深さDは最短距離Mの 0.3倍)を形成した
供試タイヤ1と、を準備した。ここで、各タイヤのサイ
ズは185/70 R14であった。次に、このような各タイヤ
を正規リムに装着するとともに、これらタイヤに1.0kgf
/cm2の内圧を充填した後、鋼鉄製のブロックを各タイヤ
のサイドウォール部に軸方向に押し付け、ビード部がリ
ムから外れるときの押し付け力を測定した。その結果
は、従来タイヤでは500kgf、比較タイヤでは600kgfであ
ったが、供試タイヤ1では630kgfと、従来、比較タイヤ
のいずれよりも耐リム外れ性が向上していた。また、各
タイヤに1.9kgf/cm2の内圧を充填したときの押し付け力
も測定したが、その結果は従来タイヤでは 1000kgf、比
較タイヤでは 1200kgfであったのに対し、供試タイヤ1
では 1250kgfと、この場合も従来、比較タイヤより耐リ
ム外れ性が向上していた。さらに、前記各タイヤ(内圧
1.9kgf/cm2)を3000ccクラスの国産乗用車に装着した
後、50km/hで乾燥舗装路面を走行しているときに急ブレ
ーキを掛けて各タイヤのリムに対する周方向滑り量を測
定した。その結果は、従来タイヤでは30mm、比較タイヤ
では20mmであったが、供試タイヤ1では10mmと、従来、
比較タイヤのいずれよりも耐リム滑り性が向上してい
た。なお、従来タイヤおよび供試タイヤ1はリム組を1
人で容易に行うことができたが、比較タイヤはリム組を
1人で行うことは困難であり、2人が必要であった。
Next, the first test example will be described. In this test, the bead base portion 71 has two conical surfaces 72, 73 as shown in FIG. 6 (the inclination angle J of the conical surface 72 is 10 degrees, the conical surface 73
The angle of inclination K is 20 degrees)
The conventional tire with the same shape as the conventional tire, the same groove as the conventional tire is formed in the bead base, and the inner diameter of the bead base is 2 mm smaller than that of the conventional tire. The inner diameter of the bead base 36 is the same as that of the conventional tire. However, the bead base portion 36 is provided with a concave groove 38 (width H is equal to width L) as shown in FIG.
A test tire 1 having 1.0 times the maximum depth D and 0.3 times the shortest distance M) was prepared. Here, the size of each tire was 185/70 R14. Next, attach each of these tires to the regular rim, and add 1.0kgf to these tires.
After filling the inner pressure of / cm 2 , the steel block was axially pressed against the sidewall portion of each tire, and the pressing force when the bead portion was removed from the rim was measured. The results were 500 kgf for the conventional tire and 600 kgf for the comparative tire, but 630 kgf for the test tire 1, which was higher than the conventional and comparative tires in rim detachment resistance. Moreover, the pressing force when each tire was filled with an internal pressure of 1.9 kgf / cm 2 was also measured. The results were 1000 kgf for the conventional tire and 1200 kgf for the comparative tire, while the test tire 1
In this case, it was 1250 kgf, and in this case as well, the rim detachment resistance was improved compared with the comparative tire. In addition, each tire (internal pressure
1.9kgf / cm 2 ) was attached to a 3000cc class domestic passenger car, and then while running on a dry paved road at 50km / h, sudden braking was applied to measure the amount of circumferential slip of each tire with respect to the rim. The result was 30 mm for the conventional tire and 20 mm for the comparative tire, but 10 mm for the sample tire 1,
The rim slip resistance was improved over any of the comparative tires. The conventional tire and the test tire 1 have one rim set.
Although it could be easily performed by a person, it was difficult to perform the rim assembly by one person for the comparative tire, and two persons were needed.

【0014】次に、第2試験例を説明する。この試験に
当たっては、ビードベース部36に図2に示すような幅H
が幅Lの 0.3倍である凹溝38を形成した供試タイヤ2
と、凹溝38の幅Hを幅Lの 0.4倍とした以外は供試タイ
ヤ2と同一の供試タイヤ3と、凹溝38の幅Hを幅Lの
1.0倍とした以外は供試タイヤ2と同一の供試タイヤ4
と、凹溝38の幅Hを幅Lの 1.5倍とした以外は供試タイ
ヤ2と同一の供試タイヤ5と、凹溝38の幅Hを幅Lの
1.6倍とした以外は供試タイヤ2と同一の供試タイヤ6
と、を準備した。ここで、各タイヤのサイズは185/70
R14であり、凹溝38の最大深さDは最短距離Mの 0.3倍
であった。次に、このような各タイヤを3000ccクラスの
国産乗用車に取り付けられた正規リムに装着するととも
に、これらタイヤに1.9kgf/cm2の内圧を充填した後、50
km/hで乾燥舗装路面を走行しているときに急ブレーキを
掛けて各タイヤのリムに対する周方向滑り量を測定し
た。その結果は、供試タイヤ2、6ではそれぞれ18mm、
18mmと従来タイヤに比較して耐リム滑り性がある程度向
上していたが、供試タイヤ3、4、5(幅Hが幅Lの
0.4倍から 1.5倍の範囲)ではそれぞれ12mm、10mm、12m
mと耐リム滑り性が格段に向上していた。なお、このよ
うな各タイヤに対して試験例1で説明した押し付け力を
測定したが、その結果は、供試タイヤ2、6ではそれぞ
れ1210kgf、1210kgfと耐リム外れ性がかなりの程度向上
していたが、供試タイヤ3、4、5ではそれぞれ1240kg
f、 1250kgf、 1240kgfと耐リム外れ性も格段に向上し
ていた。
Next, a second test example will be described. In this test, the bead base 36 has a width H as shown in FIG.
Tire 2 with a groove 38 having a width 0.3 times the width L
And a test tire 3 which is the same as the test tire 2 except that the width H of the groove 38 is 0.4 times the width L, and the width H of the groove 38 is
Test tire 4 identical to test tire 2 except for 1.0 times
And a test tire 5 which is the same as the test tire 2 except that the width H of the groove 38 is 1.5 times the width L, and the width H of the groove 38 is
Test tire 6 which is the same as test tire 2 except that it is 1.6 times
And prepared. Here, the size of each tire is 185/70
R14, the maximum depth D of the groove 38 was 0.3 times the shortest distance M. Next, each tire like this is mounted on a regular rim attached to a 3000cc class domestic passenger car, and after filling these tires with an internal pressure of 1.9kgf / cm 2 , 50
While traveling on a dry paved road surface at km / h, sudden braking was applied to measure the amount of circumferential slip of each tire with respect to the rim. The results are 18 mm for each of the tested tires 2 and 6,
Although the rim slip resistance was improved to some extent compared with the conventional tire of 18 mm, the test tires 3, 4, 5 (width H has width L
In the range of 0.4 times to 1.5 times) 12mm, 10mm, 12m respectively
m and rim slip resistance were significantly improved. The pressing force described in Test Example 1 was measured for each of these tires. The results show that the test tires 2 and 6 have improved rim detachment resistance to 1210 kgf and 1210 kgf, respectively. However, each of the tested tires 3, 4, and 5 is 1240 kg.
F, 1250kgf, 1240kgf and rim detachment resistance were also greatly improved.

【0015】また、第3試験例においては、ビードベー
ス部36に図2に示すような最大深さDが最短距離Mの0.
05倍である凹溝38を形成した供試タイヤ7と、凹溝38の
最大深さDを最短距離Mの 0.1倍とした以外は供試タイ
ヤ7と同一の供試タイヤ8と、凹溝38の最大深さDを最
短距離Mの 0.3倍とした以外は供試タイヤ7と同一の供
試タイヤ9と、凹溝38の最大深さDを最短距離Mの 0.5
倍とした以外は供試タイヤ7と同一の供試タイヤ10
と、凹溝38の最大深さDを最短距離Mの 0.6倍とした以
外は供試タイヤ7と同一の供試タイヤ11と、を準備し
た。ここで、各タイヤのサイズは185/70 R14であり、
凹溝38の幅Hは幅Lの 1.0倍であった。次に、このよう
な各タイヤに対して試験例2と同様の試験を行い、各タ
イヤのリムに対する周方向滑り量を測定した。その結果
は、供試タイヤ7、11ではそれぞれ24mm、22mmと耐リ
ム滑り性が従来タイヤに比較してある程度向上していた
が、供試タイヤ8、9、10(最大深さDが最短距離M
の 0.1倍から 0.5倍の範囲)ではそれぞれ12mm、10mm、
12mmと耐リム滑り性が格段に向上していた。なお、この
ような各タイヤに対して試験例1で説明した押し付け力
を測定したが、その結果は、供試タイヤ7、11ではそ
れぞれ 1100kgf、 1150kgfと耐リム外れ性がある程度向
上していたが、供試タイヤ8、9、10ではそれぞれ 1
240kgf、 1250kgf、 1240kgfと耐リム外れ性も格段に向
上していた。
Further, in the third test example, the maximum depth D of the bead base portion 36 as shown in FIG.
The test tire 7 having the 05-fold concave groove 38, and the test tire 8 which is the same as the test tire 7 except that the maximum depth D of the concave groove 38 is 0.1 times the shortest distance M, and the concave groove The same test tire 9 as the test tire 7 except that the maximum depth D of 38 was 0.3 times the shortest distance M, and the maximum depth D of the concave groove 38 was 0.5 of the shortest distance M.
Test tire 10 identical to test tire 7 except doubled
And a test tire 11 which is the same as the test tire 7 except that the maximum depth D of the groove 38 is set to 0.6 times the shortest distance M. Here, the size of each tire is 185/70 R14,
The width H of the groove 38 was 1.0 times the width L. Next, the same test as in Test Example 2 was performed on each of these tires, and the amount of circumferential slip of each tire with respect to the rim was measured. As a result, the test tires 7 and 11 were 24 mm and 22 mm, respectively, and the rim slip resistance was improved to some extent as compared with the conventional tire, but the test tires 8, 9 and 10 (the maximum depth D was the shortest distance) M
In the range of 0.1 to 0.5 times) of 12 mm, 10 mm,
The rim slip resistance of 12 mm was significantly improved. The pressing force described in Test Example 1 was measured for each of these tires. The results show that the test tires 7 and 11 have improved rim detachment resistance to 1100 kgf and 1150 kgf to some extent. , 1 for test tires 8, 9 and 10
The rim removal resistance was also markedly improved at 240kgf, 1250kgf, and 1240kgf.

【0016】図4はこの発明の第2実施例を示す図であ
る。この実施例においては、ビードベース部36に形成し
た凹溝60の表面を、2個以上の円錐面、ここでは2個の
円錐面61、62と1個以上の弧状曲面、ここでは1個の弧
状曲面63とを組み合わせて構成している。この結果、こ
の凹溝60は横断面が弧状に近似した略弧状となる。
FIG. 4 is a diagram showing a second embodiment of the present invention. In this embodiment, the surface of the concave groove 60 formed in the bead base portion 36 is provided with two or more conical surfaces, here two conical surfaces 61, 62 and one or more arc-shaped curved surfaces, here one. It is configured by combining with an arcuate curved surface 63. As a result, the groove 60 has a substantially arc-shaped cross section.

【0017】図5はこの発明の第3実施例を示す図であ
る。この実施例においては、ビードベース部36に形成し
た凹溝65の表面を、3個以上の円錐面、ここでは4個の
円錐面66、67、68、69を組み合わせて構成している。こ
の結果、この凹溝65は横断面が弧状に近似した略弧状と
なる。
FIG. 5 is a diagram showing a third embodiment of the present invention. In this embodiment, the surface of the concave groove 65 formed in the bead base portion 36 is formed by combining three or more conical surfaces, here four conical surfaces 66, 67, 68, 69. As a result, the concave groove 65 has a substantially arcuate cross-section that is similar to an arcuate shape.

【0018】なお、前述の実施例においては、ビード22
の横断面が略正方形であったが、このビードの横断面が
円形である場合、即ちビードの半径方向内側面が半径方
向内側に向かって凸である場合には、この凸の頂上部と
凹溝の最深部とを半径方向に重なり合わせるとよい。
In the above embodiment, the bead 22 is used.
The cross section of the bead was substantially square, but if the cross section of the bead was circular, that is, if the radially inner surface of the bead was convex inward in the radial direction, the top and It is advisable to overlap the deepest part of the groove in the radial direction.

【0019】[0019]

【発明の効果】以上説明したように、この発明によれ
ば、リム組作業を困難とすることなく耐リム外れ性、耐
リム滑り性を十分に向上させることができる。
As described above, according to the present invention, the rim removal resistance and the rim slip resistance can be sufficiently improved without making the rim assembly work difficult.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を示すタイヤの子午線断
面図である。
FIG. 1 is a meridional sectional view of a tire showing a first embodiment of the present invention.

【図2】ビード部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a bead portion.

【図3】リムに装着した状態を示すビード部の断面図で
ある。
FIG. 3 is a cross-sectional view of a bead portion showing a state of being mounted on a rim.

【図4】この発明の第2実施例を示すビード部近傍の拡
大断面図である。
FIG. 4 is an enlarged cross-sectional view of the vicinity of a bead portion showing a second embodiment of the present invention.

【図5】この発明の第3実施例を示すビード部近傍の拡
大断面図である。
FIG. 5 is an enlarged sectional view of the vicinity of a bead portion showing a third embodiment of the present invention.

【図6】従来の空気入りタイヤの一例を示すビード部の
断面図である。
FIG. 6 is a sectional view of a bead portion showing an example of a conventional pneumatic tire.

【図7】ビード部の変形状態を説明する拡大断面図であ
る。
FIG. 7 is an enlarged sectional view illustrating a deformed state of a bead portion.

【符号の説明】[Explanation of symbols]

21…空気入りタイヤ 22…ビード 23…ビード部 24…サイドウォール部 25…トレッド部 34…ビードトウ 35…ビードヒール 36…ビードベース部 38…凹溝 39…最深部 47…リム 21 ... Pneumatic tire 22 ... Bead 23 ... Bead part 24 ... Sidewall part 25 ... Tread part 34 ... Bead toe 35 ... Bead heel 36 ... Bead base part 38 ... Concave groove 39 ... Deepest part 47 ... Rim

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リムに着座される一対のビード部と、これ
らビード部からほぼ半径方向外側に向かって延びる一対
のサイドウォール部と、これらサイドウォール部間を連
ねる略円筒状のトレッド部と、を備えた空気入りタイヤ
において、前記ビード部のビードトウからビードヒール
に至るビードベース部表面に、周方向に延びるとともに
横断面が略円弧状をしている凹溝を形成し、該凹溝の最
深部とビード部に埋設されたビードとを半径方向に重な
り合わせるようにしたことを特徴とする空気入りタイ
ヤ。
1. A pair of bead portions to be seated on a rim, a pair of sidewall portions extending outward from the bead portions in a substantially radial direction, and a substantially cylindrical tread portion connecting the sidewall portions. In a pneumatic tire including, in the bead base portion surface from the bead toe to the bead heel of the bead portion, a groove extending in the circumferential direction and having a substantially arc-shaped cross section is formed, and the deepest portion of the groove is formed. A pneumatic tire characterized in that a bead embedded in a bead portion is overlapped in a radial direction.
【請求項2】前記凹溝表面を1個以上の弧状曲面を組み
合わせて構成した請求項1記載の空気入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the groove surface is formed by combining one or more arc-shaped curved surfaces.
【請求項3】前記凹溝表面を2個以上の円錐面と1個以
上の弧状曲面とを組み合わせて構成した請求項1記載の
空気入りタイヤ。
3. The pneumatic tire according to claim 1, wherein the groove surface is formed by combining two or more conical surfaces and one or more arc-shaped curved surfaces.
【請求項4】前記凹溝表面を3個以上の円錐面を組み合
わせて構成した請求項1記載の空気入りタイヤ。
4. The pneumatic tire according to claim 1, wherein the groove surface is formed by combining three or more conical surfaces.
JP23312592A 1991-09-13 1992-08-07 Pneumatic tire Expired - Lifetime JP3152371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23312592A JP3152371B2 (en) 1991-09-13 1992-08-07 Pneumatic tire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26300791 1991-09-13
JP3-263007 1991-09-13
JP23312592A JP3152371B2 (en) 1991-09-13 1992-08-07 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH05193312A true JPH05193312A (en) 1993-08-03
JP3152371B2 JP3152371B2 (en) 2001-04-03

Family

ID=26530862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23312592A Expired - Lifetime JP3152371B2 (en) 1991-09-13 1992-08-07 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3152371B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233613A (en) * 1999-02-18 2000-08-29 Bridgestone Corp Pneumatic tire for heavy load
WO2001043993A1 (en) * 1999-12-16 2001-06-21 The Goodyear Tire & Rubber Company Tire in with cavities in bead region
EP1149713A2 (en) * 2000-04-28 2001-10-31 The Goodyear Tire & Rubber Company A bead profile for pneumatic tires
JP2004098714A (en) * 2002-09-04 2004-04-02 Sumitomo Rubber Ind Ltd Pneumatic tire, manufacturing method for pneumatic tire and tire vulcanizing mold
US6929046B1 (en) 1999-12-16 2005-08-16 The Goodyear Tire & Rubber Company Tire in with cavities in bead region
US8627866B2 (en) * 2009-01-09 2014-01-14 Bridgestone Americas Tire Operations, Llc Tire and wheel rim assembly
EP3132949A1 (en) 2015-08-12 2017-02-22 Sumitomo Rubber Industries Limited Pneumatic tire
CN108473004A (en) * 2015-12-25 2018-08-31 横滨橡胶株式会社 Pneumatic tire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233613A (en) * 1999-02-18 2000-08-29 Bridgestone Corp Pneumatic tire for heavy load
WO2001043993A1 (en) * 1999-12-16 2001-06-21 The Goodyear Tire & Rubber Company Tire in with cavities in bead region
US6929046B1 (en) 1999-12-16 2005-08-16 The Goodyear Tire & Rubber Company Tire in with cavities in bead region
EP1149713A2 (en) * 2000-04-28 2001-10-31 The Goodyear Tire & Rubber Company A bead profile for pneumatic tires
EP1149713A3 (en) * 2000-04-28 2003-04-16 The Goodyear Tire & Rubber Company A bead profile for pneumatic tires
JP2004098714A (en) * 2002-09-04 2004-04-02 Sumitomo Rubber Ind Ltd Pneumatic tire, manufacturing method for pneumatic tire and tire vulcanizing mold
US8627866B2 (en) * 2009-01-09 2014-01-14 Bridgestone Americas Tire Operations, Llc Tire and wheel rim assembly
EP3132949A1 (en) 2015-08-12 2017-02-22 Sumitomo Rubber Industries Limited Pneumatic tire
CN108473004A (en) * 2015-12-25 2018-08-31 横滨橡胶株式会社 Pneumatic tire
US11173756B2 (en) 2015-12-25 2021-11-16 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
JP3152371B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
EP2202096B1 (en) Pneumatic tire
US6179028B1 (en) Tire having beads of specified structure
EP0314445B1 (en) Safety tyre
EP1607243A1 (en) Tire noise reducing system
EP1430277B1 (en) Method for the determination of parameters of a seat passenger
JP2983606B2 (en) Pneumatic tire
JPH02185802A (en) Pneumatic radial tire
US8397777B2 (en) Run-flat tire
JP3152371B2 (en) Pneumatic tire
JP2887172B2 (en) Pneumatic tire
JP4294408B2 (en) Motorcycle tires
US20190232728A1 (en) Tyre
JPWO2002042094A1 (en) Pneumatic safety tire
AU754754B2 (en) Tyre with beads having improved structure
US4246948A (en) Pneumatic tire having a pneumatic safety insert with beads
US6758252B2 (en) Tire having beads of improved structure
JP4458637B2 (en) Pneumatic safety tire
JP3391711B2 (en) Heavy duty tire
JPH04334603A (en) Pneumatic tire
JP3133982B2 (en) Pneumatic tire and manufacturing method thereof
JP3155357B2 (en) Pneumatic tire
JP3145912B2 (en) Pneumatic radial tire for heavy loads
JPH07164821A (en) Pneumatic tire
JP2978400B2 (en) Pneumatic tire
JPH1159119A (en) Assembly of tire and rim for two-wheeled vehicle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010110

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12