JPH0518695Y2 - - Google Patents
Info
- Publication number
- JPH0518695Y2 JPH0518695Y2 JP8366986U JP8366986U JPH0518695Y2 JP H0518695 Y2 JPH0518695 Y2 JP H0518695Y2 JP 8366986 U JP8366986 U JP 8366986U JP 8366986 U JP8366986 U JP 8366986U JP H0518695 Y2 JPH0518695 Y2 JP H0518695Y2
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- water
- ultrasonic
- bearing
- cylindrical body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 17
- 239000000523 sample Substances 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 description 6
- 241000724414 Polypogon viridis Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【考案の詳細な説明】
[産業上の利用分野]
この考案は、管の超音波探傷装置に係り、特に
は、被検管の管軸方向へ超音波を送波する探触子
と、該探触子からの超音波を被検管の管壁へ反射
させる回転ミラーと、当該ミラーと一体的に結合
され該ミラーを被検管の管軸心と同心的に回転さ
せるタービンとを有する水浸式の管の超音波探傷
装置に関する。[Detailed description of the invention] [Industrial application field] This invention relates to an ultrasonic flaw detection device for tubes, and in particular, it includes a probe that transmits ultrasonic waves in the axial direction of a tube to be inspected, and A water tank having a rotating mirror that reflects ultrasonic waves from a probe onto the wall of a test tube, and a turbine that is integrally coupled with the mirror and rotates the mirror concentrically with the axis of the test tube. This article relates to an immersion-type tube ultrasonic flaw detection device.
[従来の技術]
金属管内面を探傷する水浸式超音波探傷装置と
して、探触子から被検管の管軸方向に発信された
超音波パルスを管軸心と同心的に回転するミラー
により前記被検管の管壁へ反射させ、次いで、当
該管壁からのエコー波を前記ミラーで反射させて
前記探触子で受信するように構成されたものが知
られている(例えば、特開昭60−205254号公報)。
この装置においては、前記ミラーを回転させるた
め、当該ミラーは、タービンを備えた回転円筒体
に、一体的に固定され、この回転円筒体は、ター
ビンとミラーとの間で、軸受であるベアリングを
介してハウジング内に取り付けられている。ター
ビンを作動させた水の流れは、タービンとベアリ
ングとの間に設けられた回転円筒体の開口部及び
ベアリング内を通過していた。また、ハウジング
内を通過する水は、回転ミラーで反射される超音
波の通過を妨害しないように前記回転円筒体に設
けられた、超音波送波用の孔からのみ流出するよ
うに構成されていた。[Conventional technology] As a water immersion ultrasonic flaw detection device that detects flaws on the inner surface of a metal tube, ultrasonic pulses emitted from a probe in the tube axis direction of the test tube are transmitted using a mirror that rotates concentrically with the tube axis. There is a known configuration in which the echo waves are reflected onto the tube wall of the test tube, and then the echo waves from the tube wall are reflected by the mirror and received by the probe (for example, as disclosed in Japanese Patent Application Laid-Open No. Publication No. 60-205254).
In this device, in order to rotate the mirror, the mirror is integrally fixed to a rotating cylindrical body equipped with a turbine, and this rotating cylindrical body has a bearing between the turbine and the mirror. is mounted within the housing via the The flow of water that powered the turbine passed through an opening in the rotating cylinder and the bearing between the turbine and the bearing. Further, the water passing through the housing is configured to flow out only from an ultrasonic wave transmission hole provided in the rotating cylinder so as not to obstruct the passage of ultrasonic waves reflected by the rotating mirror. Ta.
[考案が解決しようとする問題点]
上記のような従来の装置は、タービンを作動さ
せた水の流れが、タービンとベアリングとの間に
設けられた回転円筒体の開口部及びベアリング内
の両方向に分かれているため、タービンにかかる
力が、2分された形となり回転の効率が悪く、し
かもベアリング内に挟雑物が詰り易く、このた
め、タービンに回転むらが生じたり、さらには、
当該ベアリングが破損して、測定精度が低下した
り、測定が不能となるなどの問題点があつた。[Problems to be solved by the invention] In the conventional device as described above, the flow of water that activated the turbine flows in both directions through the opening of the rotating cylindrical body provided between the turbine and the bearing and inside the bearing. As the bearing is divided into two parts, the force applied to the turbine is divided into two parts, resulting in poor rotational efficiency, and the bearings are easily clogged with debris, which can cause uneven rotation of the turbine, and furthermore,
There were problems such as damage to the bearing, resulting in a decrease in measurement accuracy or inability to perform measurements.
また、ハウジング内の水は、回転ミラーの上部
の孔からのみ流出するように成つているため、こ
の流出水の反作用によりタービンの効率が低下す
るという問題も有つた。 Furthermore, since the water in the housing flows out only through the hole at the top of the rotating mirror, there is also a problem in that the efficiency of the turbine decreases due to the reaction of this flowing water.
さらに、上記孔からの流出水は、ミラーが管軸
に対して45°に傾いており、水の流出が当該ミラ
ーに沿つて起こるため、前記孔の中心部で渦が生
じ、ここに水中の気泡や挟雑物が停滞し、超音波
にノイズを与え、測定精度を低下させるという問
題もあつた。 Furthermore, the water flowing out from the hole is tilted at 45 degrees with respect to the tube axis, and the water flows out along the mirror, so a vortex is generated in the center of the hole, and the water in the water is There was also the problem that air bubbles and impurities stagnated, giving noise to the ultrasonic waves and reducing measurement accuracy.
本考案は、かかる問題を解決したものであり、
本考案の目的は、回転ミラーの回転を効率良く、
しかも回転むらのないように行い、さらに軸受に
挟雑物が詰るのを防止するとともに、超音波にノ
イズが入ることなくして、測定精度を高めた管の
超音波探傷装置を提供することにある。 This invention solves this problem,
The purpose of this invention is to efficiently rotate the rotating mirror.
Moreover, it is an object of the present invention to provide an ultrasonic flaw detection device for pipes that performs rotation evenly, prevents foreign objects from clogging the bearing, and eliminates noise from being introduced into the ultrasonic waves, increasing measurement accuracy. .
[問題点を解決するための手段]
上記問題点を解決するための手段としての本考
案は、被検管の管軸方向へ超音波を送波する探触
子と、該探触子を内装するハウジングと、該ハウ
ジングから突出し、前記探触子からの超音波を被
検管の管壁へ反射させる回転ミラーと、当該ミラ
ーと一体的に結合され該ミラーを被検管の管軸心
と同心的に回転させるタービンを備えた回転円筒
体と有し、当該回転円筒体を前記タービンとを前
記ミラーとの間で軸受を介してハウジング内に固
定して成る管の超音波探傷装置において、前記回
転円筒体の外側かつ軸受のタービン側に該軸受内
への水抜け防止のつばを設けるとともに、前記回
転円筒体の超音波通路部に超音波送波および水抜
き用の、また回転円筒体の前記ミラー側部に水抜
き用の孔を設けたことから成り、特には前記超音
波送波および水抜き用の孔が、当該孔の縁につば
を設けたものから成る管の超音波探傷装置であ
る。[Means for Solving the Problems] The present invention as a means for solving the above problems includes a probe that transmits ultrasonic waves in the axial direction of the test tube, and a probe that is installed inside the tube. a rotating mirror that projects from the housing and reflects the ultrasonic waves from the probe onto the tube wall of the test tube; An ultrasonic flaw detection device for a tube comprising a rotating cylindrical body equipped with a turbine that rotates concentrically, the rotating cylindrical body being fixed in a housing via a bearing between the turbine and the mirror, A collar is provided on the outside of the rotating cylindrical body and on the turbine side of the bearing to prevent water from leaking into the bearing, and a collar for ultrasonic wave transmission and water drainage is provided in the ultrasonic passage section of the rotating cylindrical body. A hole for draining water is provided on the side of the mirror, and in particular, the hole for transmitting ultrasonic waves and draining water has a flange on the edge of the hole. It is a device.
[作用]
本考案の超音波探傷装置においては、ハウジン
グ内に供給された水は、タービンを駆動させ、回
転円筒体の外側かつ軸受けのタービン側に設けら
れた該軸受内への水抜け防止のつばにより、ほと
んど、当該つばとタービンとの間に設けられた回
転円筒体の開口部を通つて管の軸心に向かつて流
れる。このため、タービンには一定方向の力しか
かからず、効率良く、しかも、むらなく回転させ
ることができる。[Function] In the ultrasonic flaw detection device of the present invention, the water supplied into the housing drives the turbine, and the water is prevented from leaking into the bearing provided outside the rotating cylindrical body and on the turbine side of the bearing. The collar allows the flow to flow mostly towards the axis of the tube through an opening in the rotating cylinder provided between the collar and the turbine. For this reason, only a fixed direction of force is applied to the turbine, which allows it to rotate efficiently and evenly.
また、前記つばのため、挟雑物が軸受内に侵入
して詰ることもなく、またこれによる、回転むら
或いは軸受の破損も生じない。 Further, because of the brim, foreign objects will not enter the bearing and become clogged, and this will not cause uneven rotation or damage to the bearing.
一方、管の軸心に向かつて流入した水は、超音
波の媒体として作用し、管軸心に沿つてミラーの
方へ流れる。この水は、上記回転円筒体の超音波
交差部に及び当該回転円筒体のミラー側部に設け
られた超音波送波および水抜き用の孔を通つて流
出する。この場合、前記孔が、回転円筒体におい
て、ミラーからの超音波反射方向と当該ミラーの
側部に設けられているので、水の流出に伴う反動
がほとんどなく、タービンの効率が上がる。 On the other hand, water flowing toward the axis of the tube acts as a medium for ultrasonic waves and flows toward the mirror along the axis of the tube. This water flows out through the ultrasonic wave transmission and water drainage holes provided at the ultrasonic intersection of the rotating cylinder and on the mirror side of the rotating cylinder. In this case, since the holes are provided in the rotating cylindrical body in the direction in which the ultrasonic waves are reflected from the mirror and on the side of the mirror, there is almost no reaction due to outflow of water, increasing the efficiency of the turbine.
さらに、本考案において、前記超音波送波およ
び水抜き用の孔の縁につばを設ければ、当該孔か
ら流出する水が、軸心と略直角方向になるので、
孔の中心部で渦が発生せず、このため、超音波に
ノイズが生ずることがなく精度良く測定できるこ
とになる。 Furthermore, in the present invention, if a collar is provided on the edge of the hole for ultrasonic wave transmission and water drainage, the water flowing out from the hole will flow in a direction substantially perpendicular to the axis.
No vortices are generated at the center of the hole, and therefore no noise is generated in the ultrasonic waves, allowing for highly accurate measurements.
[実施例]
以下、本考案の一実施例を図に基づいて説明す
る。[Example] Hereinafter, an example of the present invention will be described based on the drawings.
図中1は、超音波探傷装置で、被検管2中に挿
入され、バネ3により、当該探傷装置1と被検管
2の軸心が一致するようにセツトされる。 In the figure, reference numeral 1 denotes an ultrasonic flaw detection device, which is inserted into the test tube 2 and set by a spring 3 so that the axes of the flaw detection device 1 and the test tube 2 coincide.
超音波探傷装置1は、ハウジング4内に固定さ
れた超音波の送受波を行う探触子5と超音波を反
射させる回転ミラー6及び該ミラー6を回転させ
るタービン7等から成つている。 The ultrasonic flaw detection apparatus 1 includes a probe 5 fixed in a housing 4 for transmitting and receiving ultrasonic waves, a rotating mirror 6 for reflecting ultrasonic waves, a turbine 7 for rotating the mirror 6, and the like.
上記回転ミラー6とタービン7とは、一体的に
回転円筒体20に結合され、該回転円筒体20
は、回転ミラー6とタービン7の中間外側で軸受
8を介してハウジング4の内側に回転自在に固定
されている。回転円筒体20は、タービン7と軸
受8との間に水が通過できるように支持部材を除
いてその大部分が開口された開口部21を有して
いる。さらに、軸受8のタービン7側近傍には、
当該軸受8内への水抜けを防止するつば9が回転
円筒体20の外側に設けられている。尚、当該つ
ば9は、軸受8内へ、直接水の流れが通り抜ける
のを防止できれば良く、軸受8内への水の漏れ込
みを防止することまでは必要ない。 The rotating mirror 6 and the turbine 7 are integrally coupled to a rotating cylindrical body 20, and the rotating cylindrical body 20
is rotatably fixed inside the housing 4 via a bearing 8 at an intermediate outer side between the rotating mirror 6 and the turbine 7. The rotating cylindrical body 20 has an opening 21 that is mostly open except for the support member so that water can pass between the turbine 7 and the bearing 8. Furthermore, near the turbine 7 side of the bearing 8,
A collar 9 that prevents water from leaking into the bearing 8 is provided on the outside of the rotating cylindrical body 20. Note that the flange 9 only needs to prevent the flow of water from passing directly into the bearing 8, and does not need to prevent water from leaking into the bearing 8.
回転ミラー6は、被検管2の軸心に対して45°
の傾きをもつて取り付けられており、探触子5か
ら送波された超音波パルスが被検管2の管壁方向
に対し反射されるようになつている。回転円筒体
20には、管壁と回転ミラー6との間を往き来す
る超音波パルスの進行を妨げないように超音波送
波及び水抜き用の孔10が設けられている。ま
た、回転円筒体20のミラー6両側部には、該ミ
ラー部を避ける形で略三角形状の水抜き用の孔1
1が設けられている。 The rotating mirror 6 is rotated at 45° with respect to the axis of the test tube 2.
The ultrasonic pulse transmitted from the probe 5 is reflected toward the wall of the tube 2 to be examined. The rotating cylindrical body 20 is provided with holes 10 for transmitting ultrasonic waves and draining water so as not to impede the progress of ultrasonic pulses going back and forth between the tube wall and the rotating mirror 6. Further, approximately triangular drainage holes 1 are provided on both sides of the mirror 6 of the rotating cylindrical body 20 to avoid the mirror portion.
1 is provided.
さらに、前記超音波送波及び水抜き用の孔10
の縁には、つば12が設けられている。このつば
12は、回転ミラー6で被検管2の軸心に対して
45°方向へ曲げられた水の流れを遮つて軸心とほ
ぼ直角方向になるような高さとされる。 Furthermore, the ultrasonic wave transmission and water drainage hole 10
A collar 12 is provided on the edge. This collar 12 is connected to the axis of the test tube 2 using a rotating mirror 6.
The height is such that it intercepts the flow of water bent in a 45° direction and is almost perpendicular to the axis.
上記超音波探傷装置1においては、超音波の媒
体として、水が被検管2およびハウジング4内に
供給され、常時、水が流れている状態で満たされ
ている。ここにおいて、超音波パルスは、探触子
5から被検管軸心方向に送波され、回転ミラー6
により被検管壁方向に反射され、管壁に達する。
この超音波パルスは、被検管壁で反射されてエコ
ー波となり回転ミラー6に達し、このミラー6に
より再度反射され、探触子5で受波される。この
超音波パルスの発波からエコー波の受波までの時
間を計測することにより、軸心から被検管壁まで
の距離が算出でき、回転ミラー6の回転により周
方向での、また超音波探傷装置1の軸心方向の移
動により、軸方向での計測ができ、これらの結果
を、統計的に処理することにより、被検管内壁の
探傷を行うことができる。 In the above-mentioned ultrasonic flaw detection apparatus 1, water is supplied as an ultrasonic medium into the test tube 2 and the housing 4, and the test tube 2 and the housing 4 are always filled with flowing water. Here, the ultrasonic pulse is transmitted from the probe 5 in the axial direction of the test tube, and the rotating mirror 6
The light is reflected toward the wall of the tube to be examined and reaches the tube wall.
This ultrasonic pulse is reflected by the wall of the tube to be examined and becomes an echo wave, which reaches the rotating mirror 6, is reflected again by the mirror 6, and is received by the probe 5. By measuring the time from the emission of this ultrasonic pulse to the reception of the echo wave, the distance from the axis to the tube wall to be examined can be calculated. By moving the flaw detection device 1 in the axial direction, measurement can be performed in the axial direction, and by statistically processing these results, the inner wall of the test tube can be detected.
ハウジング4内に供給された水14は、タービ
ン7を回転させ、軸受8内への水抜けを防止する
つば9のため、ほとんど、該タービン7とつば9
との間の開口部を通つて軸心に沿つた方向で回転
ミラー6の方へ流れる。 The water 14 supplied into the housing 4 rotates the turbine 7 and is mostly connected to the turbine 7 and the collar 9 because it prevents water from leaking into the bearing 8.
It flows toward the rotating mirror 6 in the direction along the axis through the opening between the two.
このミラー6の方へ流れ込んだ水は、3方向に
分かれ、一部は、超音波波および水抜き用の孔1
0から、他部は、該ミラー6両側部の水抜き用の
孔11から流出する。この場合、超音波送波およ
び水抜き用の孔10から流出する水は、つば12
のため、回転ミラー6で被検管2の軸心に対して
45°方向へ曲げられた水の流れを遮つて軸心と略
直角方向に成る。これら3方向から流出する水
は、被検管2に供給された水と合わさつて系外に
抜き出される。 The water that has flowed towards the mirror 6 is divided into three directions, and some of the water flows into the ultrasonic waves and the water drain hole 1.
0 and other parts flow out from drain holes 11 on both sides of the mirror 6. In this case, the water flowing out from the holes 10 for ultrasonic wave transmission and water drainage is
Therefore, the rotating mirror 6 rotates the axis of the test tube 2.
It intercepts the flow of water bent in a 45° direction and becomes approximately perpendicular to the axis. The water flowing out from these three directions is combined with the water supplied to the test tube 2 and extracted out of the system.
[考案の効果]
本考案は、管の超音波探傷装置において、軸受
のタービン側に該軸受内への水抜け防止のつばを
設けるとともに、前記回転円筒体の超音波通路部
に超音波送波および水抜き用の、またミラー側部
に水抜き用の孔を設けたため、回転ミラーの回転
を効率良く、しかも回転むらのないように行い、
さらに軸受に挟雑物が詰るのを防止するととも
に、計測中の超音波パルスにノイズを与えること
なく、精度良く、また、ミラー回転用のベアリン
グを破損することなく効率良く測定できるという
格別の効果を有する。[Effects of the invention] The present invention provides an ultrasonic flaw detection device for pipes in which a collar is provided on the turbine side of the bearing to prevent water from leaking into the bearing, and an ultrasonic wave is transmitted to the ultrasonic passage of the rotating cylindrical body. A hole for draining water and a hole for draining water on the side of the mirror allow the rotating mirror to rotate efficiently and without uneven rotation.
In addition, it prevents the bearing from becoming clogged with debris, and has the special effect of being able to measure accurately and efficiently without causing noise to the ultrasonic pulses being measured, and without damaging the mirror rotation bearing. has.
図は、本考案の超音波探傷装置の1実施態様を
示したものである。図中1は、超音波探傷装置、
2は、被検管、5は、探触子、7は、タービン、
8は、軸受、9は、軸受内への水抜け防止のつ
ば、20は、回転円筒体をそれぞれ示す。
The figure shows one embodiment of the ultrasonic flaw detection device of the present invention. 1 in the figure is an ultrasonic flaw detection device;
2 is a test tube, 5 is a probe, 7 is a turbine,
Reference numeral 8 indicates a bearing, 9 indicates a collar to prevent water from leaking into the bearing, and 20 indicates a rotating cylindrical body.
Claims (1)
と、該探触子を内装するハウジングと、該ハウ
ジングから突出し、前記探触子からの超音波を
被検管の管壁へ反射させる回転ミラーと、当該
ミラーと一体的に結合され該ミラーを被検管の
管軸心と同心的に回転させるタービンを備えた
回転円筒体とを有し、当該回転円筒体を前記タ
ービンと前記ミラーとの間で軸受を介してハウ
ジング内に固定して成る管の超音波探傷装置に
おいて、前記回転円筒体の外側かつ軸受のター
ビン側に該軸受内への水抜け防止のつばを設け
るとともに、前記回転円筒体の超音波通路部に
超音波送波および水抜き用の、また回転円筒体
の前記ミラー側部に水抜き用の孔を設けたこと
を特徴とする管の超音波探傷装置。 (2) 前記超音波送波および水抜き用の孔が、当該
孔の縁につばを設けたものであることを特徴と
する実用新案登録請求の範囲第1項記載の管の
超音波探傷装置。[Claims for Utility Model Registration] (1) A probe that transmits ultrasonic waves in the axial direction of a test tube, a housing that houses the probe, and a probe that protrudes from the housing and extends from the probe. a rotating cylindrical body equipped with a rotating mirror that reflects the ultrasonic waves of the sample onto the tube wall of the test tube, and a turbine that is integrally coupled with the mirror and rotates the mirror concentrically with the tube axis of the test tube. In an ultrasonic flaw detection apparatus for a tube, the rotating cylindrical body is fixed in a housing between the turbine and the mirror via a bearing, the bearing being outside the rotating cylindrical body and on the turbine side of the bearing. In addition to providing a flange to prevent water from draining inward, holes for ultrasonic wave transmission and water drainage are provided in the ultrasonic passage portion of the rotating cylindrical body, and holes for draining water are provided in the side portion of the mirror of the rotating cylindrical body. An ultrasonic flaw detection device for pipes, which is characterized by: (2) The ultrasonic flaw detection device for pipes according to claim 1 of the utility model registration claim, wherein the hole for transmitting ultrasonic waves and draining water is provided with a flange on the edge of the hole. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8366986U JPH0518695Y2 (en) | 1986-06-03 | 1986-06-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8366986U JPH0518695Y2 (en) | 1986-06-03 | 1986-06-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62195760U JPS62195760U (en) | 1987-12-12 |
JPH0518695Y2 true JPH0518695Y2 (en) | 1993-05-18 |
Family
ID=30937463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8366986U Expired - Lifetime JPH0518695Y2 (en) | 1986-06-03 | 1986-06-03 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0518695Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2625211B2 (en) * | 1989-08-31 | 1997-07-02 | 三菱重工業株式会社 | Ultrasonic testing equipment for small diameter pipes |
-
1986
- 1986-06-03 JP JP8366986U patent/JPH0518695Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62195760U (en) | 1987-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI426264B (en) | Ultrasonic inspection probe carrier system for performing nondestructive testing | |
CN106461618B (en) | Improved ultrasound examination | |
US4742717A (en) | Gas flow rate measuring device | |
JPH0584865B2 (en) | ||
SE8602533D0 (en) | ULTRASONIC METHOD AND DEVICE FOR DETECTING AND MEASURING DEFECTS IN METAL MEDIA | |
CN109725059A (en) | A method of ultrasonic Doppler nondestructive detection of corrosion defects on the inner wall of pipelines | |
JPH0518695Y2 (en) | ||
JP6039599B2 (en) | Tube ultrasonic inspection equipment | |
WO2010116791A1 (en) | Ultrasound flaw detection device for pipe ends | |
DK169900B1 (en) | Method and apparatus for detecting corrosion in pipes | |
US4455873A (en) | Ultrasonic probe | |
JPH068807B2 (en) | Ultrasonic probe holder | |
JP3352653B2 (en) | Ultrasonic flaw detector for pipes | |
CN113358444B (en) | Casting creep rate detection device | |
JP2002296133A (en) | Device and method for measuring pressure inside pipe | |
TR201815434T4 (en) | DEVICE FOR INSPECTION OF A MATERIAL | |
JP7458075B2 (en) | Piping inner surface measuring device | |
KR100358086B1 (en) | Wedge Device of Focused Ultrasonic Transducer for Boiler Tube and Pipe | |
JP2587077Y2 (en) | Ultrasonic flaw detector for pipes | |
JPH01140056A (en) | Ultrasonic flaw detector for tube | |
CN112649159A (en) | Leak detection system and leak detection method | |
JP2880520B2 (en) | Water column nozzle | |
CN219224696U (en) | Jet coupling device of ultrasonic probe | |
JPH0515224B2 (en) | ||
JPH0540873U (en) | Ultrasonic probe holding device |