JPH0518364A - Controller for volume of valiable capacity type hydraulic pump - Google Patents
Controller for volume of valiable capacity type hydraulic pumpInfo
- Publication number
- JPH0518364A JPH0518364A JP3191161A JP19116191A JPH0518364A JP H0518364 A JPH0518364 A JP H0518364A JP 3191161 A JP3191161 A JP 3191161A JP 19116191 A JP19116191 A JP 19116191A JP H0518364 A JPH0518364 A JP H0518364A
- Authority
- JP
- Japan
- Prior art keywords
- pump
- variable
- pressure
- thrust
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims description 29
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 abstract description 7
- 230000008713 feedback mechanism Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、可変容量型油圧ポンプ
の容量を制御する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the displacement of a variable displacement hydraulic pump.
【0002】[0002]
【従来の技術】可変容量型油圧ポンプ(以下可変ポンプ
という)の容量、つまり1回転当り吐出流量を制御する
装置としては、例えば図1に示すものが知られている。
すなわち、可変ポンプ1は斜板2の角度を変更すること
で容量が変更され、その斜板2は容量可変シリンダ3の
ピストン4で角度が変更される。この容量可変シリンダ
3のロッド側圧力室5には第1パイロット通路6を介し
てポンプ吐出圧P1 が常に導かれ、ボトム側圧力室7に
は第2パイロット通路8を介して可変制御弁9の出力圧
が導かれるようになっている。前記可変制御弁9はばね
10によってドレーン位置Aに向う第1の推力を受け、
受圧部11に作用するポンプ吐出圧Pで供給位置Bに向
う第2の推力受け、バネ10のシート面はリンク12を
介して前記容量可変シリンダ3のピストン4に連結して
フィードバック機構13を構成している。図1において
14は方向制御弁、15はアクチュータである。次に作
動を説明する。ポンプ吐出圧Pが低く可変制御弁9に作
用する第2の推力がばね10の取付荷重による第1の推
力より小さい時は可変制御弁9はドレーン位置Aとな
り、容量可変シリンダ3のボトム側圧力室7は第2パイ
ロット通路8、第3パイロット通路16を経てタンク1
7に連通する。したがって、容量可変シリンダ3のピス
トン4はロッド側圧力室5のポンプ吐出圧Pで縮小作動
して斜板2は容量大方向に傾転して保持される。この状
態でポンプ吐出圧Pが設定圧以上になると可変制御弁9
に作用する第2の推力がばね10の取付荷重による第1
の推力よりも大きくなって可変制御弁9は供給位置Bと
なり、ポンプ吐出圧Pが第4パイロット通路18、可変
制御弁9、第2パイロット通路8を経て容量可変シリン
ダ3のボトム側圧力室7に供給されてピストン4が伸長
し、斜板2が容量減方向に傾転する。これと同時にピス
トン4とともにリンク12が移動してばね10の取付荷
重がピストン4移動量に比例して増加して可変制御弁9
の第1の推力が順次大きくなり、受圧部11に作用する
ポンプ吐出圧Pによる第2の推力とつり合った位置で可
変制御弁9は保持され、ポンプ吐出圧Pに対する斜板角
度、つまり1回転当り吐出流量が決定されるから、ポン
プ吐出圧P×1回転当り吐出流量qが一定となるように
制御されるので、ばね10を複数組み合せることによっ
て図2に示すようにポンプ吐出圧力P×1回転当り吐出
流量qが一定の出力特性Cに近似した特性Dで容量制御
できる。2. Description of the Related Art As a device for controlling a displacement of a variable displacement hydraulic pump (hereinafter referred to as a variable pump), that is, a discharge flow rate per one rotation, for example, a device shown in FIG. 1 is known.
That is, the displacement of the variable pump 1 is changed by changing the angle of the swash plate 2, and the angle of the swash plate 2 is changed by the piston 4 of the variable displacement cylinder 3. The pump discharge pressure P 1 is always guided to the rod-side pressure chamber 5 of the variable capacity cylinder 3 via the first pilot passage 6, and the variable control valve 9 to the bottom-side pressure chamber 7 via the second pilot passage 8. The output pressure of is guided. The variable control valve 9 receives the first thrust force toward the drain position A by the spring 10,
The second thrust force toward the supply position B is generated by the pump discharge pressure P acting on the pressure receiving portion 11, and the seat surface of the spring 10 is connected to the piston 4 of the variable capacity cylinder 3 via the link 12 to form the feedback mechanism 13. is doing. In FIG. 1, 14 is a directional control valve, and 15 is an actuator. Next, the operation will be described. When the pump discharge pressure P is low and the second thrust acting on the variable control valve 9 is smaller than the first thrust due to the mounting load of the spring 10, the variable control valve 9 is in the drain position A, and the bottom side pressure of the variable capacity cylinder 3 The chamber 7 is connected to the tank 1 through the second pilot passage 8 and the third pilot passage 16.
Connect to 7. Therefore, the piston 4 of the variable capacity cylinder 3 is contracted by the pump discharge pressure P of the rod side pressure chamber 5, and the swash plate 2 is tilted and held in the large capacity direction. In this state, if the pump discharge pressure P exceeds the set pressure, the variable control valve 9
The second thrust acting on the
Becomes larger than the thrust of the variable control valve 9 to the supply position B, and the pump discharge pressure P passes through the fourth pilot passage 18, the variable control valve 9 and the second pilot passage 8 and the bottom side pressure chamber 7 of the variable volume cylinder 3 Is supplied to the piston 4, the piston 4 extends, and the swash plate 2 tilts in the capacity decreasing direction. At the same time, the link 12 moves together with the piston 4 so that the mounting load of the spring 10 increases in proportion to the moving amount of the piston 4 and the variable control valve 9
Of the swash plate with respect to the pump discharge pressure P, that is, the variable control valve 9 is held at a position where it is balanced with the second thrust of the pump discharge pressure P acting on the pressure receiving portion 11. Since the discharge flow rate per rotation is determined, the pump discharge pressure P × the discharge flow rate q per rotation is controlled to be constant. Therefore, by combining a plurality of springs 10, as shown in FIG. The capacity can be controlled by the characteristic D that approximates the output characteristic C in which the discharge flow rate q per one rotation is constant.
【0003】[0003]
【発明が解決しようとする課題】かかる容量制御装置は
ポンプ吐出圧Pの変化による1回転当り吐出流量qの増
減を機械的フィードバック機構13で可変制御弁9にフ
ィードバックして可変ポンプ1のトルクを一定に制御し
ているから、機械的フィードバック機構13のために構
造複雑でコストが高くなるばかりか、実際には1回転当
り吐出流量qをフィードバックするのではなしに、斜板
2の角度をフィードバックしているから、可変ポンプ1
自体の効率低下によって実際に吐出される1回転当り吐
出流量が斜板角度で決定される値よりも減少するのでポ
ンプ吐出流量の精度が悪くなる。In such a displacement control device, the mechanical feedback mechanism 13 feeds back the increase / decrease in the discharge flow rate q per rotation due to the change in the pump discharge pressure P to the variable control valve 9 to change the torque of the variable pump 1. Since the mechanical feedback mechanism 13 is controlled to be constant, the structure is complicated and the cost is high. In addition, the angle of the swash plate 2 is fed back instead of actually feeding back the discharge flow rate q per rotation. Variable pump 1
Due to the decrease in the efficiency of the pump itself, the discharge flow rate per revolution actually discharged is smaller than the value determined by the swash plate angle, so the accuracy of the pump discharge flow rate deteriorates.
【0004】そこで、本発明は前述の課題を解決できる
ようにした可変容量型油圧ポンプの容量制御装置を提供
することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a displacement control device for a variable displacement hydraulic pump which can solve the above-mentioned problems.
【0005】[0005]
【課題を解決するための手段】可変容量型油圧ポンプ1
の1回転当り吐出流量を増減する容量可変シリンダ3
と、この容量可変シリンダ3の可変ポンプ容量小側の圧
力室にポンプ吐出圧を供給する可変制御弁9を備え、こ
の可変制御弁9をばね20とポンプ回転数に比例した力
でドレーン位置Aに向けて押され、ポンプ吐出圧P0 で
供給位置Bに向けて押され、かつ吐出流量の2乗に比例
した力で供給位置Bに向けて押される構造とした可変容
量型油圧ポンプの容量制御装置。[Means for Solving the Problems] Variable displacement hydraulic pump 1
Variable cylinder 3 that increases or decreases the discharge flow rate per revolution of the
And a variable control valve 9 for supplying pump discharge pressure to the pressure chamber on the small variable pump capacity side of the variable capacity cylinder 3, and the variable control valve 9 is provided with a spring 20 and a force proportional to the pump rotation speed. Capacity of the variable displacement hydraulic pump configured to be pushed toward the supply position B at the pump discharge pressure P 0 and pushed toward the supply position B with a force proportional to the square of the discharge flow rate. Control device.
【0006】[0006]
【作 用】ポンプ吐出圧と吐出流量に応じた力の和と
ばね20の取付荷重とポンプ回転数に比例した力の和と
で可変制御弁9が切換え作動して容量可変シリンダ3で
可変容量型油圧ポンプ1の1回転当り吐出流量を増減制
御するので、可変容量型油圧ポンプ1の容量をポンプ回
転数に関係なくポンプ吐出圧に基づいて制御してトルク
一定として制御できるし、機械的フィードバック機構が
不要となる。[Operation] The variable control valve 9 switches to operate by the sum of the forces according to the pump discharge pressure and the discharge flow rate, the mounting load of the spring 20 and the sum of the forces proportional to the pump rotation speed, and the variable capacity of the variable cylinder 3 Since the discharge flow rate per rotation of the hydraulic pump 1 is controlled to be increased or decreased, the capacity of the variable displacement hydraulic pump 1 can be controlled based on the pump discharge pressure regardless of the pump rotation speed to control the torque to be constant, and mechanical feedback is possible. No mechanism is needed.
【0007】[0007]
【実 施 例】本発明の実施例を図3に基づいて説明す
る。なお、従来と同一部材は符号を同一とする。可変制
御弁9はばね20の取付荷重による第1の推力F1 と第
1受圧部21の圧油による第2の推力F2 と第2受圧部
22の圧油による第3の推力F3 でドレーン位置Aに向
けて押され、第3、第4受圧部23,24の圧油による
第4、第5の推力F4 、F5 で供給位置Bに向けて押さ
れ、F1 +F2 +F3 とF4 +F5 がつり合った位置と
なる。前記第1受圧部21は第1通路25で可変ポンプ
1の吐出路26に設けた絞り27の下流側に接続し、第
2受圧部22には可変ポンプ回転数に比例した圧力を出
力する手段28に接続し、第3・第4受圧部23,24
は第2、第3通路29,30で前記絞り27の上流側に
接続し、可変制御弁9の入口側は第4通路31で前記絞
り27の上流側に接続している。前記手段28は例え
ば、可変ポンプ1とともにエンジンで駆動される固定容
量型油圧ポンプと、可変ポンプ1の回転数を検出するセ
ンサと、その検出回転数に比例して作動して固定容量型
油圧ポンプの吐出圧を増減する比例減圧弁等より構成さ
れている。EXAMPLE An example of the present invention will be described with reference to FIG. It should be noted that the same members as those in the related art have the same reference numerals. The variable control valve 9 has a first thrust F 1 due to the mounting load of the spring 20, a second thrust F 2 due to the pressure oil of the first pressure receiving portion 21 and a third thrust F 3 due to the pressure oil of the second pressure receiving portion 22. It is pushed toward the drain position A, and is pushed toward the supply position B by the fourth and fifth thrusts F 4 and F 5 by the pressure oil of the third and fourth pressure receiving portions 23 and 24, and F 1 + F 2 + F 3 and F 4 + F 5 are in a balanced position. The first pressure receiving portion 21 is connected to the downstream side of the throttle 27 provided in the discharge passage 26 of the variable pump 1 through the first passage 25, and the second pressure receiving portion 22 outputs a pressure proportional to the variable pump rotation speed. 28, and the third and fourth pressure receiving portions 23, 24
Is connected to the upstream side of the throttle 27 through the second and third passages 29 and 30, and the inlet side of the variable control valve 9 is connected to the upstream side of the throttle 27 through the fourth passage 31. The means 28 is, for example, a fixed displacement hydraulic pump driven by an engine together with the variable pump 1, a sensor for detecting the rotational speed of the variable pump 1, and a fixed displacement hydraulic pump that operates in proportion to the detected rotational speed. It is composed of a proportional pressure reducing valve or the like that increases or decreases the discharge pressure of the.
【0008】次に作動を説明する。まず、可変制御弁9
に作用する推力とつり合いの関係を説明する。ポンプ吐
出圧をP0 、第4受圧部24の受圧面積をA4 とすると
第5の推力F5 はF5 =A4 ×P0 となる。絞り27の
下流側圧力をP1 、第1・第3受圧部21,23の受圧
面積をA1 、A3 とすると、第2の推力F2 はP1 ×A
1 、第4の推力F4 はP0 ×A3 となり、絞り27前後
の差圧△P(△P=P0 −P1 )による可変制御弁9を
供給位置Bに向けて押す第6の推力F6 はF6 =P0 ×
A3 −P1 ×A1 となるから第1・第3受圧部21,2
3の受圧面積A1 、A3 を同一とすればF6 =A1 ×△
Pとなる。この第6の推力F6 と前記第4の推力F4 は
ともに可変制御弁9を供給位置Bに向けて押すので、第
6の推力F6 +第3の推力F4 がばね20の取付荷重に
よる第1の推力F1 +第3の推力F3 より小さい時は可
変制御弁9がドレーン位置Aとなり、容量可変シリンダ
3のボトム側圧力室7内の圧油は第2パイロット通路
8、第3パイロット通路16を経てタンク17に流出し
てピストン4は縮小作動して斜板2は容量大方向に傾転
されて保持される。前述の状態でポンプ吐出圧P0 が高
圧となると第5の推力F5 が大きくなり、第5の推力F
5 +第6の推力F6 がばね20の取付荷重による第1の
推力F1 +第3の推力F3 より大きくなると可変制御弁
9が圧油供給位置Bとなってポンプ吐出圧P0が容量可
変シリンダ3のボトム側圧力室7に供給され、ボトム側
圧力室7とロッド側圧力室5の受圧面積差でピストン4
が伸長して斜板2が容量小方向に傾転する。これによっ
て、可変ポンプ1の1回転当り吐出流量が減少するから
可変ポンプ1の回転数が同一であっても可変ポンプ1の
単位時間当り吐出流量が減少し、絞り27前後の差圧△
Pが小さくなって第6の推力F6 が小さくなるから第5
の推力F5 +第6の推力F6 が小さくなって可変制御弁
9はばね20の取付荷重による第1の推力F1 +第3の
推力F3 でドレーン位置Aに向けて押し戻さればね20
の取付荷重による第1の推力F1 +第3の推力F3 とつ
り合った位置で保持される。このようであるから、可変
ポンプ1を同一回転状態とすれば容量可変シリンダ3の
ピストン4と可変制御弁9をフィードバック機構で機械
的に連結しなくともポンプ吐出圧P0 に応じて斜板角度
を制御して可変ポンプ1の1回転当り吐出流量をポンプ
吐出圧P0 に応じた値として可変ポンプ1のトルクを一
定に制御できるが可変ポンプ1の回転数が変化すると斜
板角度が同一であっても単位時間当り吐出流量が変化し
て絞り27前後の差圧による第6の推力F6 が変化する
ので、可変ポンプ1のトルクを一定に制御できない。Next, the operation will be described. First, the variable control valve 9
The relationship between the thrust acting on and the balance is explained. When the pump discharge pressure is P 0 and the pressure receiving area of the fourth pressure receiving portion 24 is A 4 , the fifth thrust F 5 is F 5 = A 4 × P 0 . When the downstream pressure of the throttle 27 is P 1 and the pressure receiving areas of the first and third pressure receiving portions 21 and 23 are A 1 and A 3 , the second thrust F 2 is P 1 × A
1 , the fourth thrust F 4 becomes P 0 × A 3 , and the variable control valve 9 due to the differential pressure ΔP (ΔP = P 0 −P 1 ) before and after the throttle 27 is pushed toward the supply position B. Thrust F 6 is F 6 = P 0 ×
Since A 3 −P 1 × A 1 , the first and third pressure receiving portions 21 and 2 are
If the pressure receiving areas A 1 and A 3 of 3 are the same, F 6 = A 1 × △
P. Since the sixth thrust F 6 and the fourth thrust F 4 both push the variable control valve 9 toward the supply position B, the sixth thrust F 6 + the third thrust F 4 is the mounting load of the spring 20. When the first thrust force F 1 + third thrust force F 3 is smaller than the first thrust force F 3 + the third thrust force F 3, the variable control valve 9 is in the drain position A, and the pressure oil in the bottom side pressure chamber 7 of the variable capacity cylinder 3 is in the second pilot passage 8 It flows out into the tank 17 through the three pilot passages 16, the piston 4 is contracted, and the swash plate 2 is tilted and held in the direction of large capacity. When the pump discharge pressure P 0 becomes high in the above-mentioned state, the fifth thrust F 5 increases and the fifth thrust F 5 increases.
5 + 6 first thrust F 1 + third pump discharge pressure P 0 becomes greater than the thrust F 3 variable control valve 9 is a pressure oil supply position B of by mounting load of thrust F 6 spring 20 is It is supplied to the bottom side pressure chamber 7 of the variable volume cylinder 3, and the piston 4 is generated by the difference in pressure receiving area between the bottom side pressure chamber 7 and the rod side pressure chamber 5.
And the swash plate 2 tilts in the direction of small capacity. As a result, the discharge flow rate per revolution of the variable pump 1 is reduced, so that the discharge flow rate per unit time of the variable pump 1 is reduced even if the number of revolutions of the variable pump 1 is the same, and the differential pressure Δ before and after the throttle 27 is reduced.
Since P becomes smaller and the sixth thrust F 6 becomes smaller,
Thrust force F 5 + sixth thrust force F 6 becomes smaller, the variable control valve 9 is pushed back toward the drain position A by the first thrust force F 1 + third thrust force F 3 due to the mounting load of the spring 20, and the spring 20 is pushed back.
It is held at a position balanced with the first thrust F 1 + third thrust F 3 due to the mounting load. Because of this, if the variable pump 1 is kept in the same rotation state, the swash plate angle can be adjusted according to the pump discharge pressure P 0 without mechanically connecting the piston 4 of the variable capacity cylinder 3 and the variable control valve 9 by a feedback mechanism. Can be controlled to control the torque of the variable pump 1 to be constant by setting the discharge flow rate per one rotation of the variable pump 1 to a value corresponding to the pump discharge pressure P 0. Even if there is, the discharge flow rate per unit time changes and the sixth thrust F 6 due to the differential pressure before and after the throttle 27 changes, so the torque of the variable pump 1 cannot be controlled to be constant.
【0009】次に可変ポンプ1の一定トルク制御につい
て説明する。可変ポンプ1を可変ポンプ回転数に関係な
しに一定トルク制御するにはポンプ吐出圧P0 kg/c
m2 ×一回当り吐出流量qを図4に示すように回転数に
関係なく一定とすれば良い。ここで、単位時間当り吐出
流量Q0 により絞り27の前後の差圧△Pは△P=ζ×
(Q0 /A0 )2 で表わされ図5に示すようになる。但
し、ζは流量係数により決まる係数で、A0 は絞り26
の開口面積である。以上のことから、可変制御弁9に作
用する第6の推力F6 =A1 ×△PはF6 =A1 ×△P
=ζA1 ×(Q0 /A0 )2 となり、P0 ×Q0 =Cと
するとQ0 =C/P0 となり、前記第6の推力F6 =ζ
×C2 ×A2 /A0 2 ÷P0 2 =K/P0 2 で表わさ
れ、可変制御弁9を供給位置Bに押す力FB は、FB =
A4P0 +K/P0 2 となり、この力FB が可変ポンプ
1の回転数により変化する。また、可変制御弁9をドレ
ーン位置Aに押す力FA は、FA =第1の推力+第3の
推力F3 となり、この力FA と前記力FB がつり合うよ
うになっている。前記第3の推力F3 は前述のように回
転数により一次比例するようになっており、第1の推力
F1 <<第3の推力F3 とすると回転数を1/2とする
と力FA もほぼ1/2となり、可変制御弁9のバランス
点に対するポンプ吐出圧P0 もほぼ1/2となって回転
数に比例してセット馬力が変化する。すなわち、セット
馬力PS αP×Q=P×q×Nとなり、セット馬力PS
が回転数Nに比例すればP×q=一定となり、可変ポン
プ1のトルクT=P×q/200π=一定となり一定ト
ルク制御できる。前記ばね20の取付荷重による第1の
推力F1 と回転数により変化する圧力による第3の推力
F3 の関係は、例えばNext, constant torque control of the variable pump 1 will be described. To control the constant torque of the variable pump 1 regardless of the variable pump speed, the pump discharge pressure P 0 kg / c
As shown in FIG. 4, m 2 × the discharge flow rate q may be constant regardless of the number of revolutions. Here, the differential pressure ΔP before and after the throttle 27 is ΔP = ζ × depending on the discharge flow rate Q 0 per unit time.
It is represented by (Q 0 / A 0 ) 2 and is as shown in FIG. However, ζ is a coefficient determined by the flow coefficient, and A 0 is the throttle 26
Is the opening area of. From the above, the sixth thrust F 6 = A 1 × ΔP acting on the variable control valve 9 is F 6 = A 1 × ΔP
= ΖA 1 × (Q 0 / A 0 ) 2 and P 0 × Q 0 = C, Q 0 = C / P 0 , and the sixth thrust F 6 = ζ
XC 2 × A 2 / A 0 2 ÷ P 0 2 = K / P 0 2 , and the force F B for pushing the variable control valve 9 to the supply position B is F B =
A 4 P 0 + K / P 0 2 , and this force F B changes depending on the rotation speed of the variable pump 1. Further, the force F A to press the variable control valve 9 to the drain position A, F A = first thrust + third thrust F 3 becomes, and this force F A and the force F B so that the balanced. As described above, the third thrust force F 3 is linearly proportional to the rotation speed. If the first thrust force F 1 << the third thrust force F 3 and the rotation speed is ½, the force F is reduced. A also becomes approximately 1/2, and the pump discharge pressure P 0 with respect to the balance point of the variable control valve 9 also becomes approximately 1/2, and the set horsepower changes in proportion to the rotational speed. That is, the set horsepower P S αP × Q = P × q × N, and the set horsepower P S
Is proportional to the rotation speed N, P × q = constant, the torque T of the variable pump 1 is T = P × q / 200π = constant, and constant torque control can be performed. The relationship between the first thrust F 1 due to the mounting load of the spring 20 and the third thrust F 3 due to the pressure that changes depending on the number of revolutions is, for example,
【0010】[0010]
【表1】 [Table 1]
【0011】となり、回転数Nが1/2になると力FA
=F1 +F3 もほぼ1/2となり可変制御弁9の作動圧
もほぼ1/2となる。以上のことを要約すれば、ポンプ
吐出圧P0 が一定の時に可変ポンプ1の回転数が増加す
れば単位時間当り吐出流量が増大して前述の第6の推力
F6 が大きくなるが、これと同時に第3の推力F3 が大
きくなるから可変制御弁9は初期の位置に保持され続
け、可変ポンプ1の回転数が減少すれば単位時間当り吐
出流量が減小して前述の第6の推力F6 が小さくなる
が、これと同時に第3の推力F3 が小さくなるから可変
制御弁9は初期の位置に保持され、可変ポンプ1の回転
数が変化しても1回転当り吐出流量qが変化せずにP0
×q=一定となるので、可変ポンプ1のトルクを一定に
制御できる。なお、可変ポンプ1の吐出管路の所定長さ
の前後の圧力を検出して可変制御弁9の第1・第2受圧
部21,22に供給するようにしても良い。このように
すれば、ハーゲンポアズイユの法則に従う管路の圧損を
流量変化としてフィードバックできるから、
Q=πD4 /128μl×△P
但し、Dは管内径、μは粘性係数、lは管路長さ
となり、流量Qと圧力差△Pは一次の関数となるため一
定馬力曲線に沿ってさらに精度良く制御できる。また、
可変制御弁9をドレーン位置Aに向けて押す比例ソレノ
イドを設け、回転数に比例した電流を比例ソレノイドに
通電して可変制御弁9をドレーン位置Aに向う第3の推
力F3 を回転数に比例するようにしても良い。When the rotation speed N becomes 1/2, the force F A
= F 1 + F 3 is also approximately 1/2, and the operating pressure of the variable control valve 9 is also approximately 1/2. To summarize the above, when the rotation speed of the variable pump 1 increases when the pump discharge pressure P 0 is constant, the discharge flow rate per unit time increases and the sixth thrust F 6 increases. At the same time, since the third thrust F 3 increases, the variable control valve 9 continues to be held at the initial position, and if the number of revolutions of the variable pump 1 decreases, the discharge flow rate per unit time decreases and the above-described sixth control. Although the thrust F 6 becomes smaller, at the same time, the third thrust F 3 becomes smaller, so that the variable control valve 9 is held at the initial position, and even if the rotation speed of the variable pump 1 changes, the discharge flow rate q per rotation q P 0 without changing
Since xq = constant, the torque of the variable pump 1 can be controlled to be constant. The pressure before and after the predetermined length of the discharge line of the variable pump 1 may be detected and supplied to the first and second pressure receiving portions 21 and 22 of the variable control valve 9. In this way, since the pressure loss of the pipe according to the law of Hagen Poiseuille can be fed back as a flow rate change, Q = πD 4 / 128μl × △ P where, D is the pipe inside diameter, mu is viscosity coefficient, l is the pipe length Therefore, since the flow rate Q and the pressure difference ΔP are linear functions, the flow rate Q and the pressure difference ΔP can be controlled more accurately along the constant horsepower curve. Also,
A proportional solenoid that pushes the variable control valve 9 toward the drain position A is provided, and a current proportional to the number of revolutions is applied to the proportional solenoid so that the third thrust F 3 that directs the variable control valve 9 toward the drain position A is set to the number of revolutions. You may make it proportional.
【0012】[0012]
【発明の効果】ポンプ吐出圧と吐出流量に応じた力の和
とばね20の取付荷重とポンプ回転数に比例した力の和
で可変制御弁9を切換え作動して容量可変シリンダ3で
可変容量型油圧ポンプ1の1回転当り吐出流量を増減制
御するので、可変容量型油圧ポンプ1の容量をトルク一
定として制御できるし、機械的フィードバック機構が不
要となってコストを安くできるばかりか、実際の吐出流
量とポンプ回転数に基づいて容量を制御するので一定ト
ルク曲線に沿って精度良く制御できる。The variable control valve 9 is switched and operated by the sum of the forces according to the pump discharge pressure and the discharge flow rate, the mounting load of the spring 20 and the force proportional to the pump rotation speed, and the variable capacity cylinder 3 changes the variable capacity. Since the discharge flow rate per revolution of the hydraulic pump 1 is controlled to be increased or decreased, not only the capacity of the variable displacement hydraulic pump 1 can be controlled with a constant torque, but also a mechanical feedback mechanism is not required and the cost can be reduced. Since the capacity is controlled based on the discharge flow rate and the pump rotation speed, it is possible to accurately control along the constant torque curve.
【図1】従来例の回路図である。FIG. 1 is a circuit diagram of a conventional example.
【図2】1回転当り吐出流量とポンプ吐出圧の関係を示
す図表である。FIG. 2 is a chart showing a relationship between a discharge flow rate per one rotation and a pump discharge pressure.
【図3】本発明の実施例を示す回路図である。FIG. 3 is a circuit diagram showing an embodiment of the present invention.
【図4】1回転当り吐出流量とポンプ吐出圧の関係を示
す図表である。FIG. 4 is a chart showing the relationship between the discharge flow rate per rotation and the pump discharge pressure.
【図5】流量と差圧の関係を示す図表である。FIG. 5 is a chart showing the relationship between flow rate and differential pressure.
【図6】可変制御弁に作用する力を示す図表である。FIG. 6 is a chart showing forces acting on a variable control valve.
1 可変容量型油圧ポンプ、2 斜板、3 容量可変シ
リンダ、9 可変制御弁、27 絞り。1 variable displacement hydraulic pump, 2 swash plate, 3 variable displacement cylinder, 9 variable control valve, 27 throttle.
Claims (3)
出流量を増減する容量可変シリンダ3と、この容量可変
シリンダ3の可変ポンプ容量小側の圧力室にポンプ吐出
圧を供給する可変制御弁9を備え、この可変制御弁9を
ばね20でドレーン位置Aに向けて押され、ポンプ吐出
圧P0 で供給位置Bに向けて押され、かつ吐出流量の2
乗に比例した力で供給位置Bに向けて押され、さらにポ
ンプ回転数に比例した値でドレーン位置Aに向けて押さ
れる構造としたことを特徴とする可変容量型油圧ポンプ
の容量制御装置。1. A displacement control cylinder for increasing / decreasing a discharge flow rate per revolution of a variable displacement hydraulic pump 1, and a variable control valve for supplying pump discharge pressure to a pressure chamber on the small side of the variable pump displacement of this displacement control cylinder 3. 9, the variable control valve 9 is pushed by the spring 20 toward the drain position A, is pushed by the pump discharge pressure P 0 toward the supply position B, and has a discharge flow rate of 2
A displacement control device for a variable displacement hydraulic pump, wherein the displacement control device is configured to be pushed toward a supply position B by a force proportional to a power and further pushed toward a drain position A at a value proportional to a pump rotation speed.
絞り27を設け、この絞り27の前後の差圧で可変制御
弁9を供給位置Bに向けて押すようにした請求項1記載
の可変容量型油圧ポンプの容量制御装置。2. The variable displacement hydraulic pump 1 according to claim 1, wherein the discharge passage 26 is provided with a throttle 27, and the variable control valve 9 is pushed toward the supply position B by the differential pressure before and after the throttle 27. Variable displacement hydraulic pump capacity control device.
ける所定長さの前後差圧で可変制御弁9の供給位置Bに
向けて押すようにした請求項1記載の可変容量型油圧ポ
ンプの容量制御装置。3. The variable displacement hydraulic pump according to claim 1, wherein the variable displacement hydraulic pump 1 is pushed toward the supply position B of the variable control valve 9 by a predetermined differential pressure across the discharge line of the variable displacement hydraulic pump 1. Capacity control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3191161A JPH0518364A (en) | 1991-07-05 | 1991-07-05 | Controller for volume of valiable capacity type hydraulic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3191161A JPH0518364A (en) | 1991-07-05 | 1991-07-05 | Controller for volume of valiable capacity type hydraulic pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0518364A true JPH0518364A (en) | 1993-01-26 |
Family
ID=16269921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3191161A Pending JPH0518364A (en) | 1991-07-05 | 1991-07-05 | Controller for volume of valiable capacity type hydraulic pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0518364A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5706219A (en) * | 1995-01-30 | 1998-01-06 | Sony Magnescale Inc. | Interpolation device |
-
1991
- 1991-07-05 JP JP3191161A patent/JPH0518364A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5706219A (en) * | 1995-01-30 | 1998-01-06 | Sony Magnescale Inc. | Interpolation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4559778A (en) | Control device for a hydrostatic transmission | |
JP4422212B2 (en) | Displaceable hydraulic output or moment adjustment device | |
US5469646A (en) | Fine operation mode changeover device for hydraulic excavator | |
JP2678607B2 (en) | Controller for fluid pressure drive of at least two actuators | |
US3932993A (en) | Control apparatus for an adjustable hydraulic machine driven by an adjustable driving motor | |
US3669570A (en) | Power regulation for fluid machines | |
EP0648900A2 (en) | Hydraulic apparatus for construction machinery | |
US5421705A (en) | Overload protective device for an internal combustion engine acting as a drive motor of a main pump of a hydraulic pressure generator | |
JP2015200412A (en) | Switchable hydrostatic adjustment device | |
US5586869A (en) | Initial pressure governor for a variable displacement pump | |
WO2014036226A1 (en) | Electro-hydraulic control design for pump discharge pressure control | |
JPS589301B2 (en) | Hydrostatic drive | |
US5186612A (en) | Variable pressure inlet system for hydraulic pumps | |
US20030019209A1 (en) | Hydraulic driving device | |
JP2929021B2 (en) | Variable displacement pump | |
JPH0792087B2 (en) | Control device for drive system with applied pressure | |
US3679327A (en) | Hydraulically regulated drive | |
JPH0518364A (en) | Controller for volume of valiable capacity type hydraulic pump | |
JP3647625B2 (en) | Hydraulic drive | |
JPH0599126A (en) | Capacity control device for variable capacity type hydraulic pump | |
US4695230A (en) | Power transmission | |
JP3685287B2 (en) | Capacity controller for variable displacement hydraulic pump | |
JPH0518365A (en) | Capacity controller for variable capacity type hydraulic pump | |
JPH0533776A (en) | Capacity control device for variable capacity type hydraulic pump | |
JP3112189B2 (en) | Displacement control device for variable displacement hydraulic pump |