[go: up one dir, main page]

JPH05175262A - Resin sealing semiconductor device - Google Patents

Resin sealing semiconductor device

Info

Publication number
JPH05175262A
JPH05175262A JP3345071A JP34507191A JPH05175262A JP H05175262 A JPH05175262 A JP H05175262A JP 3345071 A JP3345071 A JP 3345071A JP 34507191 A JP34507191 A JP 34507191A JP H05175262 A JPH05175262 A JP H05175262A
Authority
JP
Japan
Prior art keywords
resin
weight
parts
semiconductor device
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3345071A
Other languages
Japanese (ja)
Inventor
Tatsuo Kawada
達男 河田
Hirooki Koujima
博起 幸島
Hiroshi Suzuki
宏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3345071A priority Critical patent/JPH05175262A/en
Publication of JPH05175262A publication Critical patent/JPH05175262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To enhance the crack resistance during the reflow time after moisture absorption of a thin surface mounted semiconductor device resin-sealed with Si chip in large size. CONSTITUTION:In the surface mounted semiconductor device, the glass transfer point Tg is set lower than 140 deg.C or higher than 220 deg.C and the Si chip area sealed with a sealing material comprising an epoxy base or polyimide base, respectively, when Tg is lower than 140 deg.C or higher than 220 deg.C is set wider than 25mm<2> and the package thickness is set thinner than 3mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大形Siチップ、薄形
パッケージの表面実装型樹脂封止型半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-mount type resin-encapsulated semiconductor device having a large Si chip and a thin package.

【0002】[0002]

【従来の技術】産業の米と言われるまで発展してきた樹
脂封止型半導体装置には、従来、成形硬化後のガラス転
移点Tgが150〜180℃、無機充填剤として天然の
結晶性シリカ粉又は溶融シリカ粉、あるいはこれら充填
剤の混合物を50〜65 vol%含有したエポキシ樹脂系
封止材が全世界で使われている。パッケージ形態として
はDIP,SIP,ZIP,TO−92,TO−22
0,TO−3P,TO−126,SOT−23などがあ
る。Tgを150℃以下に低くすると、150〜−55
℃(または−65℃)の熱衝撃試験時に、Tg以上での
伸びがAu線を断線させる要因となり信頼性を著しく損
なう問題があり、この問題を未然に防ぐためTgを15
0〜180℃にコントロールしながら使用して来た。
2. Description of the Related Art Conventionally, a resin-encapsulated semiconductor device that has been developed to be called rice in the industry has a glass transition point Tg of 150 to 180 ° C. after molding and curing, and a natural crystalline silica powder as an inorganic filler. Alternatively, an epoxy resin encapsulant containing 50 to 65 vol% of fused silica powder or a mixture of these fillers is used all over the world. The package form is DIP, SIP, ZIP, TO-92, TO-22
0, TO-3P, TO-126, SOT-23, etc. When Tg is lowered to 150 ° C. or lower, 150 to −55
In a thermal shock test of ℃ (or -65 ℃), there is a problem that elongation at Tg or more causes the Au wire to be broken and the reliability is significantly impaired. To prevent this problem, Tg is set to 15
It has been used while controlling at 0 to 180 ° C.

【0003】[0003]

【発明が解決しようとする課題】樹脂封止型半導体装置
は、最近、Siチップが益々大型化するともに、パッケ
ージが益々薄形化して来ている。一方、これら樹脂封止
型半導体装置をプリント配線基板(PCB)に取付ける
時のはんだ付け作業が、従来のピン挿入から表面実装と
呼ばれている平面取付けによって行われるように変わり
つつある。大形Siチップを搭載する薄形パッケージ
に、従来のエポキシ樹脂系封止材を用い、この樹脂封止
型半導体装置を表面実装すると、予め自然界下での条件
のもとで極く僅かに吸湿していても、これをいきなりは
んだ付けする200℃〜300℃のリフロー温度に曝す
と、パッケージ内部に極く僅かに存在している水分が一
気にガス化して内圧となり、これによる内部応力が囲り
の樹脂層の破断強度を上廻ると容易にクラックしてしま
い信頼性を著しく損なう問題がある。本発明はかかる状
況に鑑みなされたもので、大形Siチップ搭載の薄形樹
脂封止型半導体装置において、加湿後リフロー時の耐ク
ラック性を大巾に改善することを目的とする。
In the resin-encapsulated semiconductor device, the size of the Si chip has become larger and the package has become thinner in recent years. On the other hand, the soldering work for mounting these resin-encapsulated semiconductor devices on a printed wiring board (PCB) is changing from the conventional pin insertion to planar mounting called surface mounting. When a conventional epoxy resin encapsulant is used in a thin package that mounts a large Si chip and this resin-encapsulated semiconductor device is surface-mounted, it absorbs a very slight amount of moisture under natural conditions. However, if this is exposed to a reflow temperature of 200 ° C to 300 ° C where soldering is performed suddenly, a very small amount of water present inside the package is suddenly gasified and becomes an internal pressure, which causes the internal stress to be surrounded. If the breaking strength of the resin layer is exceeded, the resin layer will be easily cracked and the reliability will be significantly impaired. The present invention has been made in view of such circumstances, and an object thereof is to greatly improve the crack resistance during reflow after humidification in a thin resin-sealed semiconductor device mounted with a large Si chip.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、Si
チップの面積が25mm2 以上または一辺の長さが5mm以
上、パッケージの厚さが3mm以下の薄形表面実装型の樹
脂封止型半導体装置において、無機充填剤を65〜90
vol%含有するガラス転移点Tgが140℃以下または
220℃以上を示す熱硬化性樹脂封止材で成形封止され
てなることを特長とする半導体装置に関する。Siチッ
プの面積が25mm2 以上または一辺の長さが5mm以上、
パッケージの厚さが3mm以下の薄形樹脂封止型半導体装
置を加湿後、リフロー時の耐クラック性を向上させる方
策としては(1)リフロー時温度215〜260℃での
高温下での破断強度の増強。(2)吸湿率の低減(3)
Siチップ、リードフレーム金属(CuorFe系)など
インサートと封止材の接着力増強があげられる。
That is, the present invention is based on Si
In a thin surface-mounting resin-sealed semiconductor device having a chip area of 25 mm 2 or more or a side length of 5 mm or more and a package thickness of 3 mm or less, an inorganic filler is used in an amount of 65 to 90.
The present invention relates to a semiconductor device characterized by being molded and encapsulated with a thermosetting resin encapsulant having a glass transition point Tg of vol% of 140 ° C. or lower or 220 ° C. or higher. The area of the Si chip is 25 mm 2 or more, or the length of one side is 5 mm or more,
Measures to improve the crack resistance during reflow after humidifying a thin resin-sealed semiconductor device with a package thickness of 3 mm or less are as follows: (1) Breaking strength at high temperature at reflow temperature of 215 to 260 ° C. Augmentation. (2) Reduction of moisture absorption rate (3)
The adhesive strength between the insert such as Si chip and lead frame metal (CuorFe type) and the sealing material can be increased.

【0005】上記のうち、高温強度増強は、Tgが15
0〜180℃である従来のエポキシ系封止材では、ゴム
状領域での強度を上げなければならないことを意味し、
この大巾な増強は本質的に不可能である。高温強度の大
幅な増強はTgを上げることによってのみ可能である。
ただし、これまでTgと高温強度の関係が明らかでな
く、Tgを何℃まで高くすれば良いのか予想することは
出来なかった。一方Tgを大巾に高くしたり、また低く
することは原料の樹脂系を変える必要がある。そこで、
各種エポキシ樹脂、ポリイミド樹脂系封止材について、
Tg、高温強度、吸湿率、接着性およびQFP54 pin
パッケージ:20×14×2mmt 、Siチップサイズ:
6×6mmt リードフレーム:42Alloy について吸湿後
リフロー時耐クラック性を詳しく調べた。用いた樹脂系
封止材の基本樹脂の骨格を表1に示す。
Of the above, the high temperature strength enhancement has a Tg of 15
In the conventional epoxy-based encapsulant of 0 to 180 ° C, it means that the strength in the rubber-like region must be increased,
This major enhancement is essentially impossible. Significant enhancement of high temperature strength is possible only by increasing Tg.
However, the relationship between Tg and high-temperature strength has not been clarified so far, and it has not been possible to predict what temperature Tg should be raised to. On the other hand, it is necessary to change the resin system of the raw material in order to greatly increase or decrease Tg. Therefore,
For various epoxy resin and polyimide resin encapsulants,
Tg, high temperature strength, moisture absorption, adhesion and QFP54 pin
Package: 20 x 14 x 2 mmt, Si chip size:
The 6 × 6 mmt lead frame: 42 Alloy was examined in detail for crack resistance during reflow after absorbing moisture. Table 1 shows the skeleton of the basic resin of the resin-based sealing material used.

【0006】[0006]

【表1】 [Table 1]

【0007】(1)高温強度 Tgと高温曲げ強度との関係を図3に示す。高温曲げ強
度はTgに強く依存しており、Tgを高くすれば予想通
り高温強度を増強できる。エポキシ系の延長線上にポリ
イミド系が位置している連続性のあることがわかったこ
とは特筆に値する発見である。この関係は下記Tgと吸
湿率、接着性との関係においても同様である。なお、高
温曲げ強度は同温曲げ弾性率(硬さ)に支配されている
ことが図2、図3および図4より明らかとなった。 (2)吸湿率 Tgと吸湿性の関係を図5に示す。吸湿性もTgに依存
し、Tgを高くすると吸湿率は大きくなる傾向を示し、
逆に吸湿性を下げるためにはTgを下げる必要があるこ
とがわかる。 (3)接着性 Tgと接着性の関係を図6に示す。接着性もTgに依存
し、Tgを高くすると接着性が低下する傾向にあり、T
gを下げることにより接着性を大巾に高めることができ
ることがわかった。 (4)パッケージ吸湿後リフロー時の耐クラック性 前記、QFP54pin を85℃、85%RH下で吸湿さ
せ、適宜取り出し、リフローの条件215℃、90℃の
熱処理を行い、パッケージがクラックするまでの85
℃、85%RH吸湿時間を求め、これとTgとの関係を
プロットしたのが図7である。Tgが220℃以上とT
gが140℃以下にした時の2極に分化し、吸湿後、リ
フロー時の耐クラック性を向上(クラック発生までの吸
湿時間の延長)できることがわかった。Tgが高い前者
は、ポリイミド系封止材であり、高温強度の高いことが
有利に効いている。Tgが低い後者は、エポキシ系封止
材であり、低吸湿性と高接着化が奏効している。本発明
で用いられるポリイミド系樹脂としては、ビスマレイミ
ド系樹脂、無水マレイン酸−芳香族ジアミン直接付加反
応系樹脂等があり、またエポキシ系樹脂としては、ビス
フェノールA型エポキシ樹脂、ビフェニル型エポキシ樹
脂、レゾルシノールグリシジルエーテル型エポキシ樹脂
等がある。さらに、硬化剤としてはフェノールノボラッ
ク樹脂、フェノールアラルキル樹脂等が用いることがで
きる。
(1) High temperature strength The relationship between Tg and high temperature bending strength is shown in FIG. The high temperature bending strength strongly depends on Tg, and if Tg is increased, the high temperature strength can be enhanced as expected. It was a remarkable finding that the polyimide system was found to be continuous on the extension line of the epoxy system. This relationship also applies to the relationship between the following Tg, moisture absorption rate, and adhesiveness. It is clear from FIGS. 2, 3 and 4 that the high temperature bending strength is governed by the same temperature bending elastic modulus (hardness). (2) Moisture absorption rate The relationship between Tg and hygroscopicity is shown in FIG. The hygroscopicity also depends on Tg, and when Tg is increased, the hygroscopicity tends to increase,
On the contrary, it is understood that it is necessary to lower Tg in order to lower the hygroscopicity. (3) Adhesiveness The relationship between Tg and adhesiveness is shown in FIG. The adhesiveness also depends on Tg, and when Tg is increased, the adhesiveness tends to decrease.
It was found that the adhesiveness can be greatly enhanced by lowering g. (4) Crack resistance during reflow after moisture absorption of package The QFP54pin is moisture-absorbed at 85 ° C. and 85% RH, taken out appropriately, and subjected to heat treatment at reflow conditions of 215 ° C. and 90 ° C. until the package cracks.
FIG. 7 is a graph in which the moisture absorption time at 85 ° C. and 85% RH was obtained and the relationship between the moisture absorption time and Tg was plotted. Tg of 220 ° C or higher
It was found that when g was 140 ° C. or less, it was differentiated into two poles, and after moisture absorption, crack resistance during reflow could be improved (extension of moisture absorption time until crack generation). The former having a high Tg is a polyimide-based encapsulating material, and it is advantageous that it has high high-temperature strength. The latter, which has a low Tg, is an epoxy-based encapsulant, and is effective in low hygroscopicity and high adhesion. Examples of the polyimide-based resin used in the present invention include bismaleimide-based resins and maleic anhydride-aromatic diamine direct addition reaction-based resins, and epoxy-based resins include bisphenol A type epoxy resins, biphenyl type epoxy resins, There are resorcinol glycidyl ether type epoxy resins and the like. Further, as the curing agent, phenol novolac resin, phenol aralkyl resin, etc. can be used.

【0008】従来、樹脂封止型半導体装置の信頼性試験
の上限温度が150℃であることから、耐熱性の指標で
あるTgを150℃以上〜180℃に設定することが基
準であった。前述の如く、封止材のTgを150℃以下
するとTg以上でのゴム状領域での伸びが無視できな
く、150〜−55(あるいは−65)℃の温度サイク
ル試験において、Au線が断線し易く信頼性を損なう問
題があった。しかし、この耐熱衝撃性は湿気を拡散、吸
着、透過をしない充填剤、溶融シリカの含有量を増し、
線膨張率を下げることにより補償することが出来る。溶
融シリカの含有量の増大は、吸湿率の低減高温下での弾
性増大による高温強度の増強にも有効である。そこで、
溶融シリカ粉高充填エポキシ系封止材での溶融シリカの
含有量 vol%と吸湿特性(85℃、85%RH)、線膨
張率、高温曲げ強さおよび、QFP54 pinパッケージ
と65℃、95%RH、72h吸湿後、リフローの熱処
理条件215℃、90℃に曝した時のクラック発生状況
を表2に示す。
Conventionally, since the upper limit temperature of the reliability test of the resin-encapsulated semiconductor device is 150 ° C., it has been standard to set Tg, which is an index of heat resistance, to 150 ° C. or higher to 180 ° C. As described above, when the Tg of the sealing material is 150 ° C. or lower, the elongation in the rubber-like region above Tg cannot be ignored, and the Au wire is broken in the temperature cycle test of 150 to −55 (or −65) ° C. There was a problem that it was easy to lose reliability. However, this thermal shock resistance increases the content of fillers and fused silica that do not diffuse, adsorb, or permeate moisture,
It can be compensated by lowering the coefficient of linear expansion. Increasing the content of fused silica is also effective in increasing the high temperature strength by reducing elasticity and increasing elasticity at high temperatures. Therefore,
Fused silica powder content of fused silica in highly filled epoxy type encapsulant and moisture absorption characteristics (85 ℃, 85% RH), linear expansion coefficient, high temperature bending strength, and QFP54 pin package and 65 ℃, 95% Table 2 shows the state of crack generation when exposed to 215 ° C. and 90 ° C. heat treatment conditions for reflow after absorbing moisture for RH for 72 hours.

【0009】[0009]

【表2】 (注)*:QFP54pin 20×14×2mmt L/F:42alloy,チップ:6×6mm 65℃ 95%RH72h+VPS(215℃90sec)[Table 2] (Note) *: QFP54pin 20 x 14 x 2 mmt L / F: 42 alloy, chip: 6 x 6 mm 65 ° C 95% RH72h + VPS (215 ° C 90 sec)

【0010】溶融シリカ粉の含有量を増すにつれ、吸湿
率低減などの吸湿特性の改善と相俟って高温強度が増強
し、線膨張率も低減することによって、リフロー時耐ク
ラック性が大巾に向上することがわかった。線膨張の低
減は、Tgが低い場合の150〜−55(あるいは−6
5)℃で温度サイクルした時のAu線断線防止にも極め
て有効である。次に、溶融シリカの形状とQFP54pi
n のリフロー時クラック発生吸湿時間h(85℃、85
%RH)、およびスパイラルフローSF(180℃、7
0kg/cm2)の関係をそれぞれ図8、9に示す。溶融シリ
カ粉の形状としては、角状が球状に比べリフロー時耐ク
ラック性の点から有利である。しかし、角状粉を多くす
ると流動性を損なうので、流動性とリフロー時耐クラッ
ク性の両立をさせるためには、角状粉と球状粉を適宜調
節することが好ましい。本発明における封止材に配合で
きる成分としては上記樹脂成分、充填剤のほか、臭素化
エポキシ樹脂、三酸化アンチモンなどの難燃剤等を必要
に応じて添加することができる。本発明にかかる封止材
の成形条件としてはエポキシ系樹脂の場合は、165〜
190℃、またポリイミド系樹脂の場合は170〜20
0℃、50〜200から任意に選択できる。以下本発明
を実施例により更に具体的に説明するが、本発明はこれ
ら実施例にに限定されるものではない。
As the content of the fused silica powder is increased, the high temperature strength is enhanced together with the improvement of the moisture absorption characteristics such as the reduction of the moisture absorption rate, and the linear expansion coefficient is also reduced, so that the crack resistance during reflow is greatly increased. It was found to improve. Reduction of linear expansion is 150 to -55 (or -6 when Tg is low).
5) It is also extremely effective for preventing Au wire disconnection during temperature cycling at ° C. Next, the shape of fused silica and QFP54pi
Moisture absorption time for crack generation during reflow of n h (85 ℃, 85
% RH), and spiral flow SF (180 ° C, 7
The relationship of 0 kg / cm 2 ) is shown in FIGS. Regarding the shape of the fused silica powder, the angular shape is more advantageous than the spherical shape in terms of crack resistance during reflow. However, if the amount of the horny powder is increased, the fluidity is impaired. Therefore, in order to achieve both the fluidity and the crack resistance during reflow, it is preferable to appropriately adjust the horny powder and the spherical powder. In addition to the above resin components and fillers, brominated epoxy resins, flame retardants such as antimony trioxide, and the like can be added as necessary as components that can be added to the encapsulating material in the present invention. The molding conditions for the encapsulant according to the present invention are 165 to 165 in the case of an epoxy resin.
190 ° C, 170 to 20 for polyimide resin
It can be arbitrarily selected from 0 ° C. and 50 to 200. Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

【0011】[0011]

【実施例】実施例1 表1に示した化学構造を示す主原料で構成された、Tg
の異なる各種エポキシ系封止材、ポリイミド系封止材に
ついてのTgと高温曲げ特性、吸湿率、接着性の関係を
それぞれ図2〜4、5および6に示した。また、これら
Tgの異なる各種エポキシ系封止材、ポリイミド系封止
材を用い、QFP54 pinパッケージ(20×14×
2.0mmt 、Siチップサイズ:6×6mm、リードフレ
ーム:42Alloy)を通常の条件で成形、硬化し、これを
85℃、85%RH下で吸湿させ適宜取り出し、直ちに
リフローの熱処理条件215℃、90sec (フロリーナ
ート:FC−70、住友3M製の沸点における飽和蒸気
層中)曝した時のパッケージクラックの発生有無を観察
した。そして、このクラックが発生するに至るまでの8
5℃、85%RHの吸湿時間を求めた。このリフローク
ラック発生吸湿時間とTgの関係を図7に示した。
EXAMPLES Example 1 Tg composed of main raw materials having the chemical structure shown in Table 1
2 to 4, 5 and 6 show the relationship between Tg and high temperature bending property, moisture absorption rate, and adhesiveness for various epoxy type encapsulants and polyimide type encapsulants different from each other. Also, using various epoxy type encapsulants and polyimide encapsulants with different Tg, QFP54 pin package (20 x 14 x
2.0 mmt, Si chip size: 6 x 6 mm, lead frame: 42 Alloy) is molded and cured under normal conditions, and this is taken out at 85 ° C and 85% RH for moisture absorption, and immediately reflowed at 215 ° C for heat treatment. The presence or absence of package cracks was observed when exposed for 90 seconds (Florinert: FC-70, saturated vapor layer at boiling point manufactured by Sumitomo 3M). And, until this crack occurs 8
The moisture absorption time at 5 ° C. and 85% RH was determined. FIG. 7 shows the relationship between this reflow cracking moisture absorption time and Tg.

【0012】実施例2 (1)ビスフェノールA型エポキシ(当量500) 80(重量部) (2)フェノールノボラック(当量107) 25(重量部) (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 257(32.5vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 257(32.5vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)カルナウバワックス 3(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 20(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 2(重量部) 上記(1)〜(10) をミキシングロールにかけて90
℃、10分間混練し、冷却後粉砕しエポキシ系封止材を
得た。これの4×4×20mmの棒状試験片を175℃、
70kg/cm2、90sec でトランスファ成形し、175
℃、5hのポストを行い、TMAにかけて5℃/min で
昇温しながら伸び率を求め、勾配の異なる2つの勾配の
交点の温度をガラス転移温度Tgとして求めた結果、1
05℃、また室温とTg間の線膨張率α1 は1.4×1
-5-1であった。一方、実施例1と同様にしてQFP
54 pinパッケージにおけるリフロークラック発生吸湿
時間(85℃、85%RH)を求めた結果、84hと良
好であった。
Example 2 (1) Bisphenol A type epoxy (equivalent 500) 80 (parts by weight) (2) Phenol novolac (equivalent 107) 25 (parts by weight) (3) 1,8-diazabicyclo (5,4,0) ) Undecene-7 3 (parts by weight) (4) Fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 257 (32.5 vol%) (5) Fused silica powder angular (average particle size 15 μm, maximum particle size 100 μm) 257 (32.5vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) carnauba wax 3 (parts by weight) (8) novolac type brominated epoxy resin (equivalent weight 275) 20 (parts by weight) Parts) (9) antimony trioxide 15 (parts by weight) (10) carbon black (average particle size 200 mμm) 2 (parts by weight) The above (1) to (10) are put on a mixing roll to form 90
The mixture was kneaded at 10 ° C. for 10 minutes, cooled, and then pulverized to obtain an epoxy encapsulant. A 4 × 4 × 20 mm rod-shaped test piece of 175 ° C.
Transfer molding at 70kg / cm 2 , 90sec, 175
As a result of obtaining the glass transition temperature Tg, the temperature at the intersection of the two gradients with different gradients was determined by performing elongation at 5 ° C / min for 5 hours at 5 ° C / min.
The linear expansion coefficient α 1 between 05 ℃ and room temperature and Tg is 1.4 × 1
It was 0 -5 ° C -1 . On the other hand, similar to the first embodiment, QFP
The moisture absorption time (85 ° C., 85% RH) at which reflow cracks occurred in the 54-pin package was determined to be 84 hours, which was good.

【0013】実施例3 (1)4,4′−ビス(2,3−エポキシプロポキシ)−3,3′,5,5′− テトラメチル、ビフェニル(当量195) 80(重量部) (2)下記一般式で示されるフェノールアラルキル樹脂(当量175) 84(重量部)Example 3 (1) 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethyl, biphenyl (equivalent weight 195) 80 (parts by weight) (2) Phenol aralkyl resin represented by the following general formula (equivalent 175) 84 (parts by weight)

【化1】 (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 809(52.5vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 346(22.5vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)ポリエチレン系ワックス 3(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 20(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 2(重量部) 上記(1)〜(10)を用い、実施例2と同様にしてエポ
キシ系封止材を得た。このTgを実施例2と同様にして
測定したTgは125℃、室温とTg間のα1 は1.0
×10-5-1であった。一方、実施例1と同様にしてQ
FP54pin におけるリフロークラック発生吸湿時間
(85℃、85%RH)は72hと良好であった。
[Chemical 1] (3) 1,8-diazabicyclo (5,4,0) undecene-7 3 (parts by weight) (4) fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 809 (52.5 vol%) (5) melted Silica powder angular (average particle size 15 μm, maximum particle size 100 μm) 346 (22.5 vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) Polyethylene wax 3 (parts by weight) (8) ) Novolac type brominated epoxy resin (equivalent weight 275) 20 (parts by weight) (9) antimony trioxide 15 (parts by weight) (10) carbon black (average particle size 200 mμm) 2 (parts by weight) Above (1) to (10) Using, was obtained in the same manner as in Example 2 to obtain an epoxy-based encapsulating material. The Tg measured in the same manner as in Example 2 was 125 ° C., and α 1 between room temperature and Tg was 1.0.
It was × 10 -5 ° C -1 . On the other hand, as in Example 1, Q
The moisture absorption time (85 ° C., 85% RH) for reflow cracking at FP54 pin was 72 hours, which was good.

【0014】実施例4 (1)シリコーン変性ビスマレイミド樹脂、ベストレックスA−4L(住友化学 製) 100(重量部) (2)4メチルイミダゾール 3(重量部) (3)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 409(67.5vol%) (4)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (5)エステル系ワックス 3(重量部) (6)カーボンブラック(平均粒度200mμm) 1(重量部) 上記(1)〜(6)をミキシングロールにかけ80℃、
7分間混練し、冷却後粉砕して、ポリイミド系封止材を
得た。これの4×4×20mmの棒状試験片を180℃、
70kg/cm2、150sec でトランスファ成形し、200
℃、2hのポストキュアを行い、実施例2と同様にして
求めたTgは252℃、α1 と0.9×10-5-1であ
った。一方、実施例2と同様にして求めたQFP54 p
inパッケージにおけるリフロークラック発生吸湿時間
(85℃、85%RH)は、168h以上と極めて良好
であった。
Example 4 (1) Silicone-modified bismaleimide resin, Bestlex A-4L (manufactured by Sumitomo Chemical) 100 (parts by weight) (2) 4-methylimidazole 3 (parts by weight) (3) Spherical fused silica powder (average) Particle size 15 μm, maximum particle size 100 μm) 409 (67.5 vol%) (4) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (5) Ester wax 3 (parts by weight) (6) Carbon black (average particle size 200 mμm) 1 (parts by weight) The above (1) to (6) are placed on a mixing roll at 80 ° C.,
The mixture was kneaded for 7 minutes, cooled, and then pulverized to obtain a polyimide-based encapsulating material. This 4 × 4 × 20 mm rod-shaped test piece was placed at 180 ° C.
Transfer molding at 70kg / cm 2 , 150sec, 200
After post-curing at 2 ° C. for 2 hours, Tg determined in the same manner as in Example 2 was 252 ° C., α 1 and 0.9 × 10 −5 ° C. −1 . On the other hand, QFP54 p obtained in the same manner as in Example 2
The moisture absorption time (85 ° C., 85% RH) for reflow cracking in the in-package was 168 hours or more, which was extremely good.

【0015】比較例1 (1)o−クレゾールノボラック型エポキシ樹脂(当量195)80(重量部) (2)フェノールノボラック(当量107) 50(重量部) (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 140(18vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 326(42vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)カルナウバワックス 2(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 15(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 1.5(重量部) 上記(1)〜(10) を用い、実施例2と同様にしてエポ
キシ系封止材を得た。実施例2と同様にして求めたTg
は160℃、α1 は1.9×10-5-1であった。一
方、実施例1と同様にして求めたQFP54 pinパッケ
ージでのリフロークラック発生吸湿時間(85℃、85
%RH)は12hと短かかった。
Comparative Example 1 (1) o-cresol novolac type epoxy resin (equivalent 195) 80 (parts by weight) (2) phenol novolac (equivalent 107) 50 (parts by weight) (3) 1,8-diazabicyclo (5, 5) 4,0) Undecene-7 3 (parts by weight) (4) Fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 140 (18vol%) (5) Fused silica powder angular (average particle size 15 μm, maximum particle size) 100 μm) 326 (42 vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) carnauba wax 2 (parts by weight) (8) novolac type brominated epoxy resin (equivalent weight 275) 15 ( (Parts by weight) (9) Antimony trioxide 15 (parts by weight) (10) Carbon black (average particle size 200 mμm) 1.5 (parts by weight) The same as Example 2 using (1) to (10) above. It was obtained an epoxy sealant. Tg determined in the same manner as in Example 2
Was 160 ° C. and α 1 was 1.9 × 10 −5 ° C. −1 . On the other hand, the moisture absorption time for reflow crack generation in the QFP54 pin package (85 ° C., 85 ° C.) determined in the same manner as in Example 1.
% RH) was as short as 12 hours.

【0016】[0016]

【発明の効果】Siチップの面積が25mm2 以上または
一片の長さが5mm以上、パッケージの厚さが3mm以下の
薄形表面実装型樹脂封止型半導体装置において、ガラス
転移点Tgが140℃以下または220℃以上、無機充
填剤として溶融シリカ粉含有量を65〜90 vol%と
し、Tgが140℃以下の場合はエポキシ系、またTg
が220℃以上の場合はポリイミド系で構成した封止材
で封止することにより、吸湿後、リフロー時の耐クラッ
クが大巾に改善された樹脂封止型半導体装置の提供が可
能になった。
EFFECTS OF THE INVENTION In a thin surface mounting type resin-sealed semiconductor device having a Si chip area of 25 mm 2 or more or a piece length of 5 mm or more and a package thickness of 3 mm or less, the glass transition point Tg is 140 ° C. If the Tg is 140 ° C or lower, or 220 ° C or higher, the content of fused silica powder as an inorganic filler is 65 to 90 vol%, epoxy type, or Tg
When the temperature is 220 ° C. or higher, it is possible to provide a resin-encapsulated semiconductor device in which crack resistance during reflow after moisture absorption is significantly improved by encapsulating with a sealing material composed of a polyimide system. ..

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はクラックの発生状況を示す封止材の断
面図、(b)ははんだリフロー時に発生する応力とレジ
ン強度を示す線図である。
1A is a cross-sectional view of a sealing material showing a crack generation state, and FIG. 1B is a diagram showing stress and resin strength generated during solder reflow.

【図2】Tgと高温曲げ弾性率の関係を示す線図であ
る。
FIG. 2 is a diagram showing a relationship between Tg and high temperature flexural modulus.

【図3】Tgと高温曲げ強さの関係を示す線図である。FIG. 3 is a diagram showing the relationship between Tg and high temperature bending strength.

【図4】高温での曲げ弾性率と曲げ強さとの関係を示す
線図である。
FIG. 4 is a diagram showing a relationship between bending elastic modulus and bending strength at high temperature.

【図5】Tgと吸湿率の関係を示す線図である。FIG. 5 is a diagram showing the relationship between Tg and moisture absorption rate.

【図6】Tgと接着力との関係を示す線図である。FIG. 6 is a diagram showing a relationship between Tg and adhesive force.

【図7】Tgとリフロークラック吸湿時間の関係を示す
線図である。
FIG. 7 is a diagram showing a relationship between Tg and reflow crack moisture absorption time.

【図8】フィラ形状、フィラ含有量と耐リフロークラッ
ク性の関係を示す線図である。
FIG. 8 is a diagram showing the relationship between filler shape, filler content and reflow crack resistance.

【図9】フィラ形状、フィラ含有量とスパイラルフロー
の関係を示す線図である。
FIG. 9 is a diagram showing the relationship between filler shape, filler content and spiral flow.

【手続補正書】[Procedure amendment]

【提出日】平成4年4月20日[Submission date] April 20, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Name of item to be corrected] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 樹脂封止型半導体装置Title: Resin-sealed semiconductor device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大形Siチップ、薄形
パッケージの表面実装型樹脂封止型半導体装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-mount type resin-encapsulated semiconductor device having a large Si chip and a thin package.

【0002】[0002]

【従来の技術】産業の米と言われるまで発展してきた樹
脂封止型半導体装置には、従来、成形硬化後のガラス転
移点Tgが150〜180℃、無機充填剤として天然の
結晶性シリカ粉又は溶融シリカ粉、あるいはこれら充填
剤の混合物を50〜65 vol%含有したエポキシ樹脂系
封止材が全世界で使われている。パッケージ形態として
はDIP,SIP,ZIP,TO−92,TO−22
0,TO−3P,TO−126,SOT−23などがあ
る。Tgを150℃以下に低くすると、150〜−55
℃(または−65℃)の熱衝撃試験時に、Tg以上での
伸びがAu線を断線させる要因となり信頼性を著しく損
なう問題があり、この問題を未然に防ぐためTgを15
0〜180℃にコントロールしながら使用して来た。
2. Description of the Related Art Conventionally, a resin-encapsulated semiconductor device that has been developed to be called rice in the industry has a glass transition point Tg of 150 to 180 ° C. after molding and curing, and a natural crystalline silica powder as an inorganic filler. Alternatively, an epoxy resin encapsulant containing 50 to 65 vol% of fused silica powder or a mixture of these fillers is used all over the world. The package form is DIP, SIP, ZIP, TO-92, TO-22
0, TO-3P, TO-126, SOT-23, etc. When Tg is lowered to 150 ° C. or lower, 150 to −55
In a thermal shock test of ℃ (or -65 ℃), there is a problem that elongation at Tg or more causes the Au wire to be broken and the reliability is significantly impaired. To prevent this problem, Tg is set to 15
It has been used while controlling at 0 to 180 ° C.

【0003】[0003]

【発明が解決しようとする課題】樹脂封止型半導体装置
は、最近、Siチップが益々大型化するともに、パッケ
ージが益々薄形化して来ている。一方、これら樹脂封止
型半導体装置をプリント配線基板(PCB)に取付ける
時のはんだ付け作業が、従来のピン挿入から表面実装と
呼ばれている平面取付けによって行われるように変わり
つつある。大形Siチップを搭載する薄形パッケージ
に、従来のエポキシ樹脂系封止材を用い、この樹脂封止
型半導体装置を表面実装すると、予め自然界下での条件
のもとで極く僅かに吸湿していても、これをいきなりは
んだ付けする200℃〜300℃のリフロー温度に曝す
と、パッケージ内部に極く僅かに存在している水分が一
気にガス化して内圧となり、これによる内部応力が囲り
の樹脂層の破断強度を上廻ると容易にクラックしてしま
い信頼性を著しく損なう問題がある。本発明はかかる状
況に鑑みなされたもので、大形Siチップ搭載の薄形樹
脂封止型半導体装置において、加湿後リフロー時の耐ク
ラック性を大巾に改善することを目的とする。
In the resin-encapsulated semiconductor device, the size of the Si chip has become larger and the package has become thinner in recent years. On the other hand, the soldering work for mounting these resin-encapsulated semiconductor devices on a printed wiring board (PCB) is changing from the conventional pin insertion to planar mounting called surface mounting. When a conventional epoxy resin encapsulant is used in a thin package that mounts a large Si chip and this resin-encapsulated semiconductor device is surface-mounted, it absorbs a very slight amount of moisture under natural conditions. However, if this is exposed to a reflow temperature of 200 ° C to 300 ° C where soldering is performed suddenly, a very small amount of water present inside the package is suddenly gasified and becomes an internal pressure, which causes the internal stress to be surrounded. If the breaking strength of the resin layer is exceeded, the resin layer will be easily cracked and the reliability will be significantly impaired. The present invention has been made in view of such circumstances, and an object thereof is to greatly improve the crack resistance during reflow after humidification in a thin resin-sealed semiconductor device mounted with a large Si chip.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、Si
チップの面積が25mm2 以上または一辺の長さが5mm以
上、パッケージの厚さが3mm以下の薄形表面実装型の樹
脂封止型半導体装置において、無機充填剤を65〜90
vol%含有するガラス転移点Tgが140℃以下または
220℃以上を示す熱硬化性樹脂封止材で成形封止され
てなることを特長とする半導体装置に関する。Siチッ
プの面積が25mm2 以上または一辺の長さが5mm以上、
パッケージの厚さが3mm以下の薄形樹脂封止型半導体装
置を加湿後、リフロー時の耐クラック性を向上させる方
策としては(1)リフロー時温度215〜260℃での
高温下での破断強度の増強。(2)吸湿率の低減(3)
Siチップ、リードフレーム金属(CuorFe系)など
インサートと封止材の接着力増強があげられる。
That is, the present invention is based on Si
In a thin surface-mounting resin-sealed semiconductor device having a chip area of 25 mm 2 or more or a side length of 5 mm or more and a package thickness of 3 mm or less, an inorganic filler is used in an amount of 65 to 90.
The present invention relates to a semiconductor device characterized by being molded and encapsulated with a thermosetting resin encapsulant having a glass transition point Tg of vol% of 140 ° C. or lower or 220 ° C. or higher. The area of the Si chip is 25 mm 2 or more, or the length of one side is 5 mm or more,
Measures to improve the crack resistance during reflow after humidifying a thin resin-sealed semiconductor device with a package thickness of 3 mm or less are as follows: (1) Breaking strength at high temperature at reflow temperature of 215 to 260 ° C. Augmentation. (2) Reduction of moisture absorption rate (3)
The adhesive strength between the insert such as Si chip and lead frame metal (CuorFe type) and the sealing material can be increased.

【0005】上記のうち、高温強度増強は、Tgが15
0〜180℃である従来のエポキシ系封止材では、ゴム
状領域での強度を上げなければならないことを意味し、
この大巾な増強は本質的に不可能である。高温強度の大
幅な増強はTgを上げることによってのみ可能である。
ただし、これまでTgと高温強度の関係が明らかでな
く、Tgを何℃まで高くすれば良いのか予想することは
出来なかった。一方Tgを大巾に高くしたり、また低く
することは原料の樹脂系を変える必要がある。そこで、
各種エポキシ樹脂、ポリイミド樹脂系封止材について、
Tg、高温強度、吸湿率、接着性およびQFP54 pin
パッケージ:20×14×2mmt 、Siチップサイズ:
6×6mmt リードフレーム:42Alloy について吸湿後
リフロー時耐クラック性を詳しく調べた。用いた樹脂系
封止材の基本樹脂の骨格を表1に示す。
Of the above, the high temperature strength enhancement has a Tg of 15
In the conventional epoxy-based encapsulant of 0 to 180 ° C, it means that the strength in the rubber-like region must be increased,
This major enhancement is essentially impossible. Significant enhancement of high temperature strength is possible only by increasing Tg.
However, the relationship between Tg and high-temperature strength has not been clarified so far, and it has not been possible to predict what temperature Tg should be raised to. On the other hand, it is necessary to change the resin system of the raw material in order to greatly increase or decrease Tg. Therefore,
For various epoxy resin and polyimide resin encapsulants,
Tg, high temperature strength, moisture absorption, adhesion and QFP54 pin
Package: 20 x 14 x 2 mmt, Si chip size:
The 6 × 6 mmt lead frame: 42 Alloy was examined in detail for crack resistance during reflow after absorbing moisture. Table 1 shows the skeleton of the basic resin of the resin-based sealing material used.

【0006】[0006]

【表1】 [Table 1]

【0007】(1)高温強度 Tgと高温曲げ強度との関係を図3に示す。高温曲げ強
度はTgに強く依存しており、Tgを高くすれば予想通
り高温強度を増強できる。エポキシ系の延長線上にポリ
イミド系が位置している連続性のあることがわかったこ
とは特筆に値する発見である。この関係は下記Tgと吸
湿率、接着性との関係においても同様である。なお、高
温曲げ強度は高温曲げ弾性率(硬さ)に支配されている
ことが図2、図3および図4より明らかとなった。 (2)吸湿率 Tgと吸湿性の関係を図5に示す。吸湿性もTgに依存
し、Tgを高くすると吸湿率は大きくなる傾向を示し、
逆に吸湿性を下げるためにはTgを下げる必要があるこ
とがわかる。 (3)接着性 Tgと接着性の関係を図6に示す。接着性もTgに依存
し、Tgを高くすると接着性が低下する傾向にあり、T
gを下げることにより接着性を大巾に高めることができ
ることがわかった。 (4)パッケージ吸湿後リフロー時の耐クラック性 前記、QFP54pin を85℃、85%RH下で吸湿さ
せ、適宜取り出し、リフローの条件215℃、90℃の
熱処理を行い、パッケージがクラックするまでの85
℃、85%RH吸湿時間を求め、これとTgとの関係を
プロットしたのが図7である。Tgが220℃以上とT
gが140℃以下にした時の2極に分化し、吸湿後、リ
フロー時の耐クラック性を向上(クラック発生までの吸
湿時間の延長)できることがわかった。Tgが高い前者
は、ポリイミド系封止材であり、高温強度の高いことが
有利に効いている。Tgが低い後者は、エポキシ系封止
材であり、低吸湿性と高接着化が奏効している。本発明
で用いられるポリイミド系樹脂としては、ビスマレイミ
ド系樹脂、無水マレイン酸−芳香族ジアミン直接付加反
応系樹脂等があり、またエポキシ系樹脂としては、ビス
フェノールA型エポキシ樹脂、ビフェニル型エポキシ樹
脂、レゾルシノールグリシジルエーテル型エポキシ樹脂
等がある。さらに、硬化剤としてはフェノールノボラッ
ク樹脂、フェノールアラルキル樹脂等が用いることがで
きる。
(1) High temperature strength The relationship between Tg and high temperature bending strength is shown in FIG. The high temperature bending strength strongly depends on Tg, and if Tg is increased, the high temperature strength can be enhanced as expected. It was a remarkable finding that the polyimide system was found to be continuous on the extension line of the epoxy system. This relationship also applies to the relationship between the following Tg, moisture absorption rate, and adhesiveness. It is clear from FIGS. 2, 3 and 4 that the high temperature bending strength is governed by the high temperature bending elastic modulus (hardness). (2) Moisture absorption rate The relationship between Tg and hygroscopicity is shown in FIG. The hygroscopicity also depends on Tg, and when Tg is increased, the hygroscopicity tends to increase,
On the contrary, it is understood that it is necessary to lower Tg in order to lower the hygroscopicity. (3) Adhesiveness The relationship between Tg and adhesiveness is shown in FIG. The adhesiveness also depends on Tg, and when Tg is increased, the adhesiveness tends to decrease.
It was found that the adhesiveness can be greatly enhanced by lowering g. (4) Crack resistance during reflow after moisture absorption of package The QFP54pin is moisture-absorbed at 85 ° C. and 85% RH, taken out appropriately, and subjected to heat treatment at reflow conditions of 215 ° C. and 90 ° C. until the package cracks.
FIG. 7 is a graph in which the moisture absorption time at 85 ° C. and 85% RH was obtained and the relationship between the moisture absorption time and Tg was plotted. Tg of 220 ° C or higher
It was found that when g was 140 ° C. or less, it was differentiated into two poles and the crack resistance during reflow after moisture absorption could be improved (extension of moisture absorption time until crack generation). The former having a high Tg is a polyimide-based encapsulating material, and it is advantageous that high temperature strength is high. The latter, which has a low Tg, is an epoxy-based encapsulant, and is effective in low hygroscopicity and high adhesion. Examples of the polyimide-based resin used in the present invention include bismaleimide-based resins and maleic anhydride-aromatic diamine direct addition reaction-based resins, and epoxy-based resins include bisphenol A type epoxy resins, biphenyl type epoxy resins, There are resorcinol glycidyl ether type epoxy resins and the like. Further, as the curing agent, phenol novolac resin, phenol aralkyl resin, etc. can be used.

【0008】従来、樹脂封止型半導体装置の信頼性試験
の上限温度が150℃であることから、耐熱性の指標で
あるTgを150℃以上〜180℃に設定することが基
準であった。前述の如く、封止材のTgを150℃以下
にするとTg以上でのゴム状領域での伸びが無視できな
く、150〜−55(あるいは−65)℃の温度サイク
ル試験において、Au線が断線し易く信頼性を損なう問
題があった。しかし、この耐熱衝撃性は湿気を拡散、吸
着、透過をしない充填剤、溶融シリカの含有量を増し、
線膨張率を下げることにより補償することが出来る。溶
融シリカの含有量の増大は、吸湿率の低減、高温下での
弾性増大による高温強度の増強にも有効である。そこ
で、溶融シリカ粉高充填エポキシ系封止材での溶融シリ
カの含有量 vol%と吸湿特性(85℃、85%RH)、
線膨張率、高温曲げ強さおよび、QFP54 pinパッケ
ージと65℃、95%RH、72h吸湿後、リフローの
熱処理条件215℃、90secに曝した時のクラック発
生状況を表2に示す。
Conventionally, since the upper limit temperature of the reliability test of the resin-encapsulated semiconductor device is 150 ° C., it has been standard to set Tg, which is an index of heat resistance, to 150 ° C. or higher to 180 ° C. As described above, when the Tg of the sealing material is 150 ° C. or lower, the elongation in the rubber-like region above Tg cannot be ignored, and the Au wire is broken in the temperature cycle test of 150 to −55 (or −65) ° C. There was a problem that it was easy to do and impaired reliability. However, this thermal shock resistance increases the content of fillers and fused silica that do not diffuse, adsorb, or permeate moisture,
It can be compensated by lowering the coefficient of linear expansion. Increasing the content of fused silica is also effective in reducing the moisture absorption rate and increasing the high temperature strength by increasing the elasticity at high temperatures. Therefore, the content of fused silica in the fused silica powder high-filling epoxy encapsulant vol% and the moisture absorption characteristics (85 ° C., 85% RH),
Table 2 shows the linear expansion coefficient, the high temperature bending strength, and the crack generation state when exposed to the reflow heat treatment condition of 215 ° C. for 90 seconds after absorbing QFP54 pin package and 65 ° C., 95% RH for 72 hours.

【0009】[0009]

【表2】 (注)*:QFP54pin 20×14×2mmt L/F:42alloy,チップ:6×6mm 65℃ 95%RH72h+VPS(215℃90sec)[Table 2] (Note) *: QFP54pin 20 x 14 x 2 mmt L / F: 42 alloy, chip: 6 x 6 mm 65 ° C 95% RH72h + VPS (215 ° C 90 sec)

【0010】溶融シリカ粉の含有量を増すにつれ、吸湿
率低減などの吸湿特性の改善と相俟って高温強度が増強
し、線膨張率も低減することによって、リフロー時耐ク
ラック性が大巾に向上することがわかった。線膨張の低
減は、Tgが低い場合の150〜−55(あるいは−6
5)℃で温度サイクルした時のAu線断線防止にも極め
て有効である。次に、溶融シリカの形状とQFP54pi
n のリフロー時クラック発生吸湿時間h(85℃、85
%RH)、およびスパイラルフローSF(180℃、7
0kg/cm2)の関係をそれぞれ図8、9に示す。溶融シリ
カ粉の形状としては、角状が球状に比べリフロー時耐ク
ラック性の点から有利である。しかし、角状粉を多くす
ると流動性を損なうので、流動性とリフロー時耐クラッ
ク性の両立をさせるためには、角状粉と球状粉を適宜調
節することが好ましい。本発明における封止材に配合で
きる成分としては上記樹脂成分、充填剤のほか、臭素化
エポキシ樹脂、三酸化アンチモンなどの難燃剤等を必要
に応じて添加することができる。本発明にかかる封止材
の成形条件としてはエポキシ系樹脂の場合は、165〜
190℃、またポリイミド系樹脂の場合は170〜20
0℃、50〜200secから任意に選択できる。以下本
発明を実施例により更に具体的に説明するが、本発明は
これら実施例にに限定されるものではない。
As the content of the fused silica powder is increased, the high temperature strength is enhanced together with the improvement of the moisture absorption characteristics such as the reduction of the moisture absorption rate, and the linear expansion coefficient is also reduced, so that the crack resistance during reflow is greatly increased. It was found to improve. Reduction of linear expansion is 150 to -55 (or -6 when Tg is low).
5) It is also extremely effective for preventing Au wire disconnection during temperature cycling at ° C. Next, the shape of fused silica and QFP54pi
Moisture absorption time for crack generation during reflow of n h (85 ℃, 85
% RH), and spiral flow SF (180 ° C, 7
The relationship of 0 kg / cm 2 ) is shown in FIGS. Regarding the shape of the fused silica powder, the angular shape is more advantageous than the spherical shape in terms of crack resistance during reflow. However, if the amount of the horny powder is increased, the fluidity is impaired. Therefore, in order to achieve both the fluidity and the crack resistance during reflow, it is preferable to appropriately adjust the horny powder and the spherical powder. In addition to the above resin components and fillers, brominated epoxy resins, flame retardants such as antimony trioxide, and the like can be added as necessary as components that can be added to the encapsulating material in the present invention. The molding conditions for the encapsulant according to the present invention are 165 to 165 in the case of an epoxy resin.
190 ° C, 170 to 20 for polyimide resin
It can be arbitrarily selected from 0 ° C. and 50 to 200 seconds. Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

【0011】[0011]

【実施例】実施例1 表1に示した化学構造を示す主原料で構成された、Tg
の異なる各種エポキシ系封止材、ポリイミド系封止材に
ついてのTgと高温曲げ特性、吸湿率、接着性の関係を
それぞれ図2〜4、5および6に示した。また、これら
Tgの異なる各種エポキシ系封止材、ポリイミド系封止
材を用い、QFP54 pinパッケージ(20×14×
2.0mmt 、Siチップサイズ:6×6mm、リードフレ
ーム:42Alloy)を通常の条件で成形、硬化し、これを
85℃、85%RH下で吸湿させ適宜取り出し、直ちに
リフローの熱処理条件215℃、90sec (フロリーナ
ート:FC−70、住友3M製の沸点における飽和蒸気
層中)曝した時のパッケージクラックの発生有無を観察
した。そして、このクラックが発生するに至るまでの8
5℃、85%RHの吸湿時間を求めた。このリフローク
ラック発生吸湿時間とTgの関係を図7に示した。
EXAMPLES Example 1 Tg composed of main raw materials having the chemical structure shown in Table 1
2 to 4, 5 and 6 show the relationship between Tg and high temperature bending property, moisture absorption rate, and adhesiveness for various epoxy type encapsulants and polyimide type encapsulants different from each other. Also, using various epoxy type encapsulants and polyimide encapsulants with different Tg, QFP54 pin package (20 x 14 x
2.0 mmt, Si chip size: 6 x 6 mm, lead frame: 42 Alloy) is molded and cured under normal conditions, and this is taken out at 85 ° C and 85% RH for moisture absorption, and immediately reflowed at 215 ° C for heat treatment. The presence or absence of package cracks was observed when exposed for 90 seconds (Florinert: FC-70, saturated vapor layer at boiling point manufactured by Sumitomo 3M). And, until this crack occurs 8
The moisture absorption time at 5 ° C. and 85% RH was determined. FIG. 7 shows the relationship between this reflow cracking moisture absorption time and Tg.

【0012】実施例2 (1)ビスフェノールA型エポキシ(当量500) 80(重量部) (2)フェノールノボラック(当量107) 25(重量部) (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 257(32.5vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 257(32.5vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)カルナウバワックス 3(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 20(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 2(重量部) 上記(1)〜(10) をミキシングロールにかけて90
℃、10分間混練し、冷却後粉砕しエポキシ系封止材を
得た。これの4×4×20mmの棒状試験片を175℃、
70kg/cm2、90sec でトランスファ成形し、175
℃、5hのポストキュアを行い、TMAにかけて5℃/
min で昇温しながら伸び率を求め、勾配の異なる2つの
勾配の交点の温度をガラス転移温度Tgとして求めた結
果、105℃、また室温とTg間の線膨張率α1 は1.
4×10-5-1であった。一方、実施例1と同様にして
QFP54 pinパッケージにおけるリフロークラック発
生吸湿時間(85℃、85%RH)を求めた結果、84
hと良好であった。
Example 2 (1) Bisphenol A type epoxy (equivalent 500) 80 (parts by weight) (2) Phenol novolac (equivalent 107) 25 (parts by weight) (3) 1,8-diazabicyclo (5,4,0) ) Undecene-7 3 (parts by weight) (4) Fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 257 (32.5 vol%) (5) Fused silica powder angular (average particle size 15 μm, maximum particle size 100 μm) 257 (32.5vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) carnauba wax 3 (parts by weight) (8) novolac type brominated epoxy resin (equivalent weight 275) 20 (parts by weight) Parts) (9) antimony trioxide 15 (parts by weight) (10) carbon black (average particle size 200 mμm) 2 (parts by weight) The above (1) to (10) are put on a mixing roll to form 90
The mixture was kneaded at 10 ° C. for 10 minutes, cooled, and then pulverized to obtain an epoxy encapsulant. A 4 × 4 × 20 mm rod-shaped test piece of 175 ° C.
Transfer molding at 70kg / cm 2 , 90sec, 175
Post-cure at 5 ℃ for 5h and apply TMA at 5 ℃ /
The elongation was calculated while raising the temperature at min, and the temperature at the intersection of the two gradients with different gradients was determined as the glass transition temperature Tg. As a result, the linear expansion coefficient α 1 between room temperature and Tg was 105 ° C.
It was 4 × 10 -5 ° C -1 . On the other hand, the moisture absorption time (85 ° C., 85% RH) for reflow cracking in the QFP54 pin package was determined in the same manner as in Example 1, and was found to be 84.
h was good.

【0013】実施例3 (1)4,4′−ビス(2,3−エポキシプロポキシ)−3,3′,5,5′− テトラメチル、ビフェニル(当量195) 80(重量部) (2)下記一般式で示されるフェノールアラルキル樹脂(当量175) 84(重量部)Example 3 (1) 4,4'-bis (2,3-epoxypropoxy) -3,3 ', 5,5'-tetramethyl, biphenyl (equivalent weight 195) 80 (parts by weight) (2) Phenol aralkyl resin represented by the following general formula (equivalent 175) 84 (parts by weight)

【化1】 (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 809(52.5vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 346(22.5vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)ポリエチレン系ワックス 3(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 20(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 2(重量部) 上記(1)〜(10)を用い、実施例2と同様にしてエポ
キシ系封止材を得た。このTgを実施例2と同様にして
測定したTgは125℃、室温とTg間のα1 は1.0
×10-5-1であった。一方、実施例1と同様にしてQ
FP54pin におけるリフロークラック発生吸湿時間
(85℃、85%RH)は72hと良好であった。
[Chemical 1] (3) 1,8-diazabicyclo (5,4,0) undecene-7 3 (parts by weight) (4) fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 809 (52.5 vol%) (5) melted Silica powder angular (average particle size 15 μm, maximum particle size 100 μm) 346 (22.5 vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) Polyethylene wax 3 (parts by weight) (8) ) Novolac type brominated epoxy resin (equivalent weight 275) 20 (parts by weight) (9) antimony trioxide 15 (parts by weight) (10) carbon black (average particle size 200 mμm) 2 (parts by weight) Above (1) to (10) Using, was obtained in the same manner as in Example 2 to obtain an epoxy-based encapsulating material. The Tg measured in the same manner as in Example 2 was 125 ° C., and α 1 between room temperature and Tg was 1.0.
It was × 10 -5 ° C -1 . On the other hand, as in Example 1, Q
The moisture absorption time (85 ° C., 85% RH) for reflow cracking at FP54 pin was 72 hours, which was good.

【0014】実施例4 (1)シリコーン変性ビスマレイミド樹脂、ベストレックスA−4L(住友化学 製) 100(重量部) (2)4メチルイミダゾール 3(重量部) (3)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 409(67.5vol%) (4)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (5)エステル系ワックス 3(重量部) (6)カーボンブラック(平均粒度200mμm) 1(重量部) 上記(1)〜(6)をミキシングロールにかけ80℃、
7分間混練し、冷却後粉砕して、ポリイミド系封止材を
得た。これの4×4×20mmの棒状試験片を180℃、
70kg/cm2、150sec でトランスファ成形し、200
℃、2hのポストキュアを行い、実施例2と同様にして
求めたTgは252℃、α1 と0.9×10-5-1であ
った。一方、実施例2と同様にして求めたQFP54 p
inパッケージにおけるリフロークラック発生吸湿時間
(85℃、85%RH)は、168h以上と極めて良好
であった。
Example 4 (1) Silicone-modified bismaleimide resin, Bestlex A-4L (manufactured by Sumitomo Chemical) 100 (parts by weight) (2) 4-methylimidazole 3 (parts by weight) (3) Spherical fused silica powder (average) Particle size 15 μm, maximum particle size 100 μm) 409 (67.5 vol%) (4) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (5) Ester wax 3 (parts by weight) (6) Carbon black (average particle size 200 mμm) 1 (parts by weight) The above (1) to (6) are placed on a mixing roll at 80 ° C.,
The mixture was kneaded for 7 minutes, cooled, and then pulverized to obtain a polyimide-based encapsulating material. This 4 × 4 × 20 mm rod-shaped test piece was placed at 180 ° C.
Transfer molding at 70kg / cm 2 , 150sec, 200
After post-curing at 2 ° C. for 2 hours, Tg determined in the same manner as in Example 2 was 252 ° C., α 1 and 0.9 × 10 −5 ° C. −1 . On the other hand, QFP54 p obtained in the same manner as in Example 2
The moisture absorption time (85 ° C., 85% RH) for reflow cracking in the in-package was 168 hours or more, which was extremely good.

【0015】比較例1 (1)o−クレゾールノボラック型エポキシ樹脂(当量195)80(重量部) (2)フェノールノボラック(当量107) 50(重量部) (3)1,8−ジアザビシクロ(5,4,0)ウンデセン−7 3(重量部) (4)溶融シリカ粉球状(平均粒度15μm、最大粒径100μm) 140(18vol%) (5)溶融シリカ粉角状(平均粒度15μm、最大粒径100μm) 326(42vol%) (6)3−グリシドキシプロピルトリメトキシシラン 3(重量部) (7)カルナウバワックス 2(重量部) (8)ノボラック型ブロム化エポキシ樹脂(当量275) 15(重量部) (9)三酸化アンチモン 15(重量部) (10) カーボンブラック(平均粒度200mμm) 1.5(重量部) 上記(1)〜(10) を用い、実施例2と同様にしてエポ
キシ系封止材を得た。実施例2と同様にして求めたTg
は160℃、α1 は1.9×10-5-1であった。一
方、実施例1と同様にして求めたQFP54 pinパッケ
ージでのリフロークラック発生吸湿時間(85℃、85
%RH)は12hと短かかった。
Comparative Example 1 (1) o-cresol novolac type epoxy resin (equivalent 195) 80 (parts by weight) (2) phenol novolac (equivalent 107) 50 (parts by weight) (3) 1,8-diazabicyclo (5, 5) 4,0) Undecene-7 3 (parts by weight) (4) Fused silica powder spherical (average particle size 15 μm, maximum particle size 100 μm) 140 (18vol%) (5) Fused silica powder angular (average particle size 15 μm, maximum particle size) 100 μm) 326 (42 vol%) (6) 3-glycidoxypropyltrimethoxysilane 3 (parts by weight) (7) carnauba wax 2 (parts by weight) (8) novolac type brominated epoxy resin (equivalent weight 275) 15 ( (Parts by weight) (9) Antimony trioxide 15 (parts by weight) (10) Carbon black (average particle size 200 mμm) 1.5 (parts by weight) The same as Example 2 using (1) to (10) above. It was obtained an epoxy sealant. Tg determined in the same manner as in Example 2
Was 160 ° C. and α 1 was 1.9 × 10 −5 ° C. −1 . On the other hand, the moisture absorption time for reflow crack generation in the QFP54 pin package (85 ° C., 85 ° C.) determined in the same manner as in Example 1.
% RH) was as short as 12 hours.

【0016】[0016]

【発明の効果】Siチップの面積が25mm2 以上または
一片の長さが5mm以上、パッケージの厚さが3mm以下の
薄形表面実装型樹脂封止型半導体装置において、ガラス
転移点Tgが140℃以下または220℃以上、無機充
填剤として溶融シリカ粉含有量を65〜90 vol%と
し、Tgが140℃以下の場合はエポキシ系、またTg
が220℃以上の場合はポリイミド系で構成した封止材
で封止することにより、吸湿後、リフロー時の耐クラッ
クが大巾に改善された樹脂封止型半導体装置の提供が可
能になった。
EFFECTS OF THE INVENTION In a thin surface mounting type resin-sealed semiconductor device having a Si chip area of 25 mm 2 or more or a piece length of 5 mm or more and a package thickness of 3 mm or less, the glass transition point Tg is 140 ° C. If the Tg is 140 ° C or lower, or 220 ° C or higher, the content of fused silica powder as an inorganic filler is 65 to 90 vol%, epoxy type, or Tg
When the temperature is 220 ° C. or higher, it is possible to provide a resin-encapsulated semiconductor device in which crack resistance during reflow after moisture absorption is significantly improved by encapsulating with a sealing material composed of a polyimide system. ..

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はクラックの発生状況を示す封止材の断
面図、(b)ははんだリフロー時に発生する応力とレジ
ン強度を示す線図である。
1A is a cross-sectional view of a sealing material showing a crack generation state, and FIG. 1B is a diagram showing stress and resin strength generated during solder reflow.

【図2】Tgと高温曲げ弾性率の関係を示す線図であ
る。
FIG. 2 is a diagram showing a relationship between Tg and high temperature flexural modulus.

【図3】Tgと高温曲げ強さの関係を示す線図である。FIG. 3 is a diagram showing the relationship between Tg and high temperature bending strength.

【図4】高温での曲げ弾性率と曲げ強さとの関係を示す
線図である。
FIG. 4 is a diagram showing a relationship between bending elastic modulus and bending strength at high temperature.

【図5】Tgと吸湿率の関係を示す線図である。FIG. 5 is a diagram showing the relationship between Tg and moisture absorption rate.

【図6】Tgと接着力との関係を示す線図である。FIG. 6 is a diagram showing a relationship between Tg and adhesive force.

【図7】Tgとリフロークラック吸湿時間の関係を示す
線図である。
FIG. 7 is a diagram showing a relationship between Tg and reflow crack moisture absorption time.

【図8】フィラ形状、フィラ含有量と耐リフロークラッ
ク性の関係を示す線図である。
FIG. 8 is a diagram showing the relationship between filler shape, filler content and reflow crack resistance.

【図9】フィラ形状、フィラ含有量とスパイラルフロー
の関係を示す線図である。
FIG. 9 is a diagram showing the relationship between filler shape, filler content and spiral flow.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/29 23/31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Siチップの面積が25mm2 以上または
一辺の長さが5mm以上、パッケージの厚さが3mm以下の
薄形表面実装型の樹脂封止型半導体装置において、無機
充填剤を65〜90 vol%含有するガラス転移点Tgが
140℃以下または220℃以上である熱硬化性樹脂封
止材で封止してなることを特徴とする半導体装置。
1. A thin surface-mounting resin-encapsulated semiconductor device having a Si chip area of 25 mm 2 or more, or a side length of 5 mm or more, and a package thickness of 3 mm or less, wherein an inorganic filler is used in an amount of 65-65. A semiconductor device, which is encapsulated with a thermosetting resin encapsulant having a glass transition point Tg of 90 vol% of 140 ° C. or lower or 220 ° C. or higher.
【請求項2】 Tgが140℃以下の熱硬化性樹脂封止
材がエポキシ系である請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the thermosetting resin encapsulant having a Tg of 140 ° C. or lower is an epoxy type.
【請求項3】 Tgが220℃以上の熱硬化性樹脂封止
材がポリイミド系である請求項1記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the thermosetting resin encapsulant having a Tg of 220 ° C. or higher is a polyimide type.
【請求項4】 無機充填剤が溶融シリカである請求項1
記載の半導体装置。
4. The inorganic filler is fused silica.
The semiconductor device described.
JP3345071A 1991-12-26 1991-12-26 Resin sealing semiconductor device Pending JPH05175262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3345071A JPH05175262A (en) 1991-12-26 1991-12-26 Resin sealing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3345071A JPH05175262A (en) 1991-12-26 1991-12-26 Resin sealing semiconductor device

Publications (1)

Publication Number Publication Date
JPH05175262A true JPH05175262A (en) 1993-07-13

Family

ID=18374091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3345071A Pending JPH05175262A (en) 1991-12-26 1991-12-26 Resin sealing semiconductor device

Country Status (1)

Country Link
JP (1) JPH05175262A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881543A (en) * 1994-09-14 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JP2004307647A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing use and semiconductor device
JP2004307646A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
JP2004307650A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307645A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
JP2008141052A (en) * 2006-12-04 2008-06-19 Denso Corp Electronic package
US7397139B2 (en) 2003-04-07 2008-07-08 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing use and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117959A (en) * 1988-10-26 1990-05-02 Sumitomo Bakelite Co Ltd Sealing resin composition
JPH0385736A (en) * 1989-08-30 1991-04-10 Hitachi Ltd Manufacturing method of semiconductor plastic package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117959A (en) * 1988-10-26 1990-05-02 Sumitomo Bakelite Co Ltd Sealing resin composition
JPH0385736A (en) * 1989-08-30 1991-04-10 Hitachi Ltd Manufacturing method of semiconductor plastic package

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881543A (en) * 1994-09-14 1996-03-26 Toshiba Chem Corp Epoxy resin composition and semiconductor device sealed therewith
JP2004307647A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing use and semiconductor device
JP2004307646A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
JP2004307650A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and semiconductor device
JP2004307645A (en) * 2003-04-07 2004-11-04 Hitachi Chem Co Ltd Sealing epoxy resin molding compound and semiconductor device
US7397139B2 (en) 2003-04-07 2008-07-08 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing use and semiconductor device
JP2008141052A (en) * 2006-12-04 2008-06-19 Denso Corp Electronic package

Similar Documents

Publication Publication Date Title
JPWO2004074344A1 (en) Epoxy resin composition and semiconductor device
JPH05175262A (en) Resin sealing semiconductor device
US6225379B1 (en) Epoxy resin composition for bonding semiconductor chips
JP2825332B2 (en) Resin-sealed semiconductor device, method for manufacturing the device, and resin composition for semiconductor encapsulation
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP2004292514A (en) Epoxy resin composition and semiconductor device
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JP3259968B2 (en) Semiconductor device manufacturing method
JP2922672B2 (en) Semiconductor device manufacturing method
JP2004140186A (en) Method of manufacturing semiconductor device
JPH08153831A (en) Semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JPH1160687A (en) Epoxy resin composition and semiconductor device
JP3005328B2 (en) Epoxy resin composition for sealing
JPH1192630A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device