[go: up one dir, main page]

JPH05171203A - Production of alloy powder of rare earth system for permanent magnet - Google Patents

Production of alloy powder of rare earth system for permanent magnet

Info

Publication number
JPH05171203A
JPH05171203A JP3355885A JP35588591A JPH05171203A JP H05171203 A JPH05171203 A JP H05171203A JP 3355885 A JP3355885 A JP 3355885A JP 35588591 A JP35588591 A JP 35588591A JP H05171203 A JPH05171203 A JP H05171203A
Authority
JP
Japan
Prior art keywords
powder
gas
hydrogen storage
raw material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3355885A
Other languages
Japanese (ja)
Other versions
JP2838616B2 (en
Inventor
Hiroyuki Tomizawa
浩之 冨澤
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3355885A priority Critical patent/JP2838616B2/en
Publication of JPH05171203A publication Critical patent/JPH05171203A/en
Application granted granted Critical
Publication of JP2838616B2 publication Critical patent/JP2838616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To easily produce the alloy powder of rare earth system for a permanent magnet having excellent magnetic characteristics by subjecting alloy powder having a specific compsn. consisting of rare earth elements, iron family elements and Ti, etc., to a heating treatment in gaseous H2 from a hydrogen storage material. CONSTITUTION:The cast ingot of the alloy consisting of 7 to 9at.% R (R: rare earth elements contg. >=50% Pr or Nd), 67 to 90.5% T (T: Fe or <=50% thereof is substd. with Co, Ni), 3.5 to 17% M (M: Ti, V, Cr, Mo) is roughly pulverized. The roughly pulverized powder having 50 to 500mum average grain size and >=80% tetragonal structure ThMn12 type compd. is obtd. This powder is held for 30 minutes to 8 hours at 500 to 900 deg.C in gaseous H2 kept at 10 to 1000kPa and is then subjected to an H2 removal treatment at <=10Pa partial pressure. The hydrogen storage material is used as the main supply source for the above- mentioned gaseous H2 at this time. The resulted powder of 0.05 to 1mum is held for 30 minutes to 6 hours at 300 to 600 deg.C in the gaseous N2 of 50 to 5000kPa, by which 0.8 to 8% N is incorporated therein and the alloy powder of rare earth system for a permanent magnet is stably obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、各種モーター、アク
チュエーター等に用いることが可能な高保磁力を有する
R(希土類元素)−T(鉄属元素)−M−N系のボンド
磁石用永久磁石合金粉末の製造方法の改良に係り、本系
粗粉砕粉をH2ガス源として金属水素化物、水素吸蔵合
金等の水素貯蔵材料を用いた高純度H2ガス中で加熱処
理並びに所定雰囲気で加熱保持する脱H2処理を行な
い、結晶粒を1μm以下の極微細結晶としさらに窒化処
理を行い高保磁力を有するR−T−M−N系永久磁石用
合金粉末を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R (rare earth element) -T (iron group element) -MN magnet permanent magnet alloy having a high coercive force that can be used in various motors, actuators and the like. Regarding the improvement of the powder manufacturing method, the coarsely pulverized powder of this system is used as a H 2 gas source in a high-purity H 2 gas using a hydrogen storage material such as a metal hydride or a hydrogen storage alloy, and is kept heated in a predetermined atmosphere. The present invention relates to a method for producing an alloy powder for R-T-M-N based permanent magnet having a high coercive force by performing a de-H 2 treatment to obtain ultrafine crystals of 1 μm or less and further nitriding treatment.

【0002】[0002]

【従来の技術】希土類系永久磁石用合金粉末、特にR−
T−M−N系永久磁石用合金粉末を得る製造方法とし
て、出願人は先に特開平3−149456号公報にて水
素処理法を提案した。この水素処理法とは、R−T系原
料合金インゴットまたは粉末を、H2ガス雰囲気または
2ガスと不活性ガスの混合雰囲気中で温度500〜1
000℃に保持して上記合金のインゴットまたは粉末に
2を吸蔵させた後、H2ガス圧力13Pa (1×10
-1Torr)以下の真空雰囲気またはH2ガス分圧13
Pa(1×10-1Torr)以下の不活性ガス雰囲気に
なるまで、温度500〜1000℃で脱H2処理し、つ
いで冷却することを特徴とするものである。
2. Description of the Prior Art Alloy powders for rare earth permanent magnets, especially R-
As a method for producing a T-M-N based alloy powder for permanent magnets, the applicant has previously proposed a hydrogen treatment method in JP-A-3-149456. This hydrogen treatment method means that the RT raw material alloy ingot or powder is heated to a temperature of 500 to 1 in an H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas.
After holding at 000 ° C. to occlude H 2 in the alloy ingot or powder, the H 2 gas pressure was 13 Pa (1 × 10
-1 Torr) or less vacuum atmosphere or H 2 gas partial pressure 13
It is characterized in that it is subjected to H 2 removal treatment at a temperature of 500 to 1000 ° C. and then cooled until an inert gas atmosphere of Pa (1 × 10 −1 Torr) or less is obtained.

【0003】さらに、上記方法で得られた極微細結晶を
有するR−T−M系粉末に対し、窒化処理を施すことで
窒化物系希土類永久磁石粉末が得られる。
Further, a nitride rare earth permanent magnet powder is obtained by nitriding the R-T-M powder having ultrafine crystals obtained by the above method.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記方法で
製造された磁石用合金粉末の磁気的特性は、上記H2
理に用いたH2ガスまたは不活性ガス中の不純物、特に
微量の酸素、水分によりインゴットまたは粉末表面層が
汚染され、この表面汚染層がH2ガスと原料インゴット
または粉末との吸蔵、放出反応を阻害し、そのために得
られる粉末の磁気特性が著しく低下したり、ばらついた
りする問題があった。
However [0007] The magnetic properties of the alloy powder for a magnet produced by the above method, impurities in the H 2 gas or inert gas used in the H 2 treatment, in particular traces of oxygen, The water contaminates the surface layer of the ingot or the powder, and the surface contamination layer hinders the occlusion and release reaction between the H 2 gas and the raw material ingot or the powder, so that the magnetic properties of the resulting powder are significantly deteriorated or fluctuate. There was a problem to do.

【0005】また、脱H2時には、不活性ガス中の不純
物または真空排気系の能力不足による表面層の汚染によ
り、得られる粉末の磁気特性が著しく低下したり、ばら
ついたりするという問題もあった。さらに、表面汚染層
は、窒化処理時のN原子の侵入を阻害するため、N原子
の侵入量が安定しないという問題もあった。
Further, when H 2 is removed, there is a problem that the magnetic properties of the obtained powder are remarkably deteriorated or fluctuated due to contamination of the surface layer due to impurities in the inert gas or insufficient capacity of the vacuum exhaust system. .. Further, the surface contamination layer hinders the penetration of N atoms during the nitriding treatment, so that there is a problem that the penetration amount of N atoms is not stable.

【0006】かかる問題点を解決するためには、使用す
るガスとして高純度H2ガスを用い、さらに不活性ガス
を用いる場合にも高純度不活性ガスとした上で、さらに
精製装置とコールドトラップを用いて不純物量の低減と
露点低下を行なう必要があり、工業的には高純度精製装
置を必須として工程が煩雑になり、さらにはコスト的に
も大きな問題となる。
In order to solve such a problem, a high-purity H 2 gas is used as a gas to be used, and even when an inert gas is used, the high-purity inert gas is used, and then a purifying device and a cold trap are used. It is necessary to reduce the amount of impurities and lower the dew point by using, which industrially requires a high-purity refining device, which complicates the process and causes a large cost problem.

【0007】この発明は、R−T−M−N系永久磁石用
合金粉末を水素処理法にて得る製造方法において、得ら
れる粉末の磁気特性の低下やばらつきの発生を防止で
き、後工程の窒化反応を速やかにかつ安定して進行させ
容易に製造できる希土類系永久磁石用合金粉末の製造方
法の提供を目的としている。
According to the present invention, in a method for producing an RT-M-N-based alloy powder for permanent magnets by a hydrogen treatment method, it is possible to prevent the magnetic properties of the obtained powder from deteriorating or generating variations, and the subsequent steps An object of the present invention is to provide a method for producing an alloy powder for a rare earth-based permanent magnet, which allows a nitriding reaction to proceed rapidly and stably and is easily produced.

【0008】[0008]

【課題を解決するための手段】この発明は、得られる粉
末の磁気特性の低下やばらつきの発生の防止、N原子の
侵入量の安定を目的として、H2ガスについて種々検討
した結果、H2ガスの主たる供給源として水素貯蔵材料
を用い、水素貯蔵材料からのH2ガスにて処理すること
により、上記H2ガス中の不純物量を低コストで低減で
き、処理雰囲気の制御を不活性ガスを用いたり、真空排
気系の能力に頼ることなく制御できることを知見し、こ
の発明を完成した。
SUMMARY OF THE INVENTION The present invention, as a result of prevention of reduction and variation of the occurrence of the magnetic properties of the resulting powder, for the purpose of stabilizing the amount of inserted N atoms, and various investigations on H 2 gas, H 2 By using a hydrogen storage material as the main source of gas and processing with H 2 gas from the hydrogen storage material, the amount of impurities in the H 2 gas can be reduced at low cost, and the control of the processing atmosphere can be performed with an inert gas. The present invention has been completed based on the finding that control can be performed without using a vacuum pump or the capability of a vacuum exhaust system.

【0009】すなわち、この発明は、 R:7〜9at%(R:希土類元素の少なくとも1種で
かつPrまたはNdの1種または2種を50%以上含
有)、 T:67〜90.5at%(T:FeあるいはFeの一
部をTのうち50at%以下のCo、Niの1種または
2種にて置換)、 M:3.5〜17at%(M:Ti、V、Cr、Moの
うち少なくとも1種)からなる合金鋳塊を粗粉砕して、
平均粒度が50〜500μmでその80vol%以上が
正方晶構造ThMn12型化合物からなる粗粉砕粉となし
た後、 前記粗粉砕粉を原料粉末としてこれを10〜1000k
PaのH2ガス中で、500〜900℃に30分〜8時
間加熱保持し、さらにH2分圧10Pa以下にて500
〜900℃に15分〜8時間保持する脱H2処理を行な
い、ついで冷却して平均結晶粒径が0.05〜1μmで
ある永久磁石用合金粉末を得た後、次に前記粉末をN2
圧力50〜5000kPaのN2ガス中にて300〜6
00℃に30分〜6時間保持した後冷却し、N原子を
0.8〜8at%含有させる永久磁石用合金粉末の製造
方法において、前記処理に用いるH2ガスの主たる供給
源として水素貯蔵材料を用いることを特徴とする希土類
系永久磁石用合金粉末の製造方法である。
That is, the present invention provides: R: 7-9 at% (R: at least one rare earth element and 50% or more of one or two Pr or Nd), T: 67-90.5 at% (T: Fe or a part of Fe is replaced by one or two kinds of Co and Ni of 50 at% or less of T), M: 3.5 to 17 at% (M: Ti, V, Cr and Mo) At least one of them) is roughly crushed into an alloy ingot,
After the coarsely pulverized powder having an average particle size of 50 to 500 μm and 80 vol% or more of which is a tetragonal crystal structure ThMn 12 type compound, the coarsely pulverized powder is used as a raw material powder and 10 to 1000 k
In H 2 gas of Pa, heat and hold at 500 to 900 ° C. for 30 minutes to 8 hours, and further 500 at H 2 partial pressure of 10 Pa or less.
To 900 ° C. to perform the de-H 2 by keeping 15 minutes to 8 hours, and then after the average grain size cooled to have to obtain an alloy powder for permanent magnets is 0.05 to 1 [mu] m, then the powder N 2
300 to 6 in N 2 gas at a pressure of 50 to 5000 kPa
A hydrogen storage material as a main supply source of H 2 gas used in the above treatment in a method for producing an alloy powder for a permanent magnet, which is held at 00 ° C. for 30 minutes to 6 hours and then cooled to contain N atoms in an amount of 0.8 to 8 at%. Is used to produce an alloy powder for a rare earth-based permanent magnet.

【0010】この発明は、上記の構成において、水素貯
蔵材料の温度を、温水またはヒーターで加熱制御し、原
料処理室内の水素圧力を制御することを特徴とする希土
類系永久磁石用合金粉末の製造方法である。
According to the present invention, in the above structure, the temperature of the hydrogen storage material is controlled by heating with hot water or a heater to control the hydrogen pressure in the raw material processing chamber, and the production of alloy powder for rare earth permanent magnets. Is the way.

【0011】この発明は、上記の構成において、水素貯
蔵材料の温度を、冷水または液体窒素等の冷媒で冷却す
ることにより、脱H2処理時の原料処理室内の水素分圧
を制御することを特徴とする希土類系永久磁石用合金粉
末の製造方法である。
[0011] The present invention, in the above configuration, the temperature of the hydrogen storage material, by cooling with a refrigerant such as cold water or liquid nitrogen, to control the hydrogen partial pressure of the material processing chamber during de H 2 treatment It is a characteristic method for producing an alloy powder for a rare earth-based permanent magnet.

【0012】組成の限定理由 この発明に使用する原料合金に用いるR、すなわち希土
類元素は、Y、La、Ce、Pr、Nd、Sm、Gd、
Tb、Dy、Ho、Er、Tm、Luが包括され、この
うち少なくとも1種以上で、Pr、Ndのうち少なくと
も1種または2種をRのうち50at%以上含有し、さ
らにRの全てがPr、Ndのうち1種または2種の場合
がある。Rの50at%以上をPr、Ndのうち少なく
とも1種以上とするのは50at%未満では十分な磁化
が得られないためである。
Reasons for limiting the composition R used in the raw material alloy used in the present invention, that is, the rare earth elements are Y, La, Ce, Pr, Nd, Sm, Gd,
It includes Tb, Dy, Ho, Er, Tm, and Lu, and at least one of them contains at least one or two of Pr and Nd in an amount of 50 at% or more of R, and all of R is Pr. , Nd may be one or two. The reason why 50 at% or more of R is at least one of Pr and Nd is that sufficient magnetization cannot be obtained at less than 50 at%.

【0013】Rは、7at%未満ではαFe相の析出に
より保磁力が低下し、また9at%を超えると目的とす
る正方晶構造ThMn12型化合物以外に、ThNi17
化合物が多く析出し、この第2相が多すぎると合金の磁
化が低下する。従ってRの範囲は7〜9at%とする。
When R is less than 7 at%, the coercive force is lowered due to the precipitation of αFe phase, and when it exceeds 9 at%, a large amount of ThNi 17 type compound is precipitated in addition to the desired tetragonal structure ThMn 12 type compound. If there are too many second phases, the magnetization of the alloy will decrease. Therefore, the range of R is 7 to 9 at%.

【0014】Tは鉄族元素であって、Fe、Co、Ni
の少なくとも1種を含有するが、FeをTの50at%
以上含有することが重要である。すなわち、T中のFe
が50at%未満では、充分な磁化が得られず好ましく
ない。またCoは、キュリー点を上昇させる効果、並び
に異方性磁界を若干増加させる効果があることから、C
oをTの50at%未満添加することは特に好ましい。
Tは、67at%未満では低保磁力の第2相が析出して
磁気的特性が低下し、90.5at%を超えるとαFe
相の析出により保磁力、角型性が低下するため、67〜
90.5at%とする。
T is an iron group element, and Fe, Co, Ni
Fe at least 50 at% of T
It is important to contain the above. That is, Fe in T
Is less than 50 at%, sufficient magnetization cannot be obtained, which is not preferable. Further, Co has the effect of raising the Curie point and the effect of slightly increasing the anisotropic magnetic field, so C
It is particularly preferable to add o at less than 50 at% of T.
When T is less than 67 at%, the second phase having a low coercive force precipitates to deteriorate the magnetic properties, and when it exceeds 90.5 at%, αFe
Since coercive force and squareness are deteriorated by the precipitation of phases, 67-
90.5 at%.

【0015】Mは、正方晶ThMn12型化合物を生成さ
せるための必須元素であり、Ti、V、Cr、Moの少
なくとも1種を添加する必要がある。添加量は、3.5
at%未満ではR217相やαFe相が析出して目的と
する正方晶ThMn12型化合物が得られず、また17a
t%を超えると磁化が著しく低下するため、3.5〜1
7at%とする。
M is an essential element for forming a tetragonal ThMn 12 type compound, and it is necessary to add at least one of Ti, V, Cr and Mo. Addition amount is 3.5
When it is less than at%, the R 2 T 17 phase and the αFe phase are precipitated and the desired tetragonal ThMn 12 type compound cannot be obtained.
When it exceeds t%, the magnetization is remarkably reduced, so 3.5 to 1
7 at%.

【0016】Nは、正方晶ThMn12型化合物の格子間
に侵入し、正方晶ThMn12型化合物のキュリー点を上
昇させ、大きな1軸磁気異方性を付与する効果を有す
る。Nは、0.8at%未満ではその効果が顕著でな
く、また8at%を超えると正方晶ThMn12型化合物
が不安定になり、母相がR217相やαFe相、R窒化
物相などに分解して好ましくないため、0.8〜8at
%とする。
[0016] N has the effect of penetrated between lattices of the tetragonal ThMn 12 type compounds, to increase the Curie point of the tetragonal ThMn 12 type compounds, to impart a large uniaxial magnetic anisotropy. If N is less than 0.8 at%, its effect is not remarkable, and if it exceeds 8 at%, the tetragonal ThMn 12 type compound becomes unstable, and the parent phase is R 2 T 17 phase, αFe phase, or R nitride phase. 0.8 to 8 at because it is not preferable because it decomposes into
%.

【0017】この発明において、正方晶ThMn12型化
合物が、80vol%未満であると第2相が生成して保
磁力を著しく低下させる。従って正方晶ThMn12型化
合物の体積比を80vol%以上とした。
In the present invention, if the content of the tetragonal ThMn 12 type compound is less than 80 vol%, the second phase is formed and the coercive force is remarkably lowered. Therefore, the volume ratio of the tetragonal ThMn 12 type compound is set to 80 vol% or more.

【0018】体積比で80%以上の正方晶ThMn12
化合物を有する粗粉砕粉を得るためには、合金の鋳塊を
900〜1200℃の温度で1時間以上焼鈍するか、造
塊工程で鋳型の冷却速度を制御することが好ましい。
In order to obtain a coarsely pulverized powder having a tetragonal ThMn 12 type compound in a volume ratio of 80% or more, the alloy ingot is annealed at a temperature of 900 to 1200 ° C. for 1 hour or more, or in the ingot making process. It is preferable to control the cooling rate of the mold.

【0019】製造条件の限定理由 水素処理法とは、所要粒度の粗粉砕粉が外観上その大き
さを変化させることなく、極微細結晶組織の集合体が得
られることを特徴とする。すなわち、正方晶ThMn12
型化合物に対し、高温でH2ガスと反応させると、RH2
3、αFe、FeMなどに相分離し、さらにH2ガスを
脱H2処理により除去すると、再度正方晶ThMn12
化合物の再結晶組織が得られる。
Reasons for limiting manufacturing conditions The hydrogen treatment method is characterized in that a coarsely pulverized powder having a required particle size does not change its size in appearance and an aggregate having an extremely fine crystal structure can be obtained. That is, tetragonal ThMn 12
When a type compound is reacted with H 2 gas at high temperature, RH 2
~ 3, alpha iron, such as a phase separated into FeM, further removed by removing H 2 processes the H 2 gas, recrystallized structure is obtained again tetragonal ThMn 12 type compounds.

【0020】出発原料の粗粉砕法は、従来の機械的粉砕
法やガスアトマイズ法の他、H2吸蔵による、いわゆる
水素粉砕法を用いてもよく、工程の簡略化のためにこの
水素粉砕による粗粉砕工程と、極微細結晶を得るための
水素処理法を同一装置内で連続して行なっても良い。
As the coarse pulverization method of the starting material, a so-called hydrogen pulverization method by H 2 occlusion may be used in addition to the conventional mechanical pulverization method or gas atomization method. To simplify the process, the coarse pulverization method by the hydrogen pulverization is used. The crushing step and the hydrogen treatment method for obtaining ultrafine crystals may be continuously performed in the same apparatus.

【0021】この発明において、粗粉砕粉の平均粒度を
50〜500μmに限定したのは、50μm未満では粉
末の酸化による磁性劣化の恐れがあり、また500μm
を超えると水素処理によって大きな磁気異方性を持たせ
ることが困難となり、また窒化処理時に原料粉末の内部
まで均一に窒化することが困難となるためである。
In the present invention, the average particle size of the coarsely pulverized powder is limited to 50 to 500 μm. If the average particle size is less than 50 μm, there is a risk of magnetic deterioration due to oxidation of the powder, and 500 μm.
This is because if it exceeds, it becomes difficult to give a large magnetic anisotropy by the hydrogen treatment, and it becomes difficult to uniformly nitrid the inside of the raw material powder during the nitriding treatment.

【0022】この発明において、H2ガス中での加熱に
際し、H2ガス圧力が10kPa未満では、前述の分解
反応が十分に進行せず、また1000kPaを超えると
処理設備が大きくなりすぎ、工業的にコスト面、また安
全面で好ましくないため、圧力範囲を10〜1000k
Paとした。さらに好ましくは50〜150kPaであ
る。
[0022] In this invention, when heating with H 2 gas, is less than the H 2 gas pressure 10 kPa, without decomposition reaction proceeds sufficiently in the foregoing, also the processing facility becomes too large and exceeds 1000 kPa, industrial Since it is not preferable in terms of cost and safety, the pressure range is 10 to 1000k.
It was Pa. More preferably, it is 50 to 150 kPa.

【0023】H2ガス中での加熱処理温度は、500℃
未満ではRH2■3、αFe、Fe2Bなどへの分解反応
が起こらず、また900℃を超えるとRH2■3が不安定
となり、かつ生成物が粒成長して正方晶ThMn12型化
合物の極微細結晶組織を得ることが困難になるため、温
度範囲を500〜900℃とする。また、加熱処理保持
時間については、上記の分解反応を十分に行なわせるた
め、30分〜8時間の加熱保持が必要である。
The heat treatment temperature in H 2 gas is 500 ° C.
If the temperature is less than 1, the decomposition reaction into RH 2 ■ 3 , αFe, Fe 2 B, etc. does not occur, and if it exceeds 900 ° C., the RH 2 ■ 3 becomes unstable, and the product grows to form a tetragonal ThMn 12 type compound. Since it becomes difficult to obtain the ultrafine crystal structure of No. 3, the temperature range is set to 500 to 900 ° C. Regarding the heat treatment holding time, it is necessary to hold the heat treatment for 30 minutes to 8 hours in order to sufficiently carry out the above decomposition reaction.

【0024】この発明の脱H2処理時のH2分圧は10P
aを超えると下記の温度範囲、すなわち900℃以下で
はRH2■3相の分解条件に至らないか、平衡論的には分
解条件に達していたとしても実用的な脱H2速度が得ら
れないため、脱H2処理時のH2分圧は10Pa以下とし
た。
The H 2 partial pressure during de H 2 treatment of the invention 10P
below the temperature range exceeding a, i.e. either does not lead to decomposition conditions RH 2 ■ 3-phase at 900 ° C. or less, practical de H 2 rate is obtained even in the equilibrium theory has reached the cracking conditions Therefore, the partial pressure of H 2 at the time of removing H 2 was set to 10 Pa or less.

【0025】また、脱H2処理の温度が500℃未満で
はRH2■3からのH2の離脱が起こらず、そのため正方
晶ThMn12型化合物が再結晶しない。また、900℃
を超えると正方晶ThMn12型化合物は生成するが、再
結晶粒が粗大に成長し、高い保磁力が得られない。その
ため脱H2処理の温度範囲は500〜900℃とする。
また、加熱処理保持時間は、上記の再結晶反応を十分に
行なわせるためには15分〜8時間の加熱保持が必要で
ある。
When the temperature for the H 2 removal treatment is less than 500 ° C., H 2 is not released from RH 2 3 and therefore the tetragonal ThMn 12 type compound is not recrystallized. Also, 900 ℃
If it exceeds, a tetragonal ThMn 12 type compound is formed, but recrystallized grains grow coarsely and a high coercive force cannot be obtained. Therefore, the temperature range of the H 2 removal treatment is 500 to 900 ° C.
The heat treatment holding time is required to be 15 minutes to 8 hours in order to sufficiently carry out the recrystallization reaction.

【0026】脱H2処理後の正方晶ThMn12型化合物
の再結晶粒径は実質的に0.05μm未満の平均再結晶
粒径を得ることは困難であり、またたとえ得られたとし
ても磁気特性上の利点がない。一方、平均再結晶粒径が
1μmを超えると、粉末の保磁力が低下するため好まし
くない。そのため、平均再結晶粒径を0.05〜1μm
とした。
It is difficult to obtain an average recrystallized grain size of the tetragonal ThMn 12 type compound after the H 2 removal treatment that is substantially less than 0.05 μm. There is no characteristic advantage. On the other hand, if the average recrystallized grain size exceeds 1 μm, the coercive force of the powder decreases, which is not preferable. Therefore, the average recrystallized grain size is 0.05 to 1 μm.
And

【0027】窒化処理時の温度を300〜600℃に限
定した理由は、300℃未満では窒化が進行せず、60
0℃を超えると正方晶ThMn12型化合物が分解してα
Fe相とR窒化物が生成し、磁気特性が著しく劣化する
ためである。窒化処理の保持時間は、30分未満では充
分な窒化反応が進行せず、また6時間を超えると上記と
同様の分解反応が進行するため、30分〜6時間とし
た。窒化反応時のN2圧力は、50kPa未満では窒化
反応速度が遅くて実用的ではなく、5000kPaを超
えると処理設備が大きくなりすぎて工業生産コスト的に
好ましくない。従って、窒化処理時のN2圧力は、50
〜5000kPaとした。
The reason for limiting the temperature during nitriding treatment to 300 to 600 ° C. is that nitriding does not proceed below 300 ° C.
If the temperature exceeds 0 ° C, the tetragonal ThMn 12 type compound is decomposed and α
This is because the Fe phase and R nitride are generated, and the magnetic characteristics are significantly deteriorated. The holding time of the nitriding treatment was set to 30 minutes to 6 hours because a sufficient nitriding reaction would not proceed if it was less than 30 minutes and a decomposition reaction similar to the above would proceed if it exceeded 6 hours. If the N 2 pressure during the nitriding reaction is less than 50 kPa, the nitriding reaction rate is too slow to be practical, and if it exceeds 5000 kPa, the processing equipment becomes too large, which is not preferable in terms of industrial production cost. Therefore, the N 2 pressure during nitriding is 50
˜5000 kPa.

【0028】この発明で用いる水素貯蔵材料とは、所謂
水素吸蔵合金を初め全ての単体金属、合金、金属間化合
物及びそれらの水素化物を包含するが、実用上特に有用
なのは、単体金属としてはMg、Ca、Ti、V、Y、
Zr、La、Ce、Pr、Nd、Smが挙げられ、化合
物ではMg2Ni、Mg2Cu、CaNi5、TiFe、
TiMn、TiCo、LaNi5、ZrMn2、またこれ
ら金属、化合物のそれぞれの水素化物を用いることがで
きる。
The hydrogen storage material used in the present invention includes not only so-called hydrogen storage alloys but also all elemental metals, alloys, intermetallic compounds and their hydrides, but it is particularly useful in practice to use Mg as an elemental metal. , Ca, Ti, V, Y,
Zr, La, Ce, Pr, Nd, and Sm are mentioned, and the compound is Mg 2 Ni, Mg 2 Cu, CaNi 5 , TiFe,
TiMn, TiCo, LaNi 5 , ZrMn 2 , and hydrides of these metals and compounds can be used.

【0029】さらに平衡水素解離圧や水素貯蔵材料とし
ての寿命延長などを目的としてこれらの金属、化合物に
対してN、O、Al、Si、V、Cr、Mn、Fe、C
o、Ni、Cu、Zn、Zr、Nb、Mo、などを1種
または2種以上を加えまたは構成元素を置換して合金化
することがある。また、Laの代用としてCe、Pr、
Nd、Smおよびそれらの混合物を用いることは可能で
ある。特に、主にLaとCeの混合物であるMmを用い
ることは、コスト低減に有用である。さらに、これら金
属、合金、化合物及びそれらの水素化物を混合して使用
することも可能である。
Further, N, O, Al, Si, V, Cr, Mn, Fe, C are added to these metals and compounds for the purpose of equilibrium hydrogen dissociation pressure and extension of life as a hydrogen storage material.
O, Ni, Cu, Zn, Zr, Nb, Mo, etc. may be alloyed by adding one kind or two or more kinds or substituting the constituent elements. Also, as an alternative to La, Ce, Pr,
It is possible to use Nd, Sm and mixtures thereof. In particular, using Mm, which is a mixture of La and Ce, is useful for cost reduction. Further, these metals, alloys, compounds and their hydrides can be mixed and used.

【0030】Mg水素化物を用いた場合、280℃で平
衡水素解離圧がおよそ100kPaとなり、水素処理法
におけるH2ガス中の熱処理の条件に適するだけでな
く、これをそのまま冷却して50℃にすると平衡水素解
離圧が1Paとなって今度は脱H2条件に適合する。ま
た、Mgは、水素吸蔵量も多いため、処理原料に対して
水素貯蔵材料の使用量を少なくできるという利点もあ
る。
When Mg hydride is used, the equilibrium hydrogen dissociation pressure becomes about 100 kPa at 280 ° C., which is not only suitable for the condition of heat treatment in H 2 gas in the hydrogen treatment method, but also cooled to 50 ° C. as it is. Then turn the equilibrium hydrogen dissociation pressure becomes 1Pa conforms to de H 2 conditions. In addition, since Mg also has a large hydrogen storage amount, there is an advantage that the amount of hydrogen storage material used can be reduced with respect to the processing raw material.

【0031】MmNi5系化合物では、平衡水素解離圧
が30℃でおよそ200kPaであり、水素処理法にお
けるH2雰囲気中の加熱処理に用いるには非常に有用で
ある。TiFe系、TiMn2系、ZrMn2系等の化合
物では、合金系をうまく選択することで平衡水素解離圧
をある程度調整でき、MmNi5系と同様の使い方が可
能である。
The equilibrium hydrogen dissociation pressure of the MmNi 5 type compound is about 200 kPa at 30 ° C., which is very useful for the heat treatment in the H 2 atmosphere in the hydrogen treatment method. For compounds such as TiFe-based, TiMn 2 -based, and ZrMn 2 -based compounds, the equilibrium hydrogen dissociation pressure can be adjusted to some extent by properly selecting the alloy-based compound, and the same usage as the MmNi 5 -based compound is possible.

【0032】脱H2処理時には、Mg系の他に、Ca、
希土類金属、Ti、Zrなどの金属または金属水素化物
の温度制御によって脱H2処理時の水素分圧を制御する
ことは可能である。
During the H 2 removal treatment, in addition to the Mg-based material, Ca,
It is possible to control the hydrogen partial pressure during the H 2 removal treatment by controlling the temperature of a rare earth metal, a metal such as Ti or Zr, or a metal hydride.

【0033】また、H2雰囲気下での熱処理時と、脱H2
処理時に用いる水素吸蔵合金を、それぞれ別の金属、合
金、化合物系としてもよく、脱H2処理時には真空ポン
プを用いて補助的に排気を行うという使い方も可能であ
る。ただし、脱H2処理時に真空ポンプを用いて補助的
に排気を行うと、水素ガスのリサイクル率が低下するの
で、Mg系の金属、合金、化合物を用いてH2ガスの供
給、排出を行うことが最も好ましい。
In addition, during heat treatment in an H 2 atmosphere and during H 2 removal
The hydrogen storage alloys used during the treatment may be different metals, alloys, or compounds, respectively, and it is also possible to use a vacuum pump for auxiliary exhaust during the H 2 removal treatment. However, if the vacuum pump is used to evacuate auxiliaryly during the H 2 removal treatment, the recycling rate of hydrogen gas decreases, so H 2 gas is supplied and discharged using Mg-based metals, alloys, and compounds. Is most preferred.

【0034】主な水素貯蔵材料の水素貯蔵量は常温、常
圧換算で、100℃以上にて使用のMgは850l/k
g、Mg2Niは400l/kg、Zrは240l/k
g、Tiは400l/kg、Laは230l/kg、1
00℃以下にて使用のLaNi5は150l/kgTi
Feは200l/kg、ZrMn2は190l/kgで
ある。被処理原料1kgにつき必要な水素貯蔵材料の量
は原料組成や設備条件などによるが、少なくとも100
℃以上にて使用のMgは0.1kg、Mg2Niは0.
2kg、100℃以下にて使用のLaNi5は0.5k
TiFeは0.4kg、ZrMn2は0.4kgが必
要である。
The hydrogen storage amount of the main hydrogen storage materials is at room temperature and atmospheric pressure, and Mg used at 100 ° C. or higher is 850 l / k.
g, Mg 2 Ni 400 l / kg, Zr 240 l / k
g, Ti 400 l / kg, La 230 l / kg, 1
LaNi 5 used at 00 ° C or lower is 150 l / kg , Ti
Fe is 200 l / kg and ZrMn 2 is 190 l / kg. The amount of hydrogen storage material required for 1 kg of the raw material to be treated depends on the raw material composition and equipment conditions, but is at least 100
Mg used at the temperature of 0.1 ° C or higher is 0.1 kg, and Mg 2 Ni is 0.1.
2kg, LaNi 5 used at 100 ° C or less is 0.5k
g , TiFe needs 0.4 kg, and ZrMn 2 needs 0.4 kg.

【0035】なお、水素貯蔵材料は、繰り返しH2吸蔵
放出によって微粉化し、水素吸蔵量が減少するという、
いわゆる特性劣化が起こるが、この点については、金属
水素化物または水素吸蔵合金の水素吸蔵量ぎりぎりで用
いることなく、上限、下限とも余裕を持って、技術的に
は圧力−組成等温線図のプラトー部分のみで用いるよう
にすれば、使用可能回数を実用上問題のないレベルまで
向上させることができる。
It should be noted that the hydrogen storage material is pulverized by repeated H 2 storage and release, and the hydrogen storage amount decreases.
So-called characteristic deterioration occurs, but in this respect, the plateau of the pressure-composition isotherm is technically maintained with a margin for both the upper limit and the lower limit without using the hydrogen storage capacity of the metal hydride or hydrogen storage alloy at the limit. If it is used only in a part, the number of times it can be used can be improved to a level at which there is no practical problem.

【0036】図面に基づく発明の開示 この発明によるR−T−M−N系永久磁石用粉末の製造
方法を実施するための装置の一例を、図面に基づいて装
置の操作手順を説明することにより詳述する。図1に示
す装置例はMgなどの水素貯蔵材料を100℃以上の温
度で作用させる場合の構成である。
Disclosure of the Invention Based on the Drawings An example of an apparatus for carrying out the method for producing powder for RTMN-N-based permanent magnet according to the present invention will be described by explaining the operating procedure of the apparatus based on the drawings. Detailed description. The example of the apparatus shown in FIG. 1 has a configuration in which a hydrogen storage material such as Mg is operated at a temperature of 100 ° C. or higher.

【0037】原料処理室1には、加熱ヒーター20が巻
装され、圧力計2及びバルブ3を介したチェックバルブ
4が接続され、バルブ5を介してArガス配管が接続さ
れ、またバルブ6を介して水素貯蔵材料室15と連通
し、さらに油拡散ポンプ11とロータリーポンプ12が
バルブ8,9,10,13を介して接続され、原料処理
室1内の真空排気が可能に構成してある。また、水素貯
蔵材料室15内には、冷却水槽19の冷却水を循環ポン
プ16で送り、冷却後に槽へ戻す冷却水配管が設けてあ
る。
A heater 20 is wound around the raw material processing chamber 1, a check valve 4 is connected via a pressure gauge 2 and a valve 3, an Ar gas pipe is connected via a valve 5, and a valve 6 is connected. Through the hydrogen storage material chamber 15, the oil diffusion pump 11 and the rotary pump 12 are connected via valves 8, 9, 10, 13 so that the raw material processing chamber 1 can be evacuated. .. Further, in the hydrogen storage material chamber 15, there is provided a cooling water pipe for sending the cooling water of the cooling water tank 19 by the circulation pump 16 and returning it to the tank after cooling.

【0038】装置の操作手順を説明すると、以下のとお
りである。 1) 原料処理室1内に原料を入れる。 2) ロータリーポンプ12、油拡散ポンプ11、バル
ブ8,9,10,13を操作して原料処理室1内を所定
真空度まで真空排気する。 3) バルブ8を閉じた後、バルブ6を開けて水素貯蔵
材料室15と連通させる。 4) 水素貯蔵材料室15内に設けた加熱ヒーター22
により水素貯蔵材料を所定温度に加熱保持する。(水素
貯蔵材料のH2放出) 5) 原料処理室1の加熱ヒーター20により原料を所
定温度に加熱保持する。(原料のH2吸蔵処理) 6) 加熱ヒーター22を切り、循環ポンプ16、冷却
水槽19、バルブ21の操作により冷却水で水素貯蔵材
料を所定温度にまで冷却する。(水素貯蔵材料のH2
蔵、原料の脱水素処理) 7) 原料処理室1内が所定圧力に達するか、所定時間
が経過すれば、バルブ6を閉じ、バルブ5を開けて原料
処理室1内にArガスを導入する。原料処理室1内が大
気圧以上になればバルブ3を開ける。同時にヒーター2
0を切り、原料を冷却する。 8) 原料が充分に冷却されれば、バルブ5を閉じて原
料を取り出す。 9) 必要により、バルブ14操作により、H2ガスの
消費分を水素貯蔵材料に補充する。
The operation procedure of the apparatus is as follows. 1) Put the raw material in the raw material processing chamber 1. 2) The rotary pump 12, the oil diffusion pump 11, and the valves 8, 9, 10, 13 are operated to evacuate the inside of the raw material processing chamber 1 to a predetermined vacuum degree. 3) After closing the valve 8, the valve 6 is opened to communicate with the hydrogen storage material chamber 15. 4) Heater 22 provided in the hydrogen storage material chamber 15
The hydrogen storage material is heated and maintained at a predetermined temperature by. (H 2 Release of Hydrogen Storage Material) 5) The raw material is heated and maintained at a predetermined temperature by the heater 20 in the raw material processing chamber 1. (H 2 Occlusion Treatment of Raw Material) 6) The heater 22 is turned off, and the hydrogen storage material is cooled to a predetermined temperature with cooling water by operating the circulation pump 16, the cooling water tank 19, and the valve 21. (H 2 storage of hydrogen storage material, dehydrogenation of raw material) 7) When the pressure in the raw material processing chamber 1 reaches a predetermined pressure or a predetermined time elapses, the valve 6 is closed and the valve 5 is opened to open the raw material processing chamber 1 Ar gas is introduced therein. When the inside of the raw material processing chamber 1 becomes atmospheric pressure or higher, the valve 3 is opened. Heater 2 at the same time
Cut to 0 and cool the raw material. 8) When the raw material is sufficiently cooled, the valve 5 is closed and the raw material is taken out. 9) If necessary, the valve 14 is operated to replenish the hydrogen storage material with the H 2 gas consumption.

【0039】図2に示す装置例はLaNi5、TiFe、
ZrMn2などの水素貯蔵材料を100℃以下の温度で
作用させる場合の構成である。基本的には上述の図1装
置と同様構成であるが、水素貯蔵材料室15内には、先
の冷却水槽19の冷却水を循環ポンプ16で送り、冷却
後に槽へ戻す冷却水配管を用いて、さらに温水槽18か
らの温水を循環させるように3方コック17が設けてあ
る。
The example of the apparatus shown in FIG. 2 is LaNi 5, TiFe,
This is a configuration in which a hydrogen storage material such as ZrMn 2 is operated at a temperature of 100 ° C. or lower. Basically, the hydrogen storage material chamber 15 has the same configuration as the above-described device of FIG. 1, but a cooling water pipe for sending the cooling water of the previous cooling water tank 19 by the circulation pump 16 and returning it to the tank after cooling is used. In addition, a three-way cock 17 is provided to circulate the hot water from the hot water tank 18.

【0040】装置の操作手順を説明すると、以下のとお
りである。 1) 原料処理室1内に原料を入れる。 2) ロータリーポンプ12、油拡散ポンプ11、バル
ブ8、9、10、13を操作して原料処理室1内を所定
真空度まで真空排気する。 3) バルブ8を閉じた後、バルブ6を開けて水素貯蔵
材料室15と連通させる。 4) 循環ポンプ16、3方コック17、温水槽18の
操作により水素貯蔵材料を所定温度に加熱保持する。
(水素貯蔵材料のH2放出) 5) 水素貯蔵材料室15内に設けた加熱ヒーター20
により原料を所定温度に加熱保持する。(原料のH2
蔵処理) 6) 循環ポンプ16、冷却水19、バルブ21の操作
により水素貯蔵材料を所定温度にまで冷却する。(水素
貯蔵材料のH2吸蔵、原料の脱水素処理) 7) 原料処理室1内が所定圧力に達するか、所定時間
が経過すれば、バルブ6を閉じ、ロータリーポンプ1
2、油拡散ポンプ11、バルブ8、9、10、13を操
作して原料処理室1内を所定真空度まで真空排気する。 8) バルブ8を閉じ、バルブ5を開けて原料処理室1
内にArガスを導入する。原料処理室1内が大気圧以上
になればバルブ3を開ける。同時に加熱ヒーター20を
切り、原料を冷却する。 9) 原料が充分に冷却されれば、バルブ5を閉じて原
料を取り出す。 10) 必要に応じてバルブ14操作により、H2ガス
の消費分を水素貯蔵材料に補充する。
The operation procedure of the apparatus is as follows. 1) Put the raw material in the raw material processing chamber 1. 2) The rotary pump 12, the oil diffusion pump 11, and the valves 8, 9, 10, 13 are operated to evacuate the inside of the raw material processing chamber 1 to a predetermined vacuum degree. 3) After closing the valve 8, the valve 6 is opened to communicate with the hydrogen storage material chamber 15. 4) The hydrogen storage material is heated and maintained at a predetermined temperature by operating the circulation pump 16, the three-way cock 17, and the hot water tank 18.
(H 2 release of hydrogen storage material) 5) Heater 20 provided in the hydrogen storage material chamber 15
The raw material is heated and maintained at a predetermined temperature by. (H 2 Occlusion Treatment of Raw Material) 6) The hydrogen storage material is cooled to a predetermined temperature by operating the circulation pump 16, the cooling water 19, and the valve 21. (H 2 storage of hydrogen storage material, dehydrogenation treatment of raw material) 7) When the pressure in the raw material processing chamber 1 reaches a predetermined pressure or a predetermined time elapses, the valve 6 is closed and the rotary pump 1
2. The oil diffusion pump 11 and the valves 8, 9, 10, 13 are operated to evacuate the inside of the raw material processing chamber 1 to a predetermined vacuum degree. 8) Close the valve 8 and open the valve 5 to open the raw material processing chamber 1
Ar gas is introduced therein. When the inside of the raw material processing chamber 1 becomes atmospheric pressure or higher, the valve 3 is opened. At the same time, the heater 20 is turned off to cool the raw material. 9) When the raw material is sufficiently cooled, the valve 5 is closed and the raw material is taken out. 10) If necessary, operate the valve 14 to replenish the hydrogen storage material with the amount of H 2 gas consumed.

【0041】[0041]

【作用】この発明は、R−T−M−N系永久磁石用合金
粉末を水素処理法にて得る製造方法において、H2ガス
の主たる供給源として水素貯蔵材料を用いると、水素貯
蔵材料より放出されるH2ガスの純度は99.99%以
上であり、しかも乾燥H2ガスであることからH2ガス中
の不純物による原料インゴットまたは粉末の表面層の汚
染が極微量に抑えられ、そのため得られた合金粉末の酸
素量を低減し、窒化処理を速やかに安定して行うことが
できる。
According to the present invention, when a hydrogen storage material is used as a main supply source of H 2 gas in a method of producing an RT-M-N based alloy powder for permanent magnets by a hydrogen treatment method, the hydrogen storage material is The purity of the released H 2 gas is 99.99% or more, and since it is a dry H 2 gas, the contamination of the surface layer of the raw material ingot or powder by impurities in the H 2 gas is suppressed to an extremely small amount. The amount of oxygen in the obtained alloy powder can be reduced, and the nitriding treatment can be performed quickly and stably.

【0042】また、水素貯蔵材料は、その温度によって
2ガスの平衡解離圧力が一義的に決まるという特性を
持っており、H2ガスの吸蔵時の雰囲気圧力、H2ガス放
出時の雰囲気圧力を、ともに水素貯蔵材料の温度を制御
することによって行なうことができるという大きな特徴
を持っている。より具体的には、例えば水素吸蔵合金を
加熱すると、平衡水素解離圧が上昇し、その結果水素吸
蔵合金からガスが放出され、このH2ガスと原料を反応
させる。逆に、水素吸蔵合金を冷却すると、平衡水素解
離圧が低下し、その結果水素吸蔵合金がH2ガスを吸収
し、原料からH2ガスを引き出すことができる。さら
に、金属水素化物または水素吸蔵合金と、原料粉末との
間でH2ガスをリサイクルすることができ、量産時には
大きなコスト低減効果を生む
[0042] The hydrogen storage material has the property that the equilibrium dissociation pressure of the H 2 gas by the temperature uniquely determined, atmospheric pressure during storage of the H 2 gas, the atmosphere pressure during H 2 gas emission Both have the great feature that they can be performed by controlling the temperature of the hydrogen storage material. More specifically, for example, when the hydrogen storage alloy is heated, the equilibrium hydrogen dissociation pressure increases, and as a result, gas is released from the hydrogen storage alloy, and this H 2 gas reacts with the raw material. Conversely, when cooling the hydrogen storage alloy, the equilibrium hydrogen dissociation pressure is reduced, resulting hydrogen storage alloy absorbs H 2 gas, it is possible to draw H 2 gas from the raw material. Further, the H 2 gas can be recycled between the metal hydride or the hydrogen storage alloy and the raw material powder, resulting in a great cost reduction effect during mass production .

【0043】[0043]

【実施例】【Example】

実施例1 高周波誘導溶解法によって溶製して得られた、表1に示
すNo.1〜8の組成の鋳塊を、1100℃、24時
間、10Pa以下の真空中で焼鈍して、鋳塊中の正方晶
ThMn12型化合物の体積比を90%以上とした。この
鋳塊を、Arガス雰囲気中(O2量0.5%以下)でス
タンプミルにて平均粒度100μmに粗粉砕した後、こ
の粗粉砕粉500gを図1に示す装置の原料処理室に入
れ1Pa以下にまで真空排気した。その後、水素吸蔵合
金容器から水素を導入しつつ、原料温度750℃、水素
貯蔵材料としてMgH2を500g用いてこれを電気ヒ
ーターで300℃加熱し、2時間保持した。このときの
原料処理室内のH2圧力は400kPaで加温保持中は
一定であった。引き続き原料を750℃に保持したま
ま、水素貯蔵材料、すなわちMgH2を、20℃の冷却
水を用いて40℃まで冷却し、1時間保持した。このと
きの原料処理室内の圧力は最終的に0.5Paまで低下
した。その後、バルブ操作によって水素吸造合金容器を
原料処理室から切り放し、原料処理室内に純度99.9
99%以上のArガスを導入すると共に原料を冷却し、
原料温度が50℃以下となってところで原料を取り出し
た。その後N2分圧が500kPaのN2ガス中で400
℃、2時間の窒化処理を行ったのち冷却して表1に示す
(No.1〜8)特性を有するR−T−M−N系磁石粉
末を得た。なお、上記処理1回にあたりの実質的なH2
ガス消費量は、常温常圧換算で1l以下であった。
Example 1 No. 1 shown in Table 1 obtained by melting by a high frequency induction melting method. The ingots having the compositions of 1 to 8 were annealed at 1100 ° C. for 24 hours in a vacuum of 10 Pa or less so that the volume ratio of the tetragonal ThMn 12 type compound in the ingot was 90% or more. This ingot was roughly crushed in an Ar gas atmosphere (O 2 amount of 0.5% or less) with a stamp mill to an average particle size of 100 μm, and 500 g of this roughly crushed powder was put into the raw material processing chamber of the apparatus shown in FIG. It was evacuated to 1 Pa or less. Then, while introducing hydrogen from the hydrogen storage alloy container, the raw material temperature was 750 ° C., 500 g of MgH 2 was used as a hydrogen storage material, and this was heated to 300 ° C. with an electric heater and held for 2 hours. At this time, the H 2 pressure in the raw material processing chamber was 400 kPa and was constant during the heating and holding. Subsequently, while maintaining the raw material at 750 ° C., the hydrogen storage material, that is, MgH 2 was cooled to 40 ° C. using cooling water at 20 ° C. and kept for 1 hour. At this time, the pressure in the raw material processing chamber finally dropped to 0.5 Pa. After that, the hydrogen absorbing alloy container was cut off from the raw material processing chamber by a valve operation, and the purity of 99.9 was set in the raw material processing chamber.
Introduce 99% or more Ar gas and cool the raw material,
The raw material was taken out when the raw material temperature reached 50 ° C. or lower. Then, the N 2 partial pressure is 400 in N 2 gas with 500 kPa.
After nitriding treatment at 2 ° C. for 2 hours and cooling, an RTN-M-N magnet powder having the characteristics (No. 1 to 8) shown in Table 1 was obtained. It should be noted that substantial H 2
The gas consumption was 1 liter or less at room temperature and atmospheric pressure.

【0044】実施例2 正方晶ThMn12型化合物の体積比が90%以上とした
平均粒径100μmの粗粉砕粉を、実施例1と同一組
成、同一製法で作製した。この粗粉砕粉500gを図2
に示す装置の原料処理室に入れ、1Pa以下にまで真空
排気した後、水素貯蔵材料容器から水素を導入しつつ、
原料温度750℃、水素貯蔵材料としてLaNi56
500g用いてこれを温水で50℃に加温し、2時間保
持した。このときの原料処理室内のH2圧力は400k
Paで、加温保持中は一定であった。引き続き原料を7
50℃に保持したまま、4℃の冷却水を用いて水素貯蔵
材料を15℃に冷却した後、バルブ操作によって水素貯
蔵材料容器を原料処理室から切り放し、原料を750℃
に保持したまま原料処理室内をロータリーポンプ、油拡
散ポンプを用いて1時間真空排気した。このときの到達
真空度は0.07Paであった。その後原料処理室内に
純度99.999%以上のArガスを導入すると共に原
料を冷却し、原料温度が50℃以下となったところで原
料を取り出した。その後N2分圧が500kPaのN2
ス中で400℃、2時間の窒化処理を行ったのち冷却し
て表1に示す(No.11〜18)特性を有するR−T
−M−N系磁石粉末を得た。なお、上記処理1回あたり
の実質的なH2ガス消費量は、常温常圧換算でおよそ5
0lであった。
Example 2 A coarsely pulverized powder having an average particle size of 100 μm in which the volume ratio of the tetragonal ThMn 12 type compound was 90% or more was produced by the same composition and the same production method as in Example 1. This coarsely crushed powder 500g is shown in FIG.
Into the raw material processing chamber of the device shown in Fig. 1, after evacuating to 1 Pa or less, while introducing hydrogen from the hydrogen storage material container,
The raw material temperature was 750 ° C., 500 g of LaNi 5 H 6 was used as a hydrogen storage material, and this was heated to 50 ° C. with warm water and kept for 2 hours. At this time, the H 2 pressure in the raw material processing chamber is 400 k.
It was Pa and was constant during heating and holding. Continue to add 7
While maintaining the temperature at 50 ° C., the hydrogen storage material was cooled to 15 ° C. by using cooling water at 4 ° C., and then the valve was operated to disconnect the hydrogen storage material container from the raw material processing chamber to remove the raw material at 750 ° C.
With the temperature kept at 1, the inside of the raw material processing chamber was evacuated for 1 hour using a rotary pump and an oil diffusion pump. The ultimate vacuum at this time was 0.07 Pa. After that, Ar gas having a purity of 99.999% or more was introduced into the raw material processing chamber, the raw material was cooled, and the raw material was taken out when the raw material temperature became 50 ° C. or lower. Then N 2 partial pressure 400 ° C. in N 2 gas 500 kPa, R-T with 2 hours and cooled after the nitriding treatment is performed is shown in Table 1 (No.11~18) properties
-MN magnetic powder was obtained. Note that the substantial amount of H 2 gas consumed per one treatment is approximately 5 at room temperature and atmospheric pressure.
It was 0l.

【0045】比較例 実施例1と同様の工程にて8種類(No.21〜28)
の組成の粗粉砕粉を得た。この粗粉砕粉500gを原料
処理室内に入れ、1Pa以下にまで真空排気した後、精
製処理を行なわない純度99.9%以上のH2ガスを原
料処理室内に導入し大気圧とした後、毎分5lの同純度
のH2ガスを流しつつ、750℃まで昇温し2時間保持
した。その後、同温度を保ったままH2ガスを止めてロ
ータリーポンプ、油拡散ポンプを用いて1時間真空排気
した。そのときの到達真空度は0.09Paであった。
その後、原料処理室内に純度99.999%以上のAr
ガスを導入すると共に原料を冷却し、原料温度が50℃
以下となったところで原料を取り出した。その後N2
圧が500kPaのN2ガス中で400℃、2時間の窒
化処理を行ったのち冷却して表1に示す(No.21〜
28)特性を有するR−T−M−N系磁石粉末を得た。
なお、上記処理1回あたりの実質的なH2ガス消費量
は、常温常圧換算でおよそ950lであった。
Comparative Example 8 types (No. 21 to 28) in the same process as in Example 1
A coarsely pulverized powder having the composition of was obtained. After putting 500 g of this coarsely pulverized powder into the raw material processing chamber and evacuating it to 1 Pa or less, H 2 gas having a purity of 99.9% or more without purification treatment was introduced into the raw material processing chamber to bring it to the atmospheric pressure. While flowing 5 liters of H 2 gas of the same purity, the temperature was raised to 750 ° C. and maintained for 2 hours. After that, the H 2 gas was stopped while maintaining the same temperature, and vacuum pumping was performed for 1 hour using a rotary pump and an oil diffusion pump. The ultimate vacuum at that time was 0.09 Pa.
After that, Ar having a purity of 99.999% or more is placed in the raw material processing chamber.
The gas is introduced and the raw material is cooled, and the raw material temperature is 50 ° C.
The raw materials were taken out when the following conditions were reached. Then N 2 partial pressure 400 ° C. in N 2 gas 500 kPa, and cooled after performing a nitriding treatment of 2 hours is shown in Table 1 (No.21~
28) An R-T-M-N magnet powder having characteristics was obtained.
The substantial amount of H 2 gas consumed per one treatment was about 950 l at room temperature and atmospheric pressure.

【0046】上記、実施例1〜3、比較例により作製し
た磁粉に2wt%のエポシキ樹脂を混合した後、0.8
MA/mの磁界中、3.0ton/cm2の圧力で圧縮
成形し、さらに温度150℃、1時間の条件で樹脂硬化
させてボンド磁石を作製した。得られたボンド磁石の磁
石特性を表2に示す。
After mixing 2 wt% of epoxy resin with the magnetic powder prepared in Examples 1 to 3 and Comparative Example, 0.8
A bond magnet was produced by compression-molding in a magnetic field of MA / m at a pressure of 3.0 ton / cm 2 and further curing the resin under the condition of a temperature of 150 ° C. for 1 hour. Table 2 shows the magnetic properties of the obtained bonded magnet.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】この発明によるR−T−M−N系永久磁
石粉末は、R−T−M系粗粉砕粉を、水素貯蔵材料より
放出された高純度のH2ガス中での加熱処理並びに所定
雰囲気で加熱保持する脱H2処理を行ない、所要平均粒
度の粗粉砕粉のままで平均結晶粒径が0.05〜1μm
の再結晶粒よりなる、酸素などによる汚染の少ない粉体
となすことができ、実施例で明らかになるように汚染の
少ないことによって窒化処理が速やかにかつ均質に進行
し磁気的特性のすぐれた永久磁石用合金粉末が容易に得
られると共に、反応に用いるH2ガスの使用量を著しく
低減することができる。
The R-T-M-N type permanent magnet powder according to the present invention is a heat treatment of the R-T-M type coarsely pulverized powder in high purity H 2 gas released from the hydrogen storage material. In addition, a de-H 2 treatment of heating and holding in a predetermined atmosphere is performed, and the average crystal grain size is 0.05 to 1 μm with the coarsely pulverized powder having the required average grain size.
It is possible to obtain a powder consisting of recrystallized grains of the above, which is less contaminated by oxygen and the like, and as is clear from the examples, the nitriding process progresses rapidly and uniformly due to the little contamination, and the magnetic properties are excellent. The alloy powder for a permanent magnet can be easily obtained, and the amount of H 2 gas used for the reaction can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による永久磁石用粉末の製造方法を実
施するための装置の構成例を示すブロック図である。
FIG. 1 is a block diagram showing a configuration example of an apparatus for carrying out a method for producing a powder for permanent magnets according to the present invention.

【図2】この発明による永久磁石用粉末の製造方法を実
施するための装置の他の構成例を示すブロック図であ
る。
FIG. 2 is a block diagram showing another configuration example of an apparatus for carrying out the method for producing powder for permanent magnet according to the present invention.

【符号の説明】[Explanation of symbols]

1 原料処理室 2 圧力計 3,5,6,7,8,9,10,13,14,21 バ
ルブ 4 チェックバルブ 11 油拡散ポンプ 12 ロータリーポンプ 15 水素貯蔵材料 16 循環ポンプ 17 3方コック 18 温水槽 19 冷却水槽 20,22 加熱ヒーター
1 Raw material processing chamber 2 Pressure gauge 3,5,6,7,8,9,10,13,14,21 Valve 4 Check valve 11 Oil diffusion pump 12 Rotary pump 15 Hydrogen storage material 16 Circulation pump 17 3-way cock 18 Temperature Water tank 19 Cooling water tank 20,22 Heater

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/06 // C23C 8/26 7516−4K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053 1/06 // C23C 8/26 7516-4K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R:7〜9at%(R:希土類元素の少
なくとも1種でかつPrまたはNdの1種または2種を
50%以上含有)、T:67〜90.5at%(T:F
eあるいはFeの一部をTのうち50at%以下のC
o、Niの1種または2種にて置換)、M:3.5〜1
7at%(M:Ti、V、Cr、Moのうち少なくとも
1種)からなる合金鋳塊を粗粉砕して、平均粒度が50
〜500μmでその80vol%以上が正方晶構造Th
Mn12型化合物からなる粗粉砕粉となした後、前記粗粉
砕粉を原料粉末としてこれを10〜1000kPaのH
2ガス中で、500〜900℃に30分〜8時間加熱保
持し、さらにH2分圧10Pa以下にて500〜900
℃に15分〜8時間保持する脱H2処理を行ない、つい
で冷却して平均結晶粒径が0.05〜1μmである永久
磁石用合金粉末を得た後、次に前記粉末をN2圧力50
〜5000kPaのN2ガス中にて300〜600℃に
30分〜6時間保持した後冷却し、N原子を0.8〜8
at%含有させる永久磁石用合金粉末の製造方法におい
て、前記処理に用いるH2ガスの主たる供給源として水
素貯蔵材料を用いることを特徴とする希土類系永久磁石
用合金粉末の製造方法。
1. R: 7-9 at% (R: at least one rare earth element and 50% or more of one or two of Pr or Nd), T: 67-90.5 at% (T: F
e or part of Fe is C of 50 at% or less of T
o, substituted with 1 type or 2 types of Ni), M: 3.5 to 1
An alloy ingot composed of 7 at% (M: at least one of Ti, V, Cr and Mo) is roughly crushed to obtain an average particle size of 50.
.About.500 .mu.m, more than 80 vol% of which is tetragonal structure Th
After the coarsely pulverized powder made of the Mn 12 type compound is used, the coarsely pulverized powder is used as a raw material powder and the H of 10 to 1000 kPa is used.
Heated and held at 500 to 900 ° C for 30 minutes to 8 hours in 2 gases, and 500 to 900 at H 2 partial pressure of 10 Pa or less.
After carrying out a H 2 removal treatment of holding at 15 ° C. for 15 minutes to 8 hours and then cooling to obtain an alloy powder for permanent magnets having an average crystal grain size of 0.05 to 1 μm, the powder is then subjected to N 2 pressure. Fifty
Hold at 300 to 600 ° C. for 30 minutes to 6 hours in N 2 gas of up to 5000 kPa and then cool to remove N atoms from 0.8 to 8
In the method for producing an alloy powder for permanent magnets containing at%, a hydrogen storage material is used as a main supply source of H 2 gas used in the above treatment, a method for producing an alloy powder for a rare earth-based permanent magnet.
JP3355885A 1991-12-20 1991-12-20 Method for producing alloy powder for rare earth permanent magnet Expired - Fee Related JP2838616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355885A JP2838616B2 (en) 1991-12-20 1991-12-20 Method for producing alloy powder for rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355885A JP2838616B2 (en) 1991-12-20 1991-12-20 Method for producing alloy powder for rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH05171203A true JPH05171203A (en) 1993-07-09
JP2838616B2 JP2838616B2 (en) 1998-12-16

Family

ID=18446229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355885A Expired - Fee Related JP2838616B2 (en) 1991-12-20 1991-12-20 Method for producing alloy powder for rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2838616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643491A (en) * 1992-12-28 1997-07-01 Aichi Steel Works, Ltd. Rare earth magnetic powder, its fabrication method, and resin bonded magnet
DE19607747A1 (en) * 1996-02-23 1997-09-04 Aichi Steel Works Ltd Manufacturing method, manufacturing device and heat treatment device for anisotropic magnetic powder
US5851312A (en) * 1996-02-26 1998-12-22 Aichi Steel Works, Ltd. Production method, production apparatus and heat treatment apparatus for anisotropic magnet powder
US6113846A (en) * 1997-12-22 2000-09-05 Aichi Steel Works, Ltd. Production apparatus for rare earth anisotropic magnet powders
JP2005076044A (en) * 2003-08-28 2005-03-24 Tdk Corp Method for manufacturing hard magnetic composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643491A (en) * 1992-12-28 1997-07-01 Aichi Steel Works, Ltd. Rare earth magnetic powder, its fabrication method, and resin bonded magnet
DE19607747A1 (en) * 1996-02-23 1997-09-04 Aichi Steel Works Ltd Manufacturing method, manufacturing device and heat treatment device for anisotropic magnetic powder
DE19607747C2 (en) * 1996-02-23 1998-03-12 Aichi Steel Works Ltd Manufacturing method, manufacturing device and heat treatment device for anisotropic magnetic powder
US5851312A (en) * 1996-02-26 1998-12-22 Aichi Steel Works, Ltd. Production method, production apparatus and heat treatment apparatus for anisotropic magnet powder
US6113846A (en) * 1997-12-22 2000-09-05 Aichi Steel Works, Ltd. Production apparatus for rare earth anisotropic magnet powders
JP2005076044A (en) * 2003-08-28 2005-03-24 Tdk Corp Method for manufacturing hard magnetic composition

Also Published As

Publication number Publication date
JP2838616B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
Gutfleisch et al. Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process
US6444052B1 (en) Production method of anisotropic rare earth magnet powder
Ragg et al. The HD and HDDR processes in the production of Nd-Fe-B permanent magnets
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
EP0546799A1 (en) Method for producing rare earth alloy magnet powder
CN109273182B (en) A kind of single crystal magnetic powder and its preparation method and application
KR102755972B1 (en) Corrosion-resistant, high-performance sintered NdFeB magnets and their manufacturing methods and uses
JP2838616B2 (en) Method for producing alloy powder for rare earth permanent magnet
JP2838617B2 (en) Method for producing alloy powder for rare earth permanent magnet
JPH0257663A (en) Magnetic anisotropic material and its manufacturing method
Kubis et al. Highly coercive SmCo 5 magnets prepared by a modified hydrogenation-disproportionation-desorption-recombination process
WO2004003245A1 (en) Alloy for use in bonded magnet, isotropic magnet powder and anisotropic magnet powder and method for production thereof, and bonded magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2838615B2 (en) Method for producing alloy powder for rare earth permanent magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP5210585B2 (en) Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method
JPH09148163A (en) Manufacture of r-t-b antisotropic bonded magnet
JP4288637B2 (en) Method for producing rare earth alloy powder for permanent magnet
CN114672740A (en) Yttrium-iron-based hydrogen storage alloy, battery and preparation method
JP2869966B2 (en) Manufacturing method of alloy powder
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2002025813A (en) Anisotropic rare earth magnet powder
JP3481653B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2927987B2 (en) Manufacturing method of permanent magnet powder

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees