[go: up one dir, main page]

JPH05169434A - Cutting method with wire saw - Google Patents

Cutting method with wire saw

Info

Publication number
JPH05169434A
JPH05169434A JP35457691A JP35457691A JPH05169434A JP H05169434 A JPH05169434 A JP H05169434A JP 35457691 A JP35457691 A JP 35457691A JP 35457691 A JP35457691 A JP 35457691A JP H05169434 A JPH05169434 A JP H05169434A
Authority
JP
Japan
Prior art keywords
wire
cutting
abrasive grains
cut
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35457691A
Other languages
Japanese (ja)
Other versions
JP2639270B2 (en
Inventor
Masayasu Kojima
正康 小嶋
Sueo Sakata
季男 坂田
Takashi Kuboki
孝 久保木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35457691A priority Critical patent/JP2639270B2/en
Publication of JPH05169434A publication Critical patent/JPH05169434A/en
Application granted granted Critical
Publication of JP2639270B2 publication Critical patent/JP2639270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

(57)【要約】 【目的】高純度アルミナに代表される超硬質材料をワイ
ヤソーで高能率、高精度、低コストで製造し得る切断方
法を提供する。 【構成】所定ピッチに張設したワイヤ列5を一方向に走
行させつつ、該ワイヤ列の直下よりワーク10を上昇さ
せる。このワイヤ列5とワーク10との接触部にボロン
カーバイド砥粒を含有する砥液を供給して切断する。
(57) [Summary] [Object] To provide a cutting method capable of manufacturing an ultra-hard material typified by high-purity alumina with a wire saw at high efficiency, high accuracy, and low cost. [Construction] While moving a wire row 5 stretched at a predetermined pitch in one direction, a work 10 is lifted from immediately below the wire row. An abrasive liquid containing boron carbide abrasive grains is supplied to the contact portion between the wire row 5 and the work 10 to cut the workpiece.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高硬度の脆性材料
を、遊離砥粒を使用するワイヤソーで切断する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting brittle material having high hardness with a wire saw using loose abrasive grains.

【0002】[0002]

【従来の技術】ブロック状の硬質材料を薄厚の板状製品
に切断する装置としては、内周刃ソー、外周刃ソー、ブ
レードソー、ワイヤソー等があり、前二者は固定砥粒、
後の二者は遊離砥粒による切断が行われる。内周刃ソー
は、薄厚のドーナツ状金属円板の内周部にダイヤモンド
砥粒を固着させたブレードを高速で回転させ、中心にセ
ットしたワークをブレードの半径方向に移動させて板状
の製品を1枚ずつ切断する方式である。ブレードは外側
から張力を付加するので、ブレードの厚さを薄くできる
ことから、切断による材料のロスは少なくて済む。一
方、外周刃ソーは、同じく薄厚のドーナツ状金属円板の
外周部にダイヤモンド砥粒を固着させたブレードを所定
間隔で軸に貫通固定し、高速回転させてワークに切込
み、一度に多数の製品を切断する方式である。この外周
刃ソーの場合は、ブレードの剛性の点からブレードの直
径を大きくできないため、小サイズの製品の切断に向い
ている。ブレードソーは、工具鋼製の直線ブレードに張
力を付加して所定ピッチでセットし、これに砥粒混合の
加工液をかけながら往復運動させ、同時にワークを上昇
動させて一度に多数の製品を切断する方式である。この
ブレードソーは設備的に安価であり、時間に制約がなけ
れば大面積の製品でも切断することができる。ワイヤソ
ーは、リールから繰り出されたワイヤを複数の溝ローラ
に所定ピッチで巻付けて形成したワイヤ列を往復あるい
は一方向に走行させながら、ワークとワイヤ列の接触部
に砥粒を混合した加工液を供給しながら切断し、ワイヤ
を別のリールに巻取っていく方式である。ワイヤソーの
場合は、細径のワイヤを使用できるので、前記の各切断
方式に比べ切断による材料のロスが最も少なくて済む。
2. Description of the Related Art As an apparatus for cutting a block-shaped hard material into a thin plate-shaped product, there are an inner peripheral blade saw, an outer peripheral blade saw, a blade saw, a wire saw, and the like.
The latter two are cut with loose abrasive grains. The inner blade saw is a plate-shaped product in which a blade with diamond abrasive grains fixed to the inner periphery of a thin donut-shaped metal disk is rotated at high speed and the work set at the center is moved in the radial direction of the blade. It is a method of cutting each one. Since the blade applies tension from the outside, the thickness of the blade can be reduced, so that the loss of material due to cutting is small. On the other hand, the outer peripheral blade saw is a thin donut-shaped metal disk with a blade fixed to the outer periphery of which diamond abrasive grains are fixed to the shaft at predetermined intervals, and is rotated at a high speed to cut into the workpiece, and many products are cut at once. Is a method of cutting. In the case of this peripheral blade saw, the diameter of the blade cannot be increased from the viewpoint of the rigidity of the blade, and therefore it is suitable for cutting small-sized products. The blade saw is a straight blade made of tool steel, which is tensioned and set at a predetermined pitch, and is reciprocated while applying a working fluid of abrasive grain mixture to this, and at the same time, the workpiece is moved upwards to produce many products at once. It is a method of cutting. This blade saw is inexpensive in terms of equipment and can cut even a large-area product if there is no time limit. A wire saw is a working fluid that mixes abrasive grains in the contact area between a workpiece and a wire row while reciprocating or running in one direction a wire row formed by winding a wire fed from a reel around a plurality of groove rollers at a predetermined pitch. It is a method of cutting while feeding, and winding the wire on another reel. In the case of the wire saw, since a wire having a small diameter can be used, the loss of the material due to the cutting can be minimized as compared with the above cutting methods.

【0003】上記4種の切断装置は、被切断材料(ワー
ク)の材質、寸法、さらには要求される切断精度によっ
て使い分けられている。例えば、シリコンには内周刃ソ
ー、石英には内周刃ソーあるいはブレードソー、水晶に
はブレードソーあるいはワイヤソー、ガラスには外周刃
ソーあるいはブレードソーが一般的に使用されている。
The above-mentioned four types of cutting devices are properly used depending on the material and size of the material (work) to be cut and the required cutting accuracy. For example, an inner blade saw or blade saw for silicon, an inner blade saw or blade saw for quartz, a blade saw or wire saw for quartz, and an outer blade saw or blade saw for glass are generally used.

【0004】[0004]

【発明が解決しようとする課題】ところで、被切断材料
の硬度が高くなるにつれて、切断が難しくなることはい
うまでもない。すなわち、高硬度の被切断材料の場合、
内周刃ソー、外周刃ソーにおいては、ブレードに固着さ
れたダイヤモンド砥粒の磨滅が激しいためにドレッシン
グの回数が増え、ブレードの交換を頻繁に行う必要があ
る。また、切込み速度を遅くしなければならないので切
断能率が著しく低下する。ブレードソーの場合は、ブレ
ード自体の摩耗が激しく、製品の厚み精度が著しく悪化
するとともに、ブレードの耐久性が低下し切断途中でブ
レードを交換することも必要となり、切断能率も著しく
低下する。ワイヤソーでは、ワイヤに作用する研削力が
大きくなり断線が生じ易くなるほか、切断に要する時間
が異常に長くなる。
Needless to say, the higher the hardness of the material to be cut, the more difficult the cutting becomes. That is, in the case of high hardness material to be cut,
In the inner peripheral blade saw and the outer peripheral blade saw, the diamond abrasive grains adhered to the blade are worn out so much that the number of dressings increases, and the blade must be replaced frequently. Moreover, since the cutting speed must be slowed, the cutting efficiency is remarkably reduced. In the case of a blade saw, the blade itself is severely worn, the thickness accuracy of the product is significantly deteriorated, the durability of the blade is reduced, and it becomes necessary to replace the blade during cutting, and the cutting efficiency is also significantly reduced. In the wire saw, the grinding force acting on the wire becomes large and the wire is easily broken, and the time required for cutting becomes abnormally long.

【0005】以上のような状況から、硬度が極めて高
く、素材ブロックを薄厚の板状製品に工業的に成り立つ
方法で切断することが困難な材料に対しては、平面研削
と研磨に頼らざるを得ない。すなわち、例えば、高硬度
のセラミックス材料は製品に極力近い厚さに焼結し、こ
れを研削、研磨で製品厚に仕上げる方法が採用されてい
る。また、人造サファイア等は厚さ精度や切断コストを
考慮せずに製品より相当厚めに切断し、これを研削、研
磨して製品厚に仕上げる方法が採用されている。
Under the circumstances described above, it is necessary to rely on surface grinding and polishing for a material having extremely high hardness, which is difficult to cut a material block into a thin plate-like product by an industrially applicable method. I don't get it. That is, for example, a method in which a high hardness ceramic material is sintered to a thickness as close as possible to a product, and the product is finished by grinding and polishing is adopted. Further, a method of cutting artificial sapphire or the like into a product having a thickness considerably larger than that of the product without considering the thickness accuracy and the cutting cost, and grinding and polishing the product to finish the product is adopted.

【0006】しかしながら、高硬度のセラミックス材料
等の場合、焼結で薄厚のものを高い平坦度で製造するこ
とが困難であるため、製品厚が焼結可能な厚さよりも相
当薄い場合には研削と研磨による材料のロス、すなわち
歩留り低下およびコストが問題となる。さらに、製品を
1個ずつ焼結することになるので、素材の生産能率も低
下してしまう。また、人造サファイア等の場合には、切
断コストに加えて精度が劣る切断品を研削、研磨で所定
の精度に仕上げるという困難さが伴うため、研削、研磨
の工数がさらにかさむという問題がある。
However, in the case of a ceramic material having a high hardness, it is difficult to manufacture a thin material with high flatness by sintering. Therefore, when the product thickness is considerably thinner than the sinterable thickness, grinding is performed. Also, there is a problem of material loss due to polishing, that is, reduction in yield and cost. Further, since the products are sintered one by one, the production efficiency of the raw materials also decreases. Further, in the case of artificial sapphire or the like, in addition to the cutting cost, it is difficult to grind and polish a cut product that is inferior in accuracy, so that the man-hours for grinding and polishing are further increased.

【0007】一方、最近は耐摩耗性に優れた高硬度のセ
ラミックス材料は、エレクトロニクス部品あるいは機械
部品として、サファイア等の高硬度結晶材料は光学部品
あるいは時計等の部品としてそれぞれ需要が増加してお
り、これらを薄厚に精度よく切断する工業的手段に対す
る要求が高まっている。
On the other hand, recently, high-hardness ceramic materials having excellent wear resistance have been increasing in demand as electronic parts or mechanical parts, and high-hardness crystal materials such as sapphire as optical parts or parts in watches and the like. However, there is an increasing demand for industrial means for accurately cutting these thinly.

【0008】この発明はこのような状況に鑑みて、耐摩
耗性に優れた高硬度のセラミックス材料やサファイア等
の高硬度結晶材料を既存のワイヤソーで薄厚に精度よく
低コストで切断し得る方法を提案しようとするものであ
る。
In view of the above situation, the present invention provides a method for cutting a high hardness ceramic material having excellent wear resistance and a high hardness crystal material such as sapphire with an existing wire saw in a thin thickness with high accuracy and at low cost. It is a proposal.

【0009】この発明の要旨は、所定ピッチに張設した
ワイヤ列を一方向に走行させつつ、該ワイヤ列の直下よ
り被切断材料を上昇させ、ワイヤ列と被切断材料との接
触部に砥粒を含む加工液を供給して切断する一方向走行
型ワイヤソーにおいて、前記加工液として、ボロンカー
バイド砥粒を含有する砥液を用いることを特徴とし、ま
た上記方法においてワイヤの走行速度を400〜800
m/分、ボロンカーバイド砥粒の粒径を10〜70μ
m、加工液の比重を1.2〜1.8gf/cmとする
ことを特徴とするものである。
The gist of the present invention is to run a wire row stretched at a predetermined pitch in one direction, raise the material to be cut from immediately below the wire row, and grind the contact portion between the wire row and the material to be cut. In a one-way traveling type wire saw that supplies and cuts a working fluid containing grains, as the working fluid, an abrasive liquid containing boron carbide abrasive grains is used, and the running speed of the wire is 400 to 800
m / min, the particle size of boron carbide abrasive grains is 10 to 70 μm
m, and the specific gravity of the working fluid is 1.2 to 1.8 gf / cm 3 .

【0010】[0010]

【作用】この発明において、対象とする切断方法を一方
向走行型ワイヤソーに限定したのは、下記2つの理由に
よる。 高硬度材を遊離砥粒で研削切断するには、砥粒に大
きな運動エネルギーを付与してワーク切口表面を削り取
っていく必要があり、ワイヤ速度を容易に増加できる一
方向走行型が好ましい。往復走行型では、ワイヤの走行
方向が反転する際に速度がゼロになるのでワイヤの平均
速度を一方向走行型より高速にすることはできない。 砥液を介した状態でのワークとの摺動によるワイヤ
の摩耗を極力抑制する必要があり、ワイヤ上の一点に着
目した場合の摺動距離は、一方向走行型の方が往復走行
型よりはるかに小さくて済む。
In the present invention, the target cutting method is limited to the one-way traveling type wire saw for the following two reasons. In order to grind and cut a high hardness material with free abrasive grains, it is necessary to give a large kinetic energy to the abrasive grains to scrape off the surface of the work cut, and a one-way traveling type that can easily increase the wire speed is preferable. In the reciprocating traveling type, since the speed becomes zero when the traveling direction of the wire is reversed, the average speed of the wire cannot be made higher than that in the one-way traveling type. It is necessary to suppress wear of the wire due to sliding with the work piece through the abrasive liquid as much as possible.When focusing on one point on the wire, the sliding distance of the one-way traveling type is better than that of the reciprocating traveling type. Much smaller.

【0011】次に、一方向走行型ワイヤソーにおける加
工液として、ボロンカーバイド砥粒を含有する砥液を用
いる理由を以下に説明する。通常、脆性材料切断用の砥
液は砥粒をラッピングオイル等の油あるいは適当な添加
剤を含む水等の液体に混合したものである。ブレードソ
ーやワイヤソー用の遊離砥粒としては、ラッピング加工
用の砥粒として汎用性を有する炭化硅素が最も広範に使
用されている。一方向走行型ワイヤソーにおいても、炭
化硅素砥粒はシリコン、石英、ガラス、水晶等のヌープ
硬度がHv=400〜1000程度の材料に十分に適用
できる。また、セラミックスにおいてもヌープ硬度がH
v=1300〜1500の純度92%のアルミナや窒化
硅素は、炭化硅素砥粒の粒径を20〜40μmとし、ワ
イヤ速度を400m/分以上にすれば能率的な切断が可
能であり、切断面の平坦度も良好である。
Next, the reason why the abrasive liquid containing boron carbide abrasive grains is used as the working liquid in the one-way traveling wire saw will be described. Usually, the abrasive liquid for cutting the brittle material is prepared by mixing abrasive grains with an oil such as lapping oil or a liquid such as water containing an appropriate additive. As free abrasive grains for blade saws and wire saws, silicon carbide, which has versatility as abrasive grains for lapping, is most widely used. Also in the one-way traveling wire saw, the silicon carbide abrasive grains can be sufficiently applied to materials having a Knoop hardness of about Hv = 400 to 1000 such as silicon, quartz, glass, and quartz. In addition, Knoop hardness of ceramics is H
Alumina or silicon nitride having a purity of 92% with v = 1300 to 1500 has a particle size of silicon carbide abrasive grains of 20 to 40 μm and a wire speed of 400 m / min or more enables efficient cutting. Also has a good flatness.

【0012】しかしながら、ヌープ硬度がHv=150
0〜1700の純度99.7%のアルミナに対しては、
切込み速度を毎分0.1mm程度まで低下させる必要が
あり、小寸法のものでないと実用的な能率での切断は困
難である。さらに、ヌープ硬度がHv=1900〜20
00のサファイアや、ヌープ硬度がHv=2100〜2
300のチタンカーバイドとアルミナの複合焼結材料に
対しては、切込み速度を毎分0.1mm程度に低下させ
ても切断抵抗が大きいためにワイヤの軌道が安定せず、
切断面に波打ちを生じてしまう。すなわち、脆性材料の
範疇では、被切断材料の硬度が上昇するにつれて炭化硅
素砥粒でのワイヤソー切断が困難になる傾向がある。炭
化硅素砥粒のヌープ硬度Hvは約2500であることか
ら、被切断材料の硬度が砥粒の硬度の60%以下程度で
あれば実用的な切断は可能であるが、それ以上の硬度で
は徐々に切断能率が低下し、砥粒硬度の80%以上の硬
さの材料は切断が困難となる。
However, the Knoop hardness is Hv = 150.
For 09.7 to 9700% pure alumina,
It is necessary to reduce the cutting speed to about 0.1 mm per minute, and unless the size is small, it is difficult to cut with practical efficiency. Furthermore, the Knoop hardness is Hv = 1900 to 20
00 sapphire and Knoop hardness Hv = 2100-2
For the 300 titanium carbide / alumina composite sintered material, even if the cutting speed was reduced to about 0.1 mm per minute, the cutting resistance was large and the wire trajectory was not stable.
Rippling occurs on the cut surface. That is, in the brittle material category, as the hardness of the material to be cut increases, the wire saw cutting with the silicon carbide abrasive grains tends to become difficult. Since the Knoop hardness Hv of the silicon carbide abrasive grains is about 2500, practical cutting is possible if the hardness of the material to be cut is about 60% or less of the hardness of the abrasive grains, but if the hardness is higher than that, it can be gradually cut. The cutting efficiency is lowered, and it becomes difficult to cut a material having a hardness of 80% or more of the hardness of the abrasive grains.

【0013】ところで、遊離砥粒による切断において
は、砥粒の硬さ以外に砥粒の圧壊強度も考慮する必要が
ある。すなわち、ワイヤソーで切断中の砥粒は、ワイヤ
とワークの間にはさまれて圧力を受け圧壊されながらワ
ークを削っていくが、壊れて粒径が小さくなった砥粒の
研削能力は低下する。高硬度の材料の切断では、砥粒の
圧壊が生じ易くなるのは当然であり、圧壊強度が大きい
砥粒を使用する必要がある。
By the way, in cutting with loose abrasive grains, it is necessary to consider the crushing strength of the abrasive grains in addition to the hardness of the abrasive grains. In other words, the abrasive grains being cut by the wire saw scrape the work while being pinched between the wire and the work and receiving pressure and being crushed. .. When cutting a material having a high hardness, it is natural that the crushing of the abrasive grains is likely to occur, and it is necessary to use the abrasive grains having high crushing strength.

【0014】そこで、硬度が高く炭化硅素砥粒による切
断が困難な材料、具体的にはヌープ硬度がHv=170
0以上の硬質材料を一方向走行型ワイヤソーで能率よく
かつ高精度に切断するための砥粒について、種々実験、
検討を重ねた結果、ボロン系の化合物であるボロンカー
バイド(BC)が硬度と圧壊強度を満足する砥粒であ
ることを見い出した。ちなみに、ボロンカーバイドのヌ
ープ硬度Hvは約2800で、圧壊強度は約200kg
/cmである。特に圧壊強度は炭化硅素砥粒の約4倍
である。このボロンカーバイド砥粒の粒径を10〜70
μmに限定したのは、10μm以下の粒径では切断能率
が低く、かつ切断面の平坦度が得られにくく、他方70
μm以上では液体に混合した場合に沈殿し易く、スラリ
ーとしての供給が困難となるためである。また、ボロン
カーバイド砥液の比重を1.2〜1.8kg/cm
したのは、1.2kg/cm未満では切断能率が低下
し、他方1.8kg/cmを超えると粘度が大きすぎ
てワイヤ列上への供給が安定的に行われないためであ
る。なお、ワイヤの走行速度は切断能率を向上させるた
めに高速である程好ましいが、極端に速くなるとワイヤ
列から砥液が振り切られてしまうため、800m/分を
実用的な上限とした。
Therefore, a material having a high hardness and difficult to cut with silicon carbide abrasive grains, specifically, a Knoop hardness of Hv = 170.
Various experiments have been conducted on abrasive grains for efficiently and accurately cutting hard materials of 0 or more with a one-way traveling wire saw.
As a result of repeated studies, it was found that boron carbide (B 4 C), which is a boron-based compound, is an abrasive grain that satisfies hardness and crush strength. By the way, Knoop hardness Hv of boron carbide is about 2800 and crush strength is about 200 kg.
/ Cm 2 . In particular, the crush strength is about four times that of silicon carbide abrasive grains. The particle size of this boron carbide abrasive grain is 10 to 70.
The reason for limiting to μm is that if the particle size is 10 μm or less, the cutting efficiency is low and the flatness of the cut surface is difficult to obtain.
This is because if the particle size is more than μm, it tends to precipitate when mixed with a liquid, and it becomes difficult to supply it as a slurry. Also, to that the specific gravity of boron carbide abrasive liquid and 1.2~1.8kg / cm 3 is decreased cutting efficiency is less than 1.2 kg / cm 3, viscosity exceeds the other 1.8 kg / cm 3 This is because the wire is too large to be stably supplied onto the wire array. The running speed of the wire is preferably as high as possible in order to improve the cutting efficiency, but if it becomes extremely fast, the abrasive liquid will be shaken off from the wire row, so 800 m / min was set as a practical upper limit.

【0015】[0015]

【実施例】図1は一方向走行型ワイヤソーの切断工程部
の一例を示す概略図であり、1、2、3は多溝ローラ、
4はワイヤ、5はワイヤ列、6は加工液供給ノズル、7
はワーク押上台、8はベース、9はダミー板、10はワ
ークである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing an example of a cutting process part of a one-way traveling type wire saw.
4 is a wire, 5 is a wire row, 6 is a working fluid supply nozzle, 7
Is a work lifting base, 8 is a base, 9 is a dummy plate, and 10 is a work.

【0016】すなわち、回転自在に保持された3個の多
溝ローラ1、2、3の外周に刻設された多数の溝に一本
のワイヤ4が巻付けられて所定ピッチのワイヤ列5が形
成され、少なくとも1個の多溝ローラを回転駆動させて
ワイヤ列5を一方向に走行させ、ワーク10の入側にお
いて、加工液供給ノズル6よりワイヤ列5上に供給され
たボロンカーバイド砥液11はワイヤ列の走行と共にワ
ーク10の研削切断が行われる。ワーク10はカーボ
ン、セラミックス、ガラス等のダミー板9に接着されて
おり、ダミー板9はワーク押上台7に着脱自在に固定さ
れたベース8に接着等の手段で固定されている。以下、
上記構成の一方向走行型ワイヤソーにこの発明方法を適
用して高硬度材料を切断した実施例について説明する。
That is, one wire 4 is wound around a large number of grooves engraved on the outer periphery of three multi-groove rollers 1, 2 and 3 rotatably held to form a wire row 5 of a predetermined pitch. At least one multi-groove roller that is formed is driven to rotate the wire row 5 in one direction, and the boron carbide abrasive liquid supplied onto the wire row 5 from the machining liquid supply nozzle 6 on the entry side of the workpiece 10. At 11, the work 10 is ground and cut as the wire row travels. The work 10 is adhered to a dummy plate 9 made of carbon, ceramics, glass or the like, and the dummy plate 9 is fixed to a base 8 which is detachably fixed to the work lifting table 7 by means such as adhesion. Less than,
An example in which the method of the present invention is applied to the one-way traveling type wire saw having the above-mentioned structure to cut a high hardness material will be described.

【0017】実施例1 直径40mm、長さ100mm、ヌープ硬度Hv196
0のサファイアを図1の一方向走行型ワイヤソーにセッ
トし、直径0.18mmのピアノ線を1.4mmピッチ
で張設したワイヤ列を600mm/分の速度で一方向に
走行させ、ワーク入側のワイヤ列上に、粒径20〜60
μmのボロンカーバイド砥粒をラッピングオイルに混合
し、比重1.30に調整した砥液を流下させながらワー
クを0.3mm/分の速度で上昇させて、直径40m
m、厚さ1.1mmのサファイア円板70枚を同時切断
した。その結果、切断所要時間はワークの下のダミー板
までの切込みを含めて2.5時間であった。また、厚さ
精度は±15μm、切断面の平坦度は10μmと、極め
て良好であった。これに対し、同一のワイヤソーにて同
一素材を平均粒径30μmの炭化硅素砥粒を使用した場
合には、切断に8時間要し、厚さ精度は±100μmと
極めて悪く、切断面には150〜200μmの高低差の
うねりが確認された。
Example 1 Diameter 40 mm, length 100 mm, Knoop hardness Hv196
0 sapphire was set on the one-way traveling wire saw in Fig. 1, and a wire row in which a 0.18 mm diameter piano wire was stretched at a 1.4 mm pitch was run in one direction at a speed of 600 mm / min. Particle size 20-60 on the wire
A diameter of 40 m was obtained by mixing boron carbide abrasive grains of μm with lapping oil and raising the work at a speed of 0.3 mm / min while flowing down a polishing liquid adjusted to a specific gravity of 1.30.
70 sapphire discs each having a thickness of 1.1 mm and a thickness of 1.1 mm were simultaneously cut. As a result, the required cutting time was 2.5 hours including the cut to the dummy plate under the work. The thickness accuracy was ± 15 μm, and the flatness of the cut surface was 10 μm, which were extremely good. On the other hand, when using the same material with the same wire saw and silicon carbide abrasive grains with an average grain size of 30 μm, it takes 8 hours to cut, and the thickness accuracy is extremely poor at ± 100 μm, and the cut surface has A waviness with a height difference of up to 200 μm was confirmed.

【0018】実施例2 50mm×50mm×15.4mm、ヌープ硬度Hv2
200のチタンカーバイドとアルミナの複合焼結材料を
6個連結した50mm×50mm×90mmの素材を図
1の一方向走行型ワイヤソーにセットし、直径0.2m
mのピアノ線を2.2mmピッチで張設したワイヤ列を
800mm/分の速度で走行させ、ワーク入側のワイヤ
列上に、粒径30〜70μmのボロンカーバイド砥粒を
ラッピングオイルに混合し、比重1.50に調整した砥
液を流下させながらワークを0.4mm/分の速度で上
昇させて、50mm×50mm×1.9mm厚の板42
枚を同時切断した。その結果、切断所要時間はワークの
下のダミー板までの切込みを含めて2.5時間であっ
た。また、厚さ精度は±20μm、切断面の平坦度は1
0μmと、極めて良好であった。これに対し、同一のワ
イヤソーにて同一素材を平均粒径30μmの炭化硅素砥
粒を使用した場合には、切断に10時間要し、厚さ精度
は±150μmと極めて悪く、切断面には150〜20
0μmの高低差のうねりが確認された。
Example 2 50 mm × 50 mm × 15.4 mm, Knoop hardness Hv2
A 50 mm x 50 mm x 90 mm material consisting of 6 composite sintered materials of 200 titanium carbide and alumina was set in the one-way traveling wire saw of Fig. 1 and the diameter was 0.2 m.
A m wire of a piano wire stretched at a pitch of 2.2 mm is run at a speed of 800 mm / min, and boron carbide abrasive grains having a particle size of 30 to 70 μm are mixed with lapping oil on the wire line on the work entry side. , 50 mm × 50 mm × 1.9 mm thick plate 42 by raising the work at a speed of 0.4 mm / min while flowing down an abrasive liquid adjusted to a specific gravity of 1.50.
The sheets were cut at the same time. As a result, the required cutting time was 2.5 hours including the cut to the dummy plate under the work. The thickness accuracy is ± 20 μm, and the flatness of the cut surface is 1.
It was 0 μm, which was extremely good. On the other hand, when using the same material with the same wire saw and silicon carbide abrasive grains having an average particle size of 30 μm, it takes 10 hours to cut, and the thickness accuracy is extremely poor at ± 150 μm, and the cut surface has ~ 20
A waviness with a height difference of 0 μm was confirmed.

【0019】実施例3 70mm×20mm×150mm、ヌープ硬度Hv70
0の純度99.7%のアルミナを積層して70mm×1
00mm×150mmのブロック状素材を図1の一方向
走行型ワイヤソーにセットし、直径0.16mmのピア
ノ線を0.7mmピッチで張設したワイヤ列を400m
m/分の速度で走行させ、ワーク入側のワイヤ列上に、
粒径10〜40μmのボロンカーバイド砥粒を水性の研
削液に混合し、比重1.70に調整した砥液を流下させ
ながらワークを0.3mm/分の速度で上昇させて、7
0mm×70mm×0.45mm厚の板1000枚を同
時切断した。その結果、切断所要時間は積層ワーク下の
ダミー板までの切込みを含めて6時間であった。また、
厚さ精度は±10μm、切断面の平坦度は15μmと、
極めて良好であった。これに対し、同一のワイヤソーに
て同一素材を平均粒径30μmの炭化硅素砥粒を使用し
た場合には、切断精度は同等であったが、切断に16時
間を要した。
Example 3 70 mm × 20 mm × 150 mm, Knoop hardness Hv70
70mm x 1 by stacking 09.7% pure alumina of 0
A block-shaped material of 00 mm × 150 mm is set on the one-way traveling type wire saw of FIG.
Run at a speed of m / min, and on the wire row on the work entry side,
Boron carbide abrasive grains having a particle diameter of 10 to 40 μm are mixed with an aqueous grinding liquid, and the work liquid is raised at a speed of 0.3 mm / min while flowing down the grinding liquid adjusted to have a specific gravity of 1.70.
1000 sheets of 0 mm x 70 mm x 0.45 mm thickness were cut at the same time. As a result, the time required for cutting was 6 hours including the cutting to the dummy plate under the laminated work. Also,
Thickness accuracy is ± 10μm, and cut surface flatness is 15μm.
It was extremely good. On the other hand, when the same material was used with the same wire saw and the silicon carbide abrasive grains having an average particle diameter of 30 μm were used, the cutting accuracy was the same, but the cutting took 16 hours.

【0020】以上3つの実施例のいずれにおいても、ボ
ロンカーバイド砥粒を使用することによるワイヤの摩耗
は、極めて軽微であり、ワイヤは10〜12回の連続使
用が可能であった。
In all of the above three examples, the wear of the wire due to the use of the boron carbide abrasive grains was extremely slight, and the wire could be continuously used 10 to 12 times.

【発明の効果】以上説明したごとく、この発明によれ
ば、従来のワイヤソーに広く使用されている炭化硅素砥
粒では切断に極めて長時間要し、かつ切断精度を確保で
きないような高硬度の材料であっても、高能率で高精度
に、しかも低コストで切断することができるという大き
な効果を奏する。したがって、耐摩耗性の向上から高硬
度の材料の用途がますます広がる中で、これらの薄厚の
製品をワイヤソーによる切断で製造することを可能とす
るこの発明の工業的価値は極めて大きい。
As described above, according to the present invention, the silicon carbide abrasive grains which are widely used in the conventional wire saws require a very long time for cutting, and a material of high hardness which cannot ensure the cutting accuracy. Even in this case, a great effect that cutting can be performed with high efficiency and high accuracy and at low cost is achieved. Therefore, the industrial value of this invention, which enables these thin products to be manufactured by cutting with a wire saw, is extremely high, as the applications of high hardness materials are further expanded due to improved wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の対象とする一方向走行型ワイヤソー
の切断工程部の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a cutting step part of a one-way traveling wire saw to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1、2、3 多溝ローラ 4 ワイヤ 5 ワイヤ列 6 加工液供給ノズル 7 ワーク押上台 8 ベース 9 ダミー板 10 ワーク 11 砥液 1, 2 and 3 multi-groove roller 4 wire 5 wire row 6 machining liquid supply nozzle 7 work push-up base 8 base 9 dummy plate 10 work 11 abrasive liquid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定ピッチに張設したワイヤ列を一方向
に走行させつつ、該ワイヤ列の直下より被切断材料を上
昇させ、ワイヤ列と被切断材料との接触部に砥粒を含む
加工液を供給して切断する一方向走行型ワイヤソーにお
いて、前記加工液として、ボロンカーバイド砥粒を含有
する砥液を用いることを特徴とするワイヤソーによる切
断方法。
1. A process in which a wire row stretched at a predetermined pitch is run in one direction, a material to be cut is raised from directly below the wire row, and a contact portion between the wire row and the material to be cut contains abrasive grains. In a one-way traveling type wire saw that supplies and cuts a liquid, a cutting method using a wire saw, wherein a grinding liquid containing boron carbide abrasive grains is used as the working liquid.
【請求項2】 ワイヤの走行速度を400〜800m/
分、ボロンカーバイド砥粒の粒径を10〜70μm、加
工液の比重を1.2〜1.8gf/cmとすることを
特徴とする請求項1記載のワイヤソーによる切断方法。
2. The running speed of the wire is 400 to 800 m /
The method for cutting with a wire saw according to claim 1, wherein the boron carbide abrasive grains have a particle size of 10 to 70 μm, and the working fluid has a specific gravity of 1.2 to 1.8 gf / cm 3 .
JP35457691A 1991-12-19 1991-12-19 Cutting method with wire saw Expired - Lifetime JP2639270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35457691A JP2639270B2 (en) 1991-12-19 1991-12-19 Cutting method with wire saw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35457691A JP2639270B2 (en) 1991-12-19 1991-12-19 Cutting method with wire saw

Publications (2)

Publication Number Publication Date
JPH05169434A true JPH05169434A (en) 1993-07-09
JP2639270B2 JP2639270B2 (en) 1997-08-06

Family

ID=18438486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35457691A Expired - Lifetime JP2639270B2 (en) 1991-12-19 1991-12-19 Cutting method with wire saw

Country Status (1)

Country Link
JP (1) JP2639270B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913305A (en) * 1996-05-23 1999-06-22 Hct Shaping Systems Sa Cutting device with wires
US6381830B1 (en) 1998-09-01 2002-05-07 Sumitomo Special Metals Co., Ltd. Method for cutting rare earth alloy, method for manufacturing rare earth alloy plates and method for manufacturing rare earth alloy magnets using wire saw, and voice coil motor
US6408840B2 (en) 1999-12-14 2002-06-25 Sumitomo Special Metals Co., Ltd. Method and apparatus for cutting a rare earth alloy
JP2006338817A (en) * 2005-06-03 2006-12-14 Hoya Corp Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007307687A (en) * 2006-05-22 2007-11-29 Toyo Advanced Technologies Co Ltd Workpiece cutting method and wire saw
CN105479606A (en) * 2015-11-20 2016-04-13 东北大学 Method for using boron carbide blade material for cutting sapphire
JP2017019716A (en) * 2015-07-10 2017-01-26 住友化学株式会社 Method for manufacturing sintered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100472610C (en) * 2004-08-30 2009-03-25 Hoya株式会社 Method of producing a glass substrate for a magnetic disk, method of producing a magnetic disk, and a cylindrical glass material for a glass substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913305A (en) * 1996-05-23 1999-06-22 Hct Shaping Systems Sa Cutting device with wires
US6381830B1 (en) 1998-09-01 2002-05-07 Sumitomo Special Metals Co., Ltd. Method for cutting rare earth alloy, method for manufacturing rare earth alloy plates and method for manufacturing rare earth alloy magnets using wire saw, and voice coil motor
US6505394B2 (en) 1998-09-01 2003-01-14 Sumitomo Special Metals Co., Ltd. Method for cutting rare earth alloy, method for manufacturing rare earth alloy plates and method for manufacturing rare earth alloy magnets using wire saw, and voice coil motor
US6408840B2 (en) 1999-12-14 2002-06-25 Sumitomo Special Metals Co., Ltd. Method and apparatus for cutting a rare earth alloy
JP2006338817A (en) * 2005-06-03 2006-12-14 Hoya Corp Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2007307687A (en) * 2006-05-22 2007-11-29 Toyo Advanced Technologies Co Ltd Workpiece cutting method and wire saw
JP2017019716A (en) * 2015-07-10 2017-01-26 住友化学株式会社 Method for manufacturing sintered body
CN105479606A (en) * 2015-11-20 2016-04-13 东北大学 Method for using boron carbide blade material for cutting sapphire

Also Published As

Publication number Publication date
JP2639270B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
Li et al. Machining processes for sapphire wafers: a literature review
EP2843688B1 (en) Dicing blade
JP5237370B2 (en) Scribing wheel and scribing method for brittle material substrate
JP2639270B2 (en) Cutting method with wire saw
JP2951537B2 (en) Polishing method using composition containing boron suboxide
CN1933949A (en) Granite slabs cut with frame saw employing blades with diamond-containing segments and method of cutting thereof
JP3132981B2 (en) Cutting whetstone
US5008513A (en) Shaping of bonded abrasive products
US4246003A (en) Lap cutting abrasive
JPS6288579A (en) Grinding tool
JPH0752147A (en) Method and apparatus for slicing stone material
JP3050379B2 (en) Diamond wrap surface plate
CN2678862Y (en) Diamond fret-saw for cutting-off hard and fragile material
KR20140123906A (en) Grinding stone for high hardness brittle material
JP2007276048A (en) Workpiece cutting method using wire
JP2003159642A (en) Work cutting method and multi-wire saw system
US4854083A (en) Polishing machine using super abrasive grains
CN110000631A (en) Zircon ceramic blade grinding process
JPS60242958A (en) Machining of brittle material
KR20030051700A (en) Abrasive and wear resistant material
GB2149330A (en) Machining of workpieces consisting of brittle/friable materials
JP2006088243A (en) Abrasive grain and grindstone
JP5537891B2 (en) Cutting blade dressing method
US3236009A (en) Apparatus for surfacing
CN207448153U (en) Nickel corollary equipment is removed in a kind of electroplated diamond cutting line polishing