JPH05167127A - Magnetostriction element - Google Patents
Magnetostriction elementInfo
- Publication number
- JPH05167127A JPH05167127A JP3351480A JP35148091A JPH05167127A JP H05167127 A JPH05167127 A JP H05167127A JP 3351480 A JP3351480 A JP 3351480A JP 35148091 A JP35148091 A JP 35148091A JP H05167127 A JPH05167127 A JP H05167127A
- Authority
- JP
- Japan
- Prior art keywords
- magnetostrictive
- magnetostrictive material
- permanent magnet
- laminated body
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 claims abstract description 90
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000696 magnetic material Substances 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000005415 magnetization Effects 0.000 abstract description 22
- 238000009826 distribution Methods 0.000 abstract description 21
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 229910052692 Dysprosium Inorganic materials 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000004323 axial length Effects 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁歪振動子、磁歪アク
チュエータ、磁歪センサ等の磁歪素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive element such as a magnetostrictive vibrator, a magnetostrictive actuator and a magnetostrictive sensor.
【0002】[0002]
【従来の技術】磁歪材料は、磁界印加により変位を生じ
る材料であり、また、変位を与えることにより磁界が発
生するという逆磁歪(ヒラリー効果)を有する材料であ
る。磁歪材料のこのような性質を利用して、磁歪振動
子、磁歪アクチュエータ、磁歪センサ等の様々な能動素
子や受動素子が提案されている。特に、TbFe2 系な
どのRFe2 ラーベス型金属間化合物は、磁歪量が極め
て大きく超磁歪材料と呼ばれる。そして、このような超
磁歪材料を用いた磁歪素子が近年注目されている。2. Description of the Related Art A magnetostrictive material is a material that causes a displacement when a magnetic field is applied, and a material that has an inverse magnetostriction (Hillary effect) in which a magnetic field is generated by applying a displacement. Utilizing such properties of the magnetostrictive material, various active elements and passive elements such as a magnetostrictive oscillator, a magnetostrictive actuator, and a magnetostrictive sensor have been proposed. In particular, RFe 2 Laves type intermetallic compounds such as TbFe 2 system have a very large magnetostriction amount and are called giant magnetostrictive materials. In recent years, a magnetostrictive element using such a giant magnetostrictive material has been receiving attention.
【0003】これらの磁歪素子の構成および作用は、通
常、下記のようなものである。The structure and operation of these magnetostrictive elements are usually as follows.
【0004】(磁歪センサ)磁歪材とバイアス発生用の
永久磁石とを通常、直列に接触して配置し、これらにコ
イルを巻回して磁歪センサを構成する。このような磁歪
センサに、外部振動や衝撃など磁歪材を変形させる力が
加わると、ヒラリー効果によりコイルに電流が誘導され
る。この電流または端部電圧を測定することにより、印
加された力を知ることができる。(Magnetic Distortion Sensor) Usually, a magnetostrictive material and a permanent magnet for bias generation are arranged in contact with each other in series, and a coil is wound around them to form a magnetostrictive sensor. When a force such as external vibration or shock that deforms the magnetostrictive material is applied to such a magnetostrictive sensor, a current is induced in the coil by the Hillary effect. By measuring this current or the end voltage, the applied force can be known.
【0005】(磁歪振動子、磁歪アクチュエータ)磁歪
材、永久磁石およびコイルを上記磁歪センサと同様に配
置し、コイルに交流電流、パルス電流、直流電流などを
印加して磁界を発生させる。この磁界により生じた振
動、変位などを利用して、振動子やアクチュエータとし
て用いる。また、このような構成の磁歪素子を、発音体
として利用することもできる。(Magnetic strain oscillator, magnetostrictive actuator) A magnetostrictive material, a permanent magnet and a coil are arranged in the same manner as the above magnetostrictive sensor, and an alternating current, a pulse current, a direct current or the like is applied to the coil to generate a magnetic field. It is used as a vibrator or an actuator by utilizing the vibration and displacement generated by this magnetic field. Further, the magnetostrictive element having such a configuration can also be used as a sounding body.
【0006】また、これらの磁歪素子において、磁歪材
や永久磁石と接触するように、磁性材料のヨークを直列
に挿入することにより、閉磁気回路を任意の形状とする
ことができる。Further, in these magnetostrictive elements, a closed magnetic circuit can be formed into an arbitrary shape by inserting a yoke of a magnetic material in series so as to contact the magnetostrictive material or the permanent magnet.
【0007】磁歪材は、印加磁界強度が変化すると磁歪
量もそれに応じて変化するが、このときの変位量は印加
磁界強度には必ずしも比例しない。このため、磁歪振動
子や磁歪アクチュエータなどでは印加磁界強度の変化に
対する変位量の大きい部分を使うために、また、磁歪セ
ンサなどでは印加磁界強度の変化に対して磁歪材の変位
量が直線的に変化するように、通常、直流バイアス磁界
が印加される。In the magnetostrictive material, when the applied magnetic field strength changes, the magnetostrictive amount also changes accordingly, but the displacement amount at this time is not necessarily proportional to the applied magnetic field strength. For this reason, in a magnetostrictive oscillator or a magnetostrictive actuator, a portion having a large amount of displacement with respect to a change in applied magnetic field strength is used. A varying DC bias field is typically applied to vary.
【0008】直流バイアス磁界を印加する方法として
は、コイルに直流電流を流す方法や永久磁石を用いる方
法が挙げられる。As a method of applying a DC bias magnetic field, there are a method of passing a DC current through a coil and a method of using a permanent magnet.
【0009】コイルに直流電流を流す方法では、電流強
度を変えることにより容易にバイアス磁界強度を変更す
ることができる。しかし、磁歪材駆動用の交流電流が流
れるコイルに直流電流を重畳する場合、交流電源と直流
電源との干渉を避けるためにチョークやコンデンサが必
要となるので、素子の構成が複雑化し、大型化してしま
う。また、バイアス磁界用コイルを磁歪材駆動用コイル
と別に設ける場合も、やはり素子の複雑化および大型化
を招く。In the method of passing a direct current through the coil, the bias magnetic field strength can be easily changed by changing the current strength. However, when superimposing a DC current on a coil through which an AC current for driving a magnetostrictive material is superposed, a choke and a capacitor are required to avoid interference between the AC power source and the DC power source. Will end up. Further, when the bias magnetic field coil is provided separately from the magnetostrictive material driving coil, the element also becomes complicated and large in size.
【0010】一方、バイアス磁界発生に永久磁石を用い
る場合、素子構成が簡単になり、小型の磁歪素子が実現
できる。On the other hand, when a permanent magnet is used to generate the bias magnetic field, the element structure is simplified and a small magnetostrictive element can be realized.
【0011】ところで、上記したような超磁歪材料は透
磁率が低いため、超磁歪材料の磁歪材に永久磁石により
バイアス磁界を印加すると、永久磁石に近い領域では磁
化率が高いが、遠ざかるにつれて磁化率が顕著に低下
し、磁歪材内の磁化分布が著しく不均一となる。このた
め、一部領域では最適強度に磁化されていても、他の領
域では磁化が不十分となったり過剰となったりし、磁歪
材全体の効率を高くすることができない。By the way, since the above magnetostrictive material has a low magnetic permeability, when a bias magnetic field is applied to the magnetostrictive material of the supermagnetostrictive material by a permanent magnet, the magnetic susceptibility is high in a region close to the permanent magnet but is magnetized as it goes away. The rate is remarkably reduced, and the magnetization distribution in the magnetostrictive material is significantly nonuniform. For this reason, even if the magnetic field is magnetized to have the optimum strength in some regions, the magnetization becomes insufficient or excessive in other regions, and the efficiency of the entire magnetostrictive material cannot be increased.
【0012】このような問題を避けるため、例えば特開
昭62−292099号公報には、ディスク状磁歪材と
ディスク状永久磁石とを複数個交互に積層した構成が提
案されている。しかし、同公報の図面に示されるよう
に、磁歪材の直径と永久磁石の直径とが同じであると、
磁歪材の磁化分布の均一性を著しく向上させることは困
難である。In order to avoid such a problem, for example, Japanese Patent Laid-Open No. 62-292099 proposes a structure in which a plurality of disk-shaped magnetostrictive materials and disk-shaped permanent magnets are alternately laminated. However, as shown in the drawings of the publication, if the diameter of the magnetostrictive material and the diameter of the permanent magnet are the same,
It is difficult to significantly improve the uniformity of the magnetization distribution of the magnetostrictive material.
【0013】[0013]
【発明が解決しようとする課題】本発明はこのような事
情からなされたものであり、永久磁石によりバイアス磁
界を印加する構成の磁歪素子において、磁歪材内の磁化
分布の均一性を著しく向上させることを目的とする。SUMMARY OF THE INVENTION The present invention has been made under such circumstances, and in a magnetostrictive element having a structure in which a bias magnetic field is applied by a permanent magnet, the uniformity of the magnetization distribution in the magnetostrictive material is significantly improved. The purpose is to
【0014】[0014]
【課題を解決するための手段】このような目的は、下記
(1)〜(2)の本発明により達成される。 (1)希土類金属元素と鉄とを含有する磁歪材および前
記磁歪材にバイアス磁界を印加するための永久磁石をそ
れぞれ少なくとも1個有し、前記磁歪材および前記永久
磁石がいずれも柱状または筒状であって、前記磁歪材と
前記永久磁石とがほぼ同軸的に交互に積層された積層体
を構成しており、前記磁歪材および前記永久磁石の軸方
向に垂直な断面の面積をそれぞれSs およびSm とした
とき、Sm /Ss >1であることを特徴とする磁歪素
子。The above objects are achieved by the present invention described in (1) and (2) below. (1) At least one magnetostrictive material containing a rare earth metal element and iron and at least one permanent magnet for applying a bias magnetic field to each of the magnetostrictive materials, and each of the magnetostrictive material and the permanent magnet is columnar or tubular. That is, the magnetostrictive material and the permanent magnet constitute a laminate in which they are alternately laminated substantially coaxially, and the area of a cross section perpendicular to the axial direction of the magnetostrictive material and the permanent magnet is Ss and A magnetostrictive element characterized in that Sm / Ss> 1 when Sm.
【0015】(2)前記積層体の軸方向の少なくとも一
方の端部に、軟磁性材料からなるヨークが設けられてい
る上記(1)に記載の磁歪素子。(2) The magnetostrictive element according to (1), wherein a yoke made of a soft magnetic material is provided on at least one end of the laminated body in the axial direction.
【0016】[0016]
【作用】本発明の磁歪素子は、磁歪材と永久磁石とを同
軸的に積層し、永久磁石によりバイアス磁界を印加する
構成を有する。本発明では、磁歪材の断面積に対し永久
磁石の断面積をより大きく設定することにより、磁歪材
内の磁化分布の均一性を高めることができる。The magnetostrictive element of the present invention has a structure in which a magnetostrictive material and a permanent magnet are coaxially laminated and a bias magnetic field is applied by the permanent magnet. In the present invention, by setting the cross-sectional area of the permanent magnet larger than the cross-sectional area of the magnetostrictive material, it is possible to improve the uniformity of the magnetization distribution in the magnetostrictive material.
【0017】[0017]
【具体的構成】以下、本発明の具体的構成について詳細
に説明する。本発明の磁歪素子は、磁歪材および前記磁
歪材にバイアス磁界を印加するための永久磁石を、それ
ぞれ少なくとも1個有する。前記磁歪材および前記永久
磁石は、いずれも柱状または筒状であり、前記磁歪材と
前記永久磁石とがほぼ同軸的に交互に積層されて、積層
体を構成している。[Specific Structure] The specific structure of the present invention will be described in detail below. The magnetostrictive element of the present invention includes at least one magnetostrictive material and at least one permanent magnet for applying a bias magnetic field to the magnetostrictive material. Each of the magnetostrictive material and the permanent magnet has a columnar shape or a tubular shape, and the magnetostrictive material and the permanent magnet are alternately laminated substantially coaxially to form a laminated body.
【0018】そして前記積層体において、前記磁歪材お
よび前記永久磁石の軸方向に垂直な断面の面積をそれぞ
れSs およびSm としたとき、Sm /Ss >1、好まし
くはSm /Ss ≧2、より好ましくはSm /Ss ≧7で
ある。Sm ≦Ss であると、本発明の効果が実現しな
い。Sm /Ss の上限は特になく、素子の全体寸法を考
慮して適宜決定すればよい。なお、本発明の磁歪素子に
は、磁歪材および永久磁石が複数個存在し得る。この場
合、磁歪材内の磁化分布の均一性を高くするためには、
通常、全ての磁歪材のSs を等しく、かつ、全ての永久
磁石のSm を等しく設定することが好ましいが、場合に
よってはSs やSm を全ての磁歪材や永久磁石について
同一としなくてもよい。In the laminated body, Sm / Ss> 1, preferably Sm / Ss ≧ 2, and more preferably Sm / Ss> 1, where Ss and Sm are the cross-sectional areas of the magnetostrictive material and the permanent magnet, respectively. Is Sm / Ss ≧ 7. If Sm ≤ Ss, the effect of the present invention cannot be realized. There is no particular upper limit to Sm / Ss, and it may be appropriately determined in consideration of the overall size of the device. The magnetostrictive element of the present invention may have a plurality of magnetostrictive materials and permanent magnets. In this case, in order to increase the uniformity of the magnetization distribution in the magnetostrictive material,
Normally, it is preferable to set Ss of all magnetostrictive materials to be equal and Sm of all permanent magnets to be equal, but in some cases, Ss and Sm may not be the same for all magnetostrictive materials and permanent magnets.
【0019】また、Sm および/またはSs の値が複数
存在する場合、上記したSm /Ss>1は、少なくとも
1個の磁歪材と少なくとも1個の永久磁石について成立
していればよい。すなわち、最も大きいSm が最も小さ
いSs よりも大きければよい。ただし、十分に高い効果
を得るためには、Sm /Ss >1が全ての磁歪材および
永久磁石について成立していることが好ましい。すなわ
ち、最も小さいSm が最も大きいSs よりも大きいこと
が好ましい。When there are a plurality of values of Sm and / or Ss, the above Sm / Ss> 1 should be satisfied for at least one magnetostrictive material and at least one permanent magnet. That is, the largest Sm needs to be larger than the smallest Ss. However, in order to obtain a sufficiently high effect, it is preferable that Sm / Ss> 1 holds for all magnetostrictive materials and permanent magnets. That is, it is preferable that the smallest Sm is larger than the largest Ss.
【0020】積層される磁歪材と永久磁石とは、両者共
に柱状であってもよく、両者共に筒状であってもよい。
また、いずれか一方が柱状で他方が筒状であってもよ
い。また、磁歪材および永久磁石の少なくとも一方が柱
状体と筒状体との組み合わせであってもよい。なお、柱
状体としては、円柱状、多角柱状等のいずれであっても
よく、また、筒状としては、円筒状、多角筒状等のいず
れであってもよく、磁歪素子の用途や要求形状等に応じ
て適宜選択すればよい。Both the magnetostrictive material and the permanent magnet to be laminated may have a columnar shape, or both may have a cylindrical shape.
Further, either one may be columnar and the other may be cylindrical. Further, at least one of the magnetostrictive material and the permanent magnet may be a combination of a columnar body and a tubular body. It should be noted that the columnar body may be any of a columnar shape and a polygonal columnar shape, and the cylindrical shape may be any of a cylindrical shape and a polygonal cylindrical shape. It may be appropriately selected according to the above.
【0021】磁歪材や永久磁石の配置および数に特に制
限はないが、より高い効果を得るためには、積層体の両
端に永久磁石を設けた構成とすることが好ましく、ま
た、永久磁石の数を少なくとも3個以上とすることが好
ましい。There are no particular restrictions on the arrangement and number of the magnetostrictive material and the permanent magnets, but in order to obtain a higher effect, it is preferable to provide permanent magnets at both ends of the laminated body. The number is preferably at least 3 or more.
【0022】磁歪材の軸方向長さLs と永久磁石の軸方
向長さLm の比は特に限定されず、より高い効果が得ら
れるように、例えばSm /Ss 等の各種条件に応じて適
宜設定すればよい。The ratio of the axial length Ls of the magnetostrictive material to the axial length Lm of the permanent magnet is not particularly limited, and is appropriately set according to various conditions such as Sm / Ss so that a higher effect can be obtained. do it.
【0023】なお、磁歪材と永久磁石とは、ほぼ同軸的
に、すなわち、それぞれの軸がほぼ一致するように直列
に配置される。通常、隣接する磁歪材と永久磁石とは接
触しているが、両者の間に接着剤層などが存在していて
もよい。また、磁歪材と永久磁石との間に軟磁性ヨーク
や非磁性材を必要に応じて挿入してもよい。The magnetostrictive material and the permanent magnet are arranged substantially coaxially, that is, in series so that their axes substantially coincide with each other. Normally, the adjacent magnetostrictive material and the permanent magnet are in contact with each other, but an adhesive layer or the like may be present between them. Further, a soft magnetic yoke or a non-magnetic material may be inserted between the magnetostrictive material and the permanent magnet as needed.
【0024】本発明では、磁歪材と永久磁石との積層体
の軸方向両端部に、軟磁性材のヨークを設けることが好
ましい。ヨークを設けることにより、積層体の両端部付
近に存在する磁歪材内の磁化分布を、より均一にするこ
とができる。この場合、積層体の両端部に永久磁石を設
け、これらの永久磁石に接してヨークを設ける構成とす
ることが好ましい。In the present invention, it is preferable to provide soft magnetic material yokes at both axial ends of the laminated body of the magnetostrictive material and the permanent magnet. By providing the yoke, the magnetization distribution in the magnetostrictive material existing near both ends of the laminated body can be made more uniform. In this case, it is preferable that permanent magnets are provided at both ends of the laminated body and a yoke is provided in contact with these permanent magnets.
【0025】このようなヨークの形状および寸法は特に
限定されず、磁歪材や永久磁石の形状に応じて適宜決定
すればよい。例えば、ヨーク形状は、磁歪材や永久磁石
と同様に柱状または筒状とすることが好ましい。また、
ヨークと永久磁石とが隣接する構成とする場合には、積
層体の軸方向に垂直なヨーク断面の面積を、隣接する磁
石のSm よりも小さくすることが好ましく、特にSs と
ほぼ同程度かそれ以下とすることが好ましい。The shape and size of such a yoke are not particularly limited and may be appropriately determined according to the shapes of the magnetostrictive material and the permanent magnet. For example, the yoke shape is preferably columnar or tubular like the magnetostrictive material or the permanent magnet. Also,
When the yoke and the permanent magnet are adjacent to each other, it is preferable that the area of the cross section of the yoke perpendicular to the axial direction of the laminated body is smaller than Sm of the adjacent magnets, and in particular, about the same as Ss or less. The following is preferable.
【0026】また、積層体の両端部に磁歪材を設け、さ
らにこれら各磁歪材に隣接してヨークを設ける場合に
は、ヨークの断面積を磁歪材の断面積Ss とほぼ同程度
とすることが好ましい。When a magnetostrictive material is provided at both ends of the laminated body and a yoke is provided adjacent to each magnetostrictive material, the cross-sectional area of the yoke should be approximately the same as the cross-sectional area Ss of the magnetostrictive material. Is preferred.
【0027】本発明の磁歪素子には、通常、コイルが設
けられる。コイルは、通常、磁歪材と永久磁石との積層
体を包囲するように配置される。本発明の磁歪素子を振
動子やアクチュエータに適用する場合、コイルには交流
電流やパルス電流、直流電流などが流され、発生した磁
界は磁歪材に印加される。また、本発明の磁歪素子をセ
ンサに適用する場合、外部振動や衝撃など磁歪材を変形
させる力が加わると、ヒラリー効果によりコイルに電流
が誘導されるので、この電流または端部電圧を測定する
ことにより、印加された力を知ることができる。The magnetostrictive element of the present invention is usually provided with a coil. The coil is usually arranged so as to surround the laminated body of the magnetostrictive material and the permanent magnet. When the magnetostrictive element of the present invention is applied to a vibrator or an actuator, an alternating current, a pulse current, a direct current, or the like is passed through the coil, and the generated magnetic field is applied to the magnetostrictive material. Further, when the magnetostrictive element of the present invention is applied to a sensor, when a force that deforms the magnetostrictive material such as external vibration or shock is applied, a current is induced in the coil by the Hillary effect, so this current or the end voltage is measured. Thus, the applied force can be known.
【0028】本発明で用いる磁歪材は、希土類金属元素
および鉄を含有する。このような磁歪材は磁歪量が大き
いため、磁歪アクチュエータ等の能動素子、磁歪センサ
等の受動素子のいずれにも好適である。The magnetostrictive material used in the present invention contains a rare earth metal element and iron. Since such a magnetostrictive material has a large magnetostriction amount, it is suitable for both an active element such as a magnetostrictive actuator and a passive element such as a magnetostrictive sensor.
【0029】磁歪材の具体的組成は特に限定されない
が、1kOe の直流磁界下での磁歪量Δl/lが1000
ppm以上であることが好ましい。これらのうち特に、
下記式で表わされる組成を有するものを用いた時、より
高性能な磁歪素子を作製することができる。The specific composition of the magnetostrictive material is not particularly limited, but the magnetostriction amount Δl / l under a DC magnetic field of 1 kOe is 1000.
It is preferably at least ppm. Among these, especially
When a material having a composition represented by the following formula is used, a higher performance magnetostrictive element can be manufactured.
【0030】式 RTx Expression RT x
【0031】上記式において、Rはイットリウム(Y)
を含む希土類金属元素のうちの1種以上を表わし、Tは
Fe、NiおよびCoのうちの1種以上を表わす。ま
た、上記式において、1.5≦x≦2.5、特に1.8
5≦x≦2.00であることが好ましい。xが上記範囲
外となると、高磁界における磁歪量および単位磁界強度
あたりの磁歪変化量dλ/dHが低下する。In the above formula, R is yttrium (Y)
Represents one or more of rare earth metal elements including, and T represents one or more of Fe, Ni and Co. In the above formula, 1.5 ≦ x ≦ 2.5, especially 1.8
It is preferable that 5 ≦ x ≦ 2.00. If x is out of the above range, the magnetostriction amount in a high magnetic field and the magnetostriction change amount dλ / dH per unit magnetic field strength decrease.
【0032】希土類金属元素としては、La、Nd、P
r、Ce、Sm、Gd、Tb、Eu、Dy、Ho、E
r、Yb、Lu、Tmのランタノイド元素が好ましく、
これらから選ばれる1種以上の元素の組合せとしては、
Sm、Tb、Dy、Ho、ErおよびTm単独、TbG
d、TbDy、TbHo、TbHoDy、SmTb、S
mDy、SmHo、SmEr、SmHoDyならびにH
o、ErおよびDyから選択される2種以上の元素の少
なくとも1種が好ましく、さらに、常温で高磁界および
低磁界での磁歪量が優れている点から、これらのうち特
に、Tb単独、Tbの一部をDyおよび/またはHoで
置換したもの、Sm単独、Smの一部をDyおよび/ま
たはHoで置換したものが好ましい。なお、Tbを含有
するものは正の磁歪を示し、Smを含有するものは負の
磁歪を示す。As the rare earth metal element, La, Nd, P
r, Ce, Sm, Gd, Tb, Eu, Dy, Ho, E
r, Yb, Lu and Tm lanthanoid elements are preferred,
As a combination of one or more elements selected from these,
Sm, Tb, Dy, Ho, Er and Tm alone, TbG
d, TbDy, TbHo, TbHoDy, SmTb, S
mDy, SmHo, SmEr, SmHoDy and H
At least one of two or more elements selected from o, Er, and Dy is preferable, and among these, Tb alone and Tb are particularly preferable because they have excellent magnetostriction amounts in a high magnetic field and a low magnetic field at room temperature. Those in which a part of is replaced by Dy and / or Ho, Sm alone, and those in which a part of Sm is replaced by Dy and / or Ho are preferred. Those containing Tb show positive magnetostriction, and those containing Sm show negative magnetostriction.
【0033】なお、このような組成中には、さらに全体
の30原子%以下の範囲で他の遷移金属元素やZn等が
含有されていてもよい。遷移金属元素としては、Sc、
Ti、V、Cr、Mn、Cu、Y、Zr、Nb、Mo、
Tc、Ru、Rh、Pd、Ag、Cd、Hf、Ta、
W、Re、Os、Ir、Pt、Au、Hgなどが使用可
能である。Further, in such a composition, another transition metal element, Zn or the like may be further contained in the range of 30 atomic% or less of the whole. As the transition metal element, Sc,
Ti, V, Cr, Mn, Cu, Y, Zr, Nb, Mo,
Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta,
W, Re, Os, Ir, Pt, Au, Hg and the like can be used.
【0034】このような磁歪材料は、米国特許第4,3
75,372号明細書、同第4,152,178号明細
書、同第3,949,351号明細書、同第4,30
8,474号明細書、同第4,378,258号明細書
等、特開昭53−64798号公報、本出願人による特
願昭62−172376号、同62−227962号、
同62−227963号、同63−284133号、同
63−284134号、特願平1−41171号等に開
示されている。Such a magnetostrictive material is disclosed in US Pat.
75,372, 4,152,178, 3,949,351 and 4,30.
No. 8,474, No. 4,378,258, etc., JP-A No. 53-64798, Japanese Patent Application Nos. 62-172376, 62-227962 by the present applicant,
No. 62-227963, No. 63-284133, No. 63-284134, Japanese Patent Application No. 1-41711, and the like.
【0035】磁歪材は、一般的な合金製造法、例えば、
アークメルト法、一方向性凝固法、ゾーンメルト法、高
周波溶解法、粉末冶金法等によって製造され、所定の形
状および寸法に成型加工される。The magnetostrictive material is produced by a general alloy production method, for example,
It is manufactured by an arc melt method, a unidirectional solidification method, a zone melt method, a high frequency melting method, a powder metallurgy method, etc., and molded into a predetermined shape and size.
【0036】磁歪材と積層される永久磁石の組成に特に
制限はなく、要求される磁界強度に応じて、Sm−Co
系やNd−Fe−B系等の各種希土類磁石、あるいは各
種フェライト磁石などから適宜選択すればよい。The composition of the permanent magnet laminated with the magnetostrictive material is not particularly limited, and depending on the required magnetic field strength, Sm-Co.
It may be appropriately selected from various rare-earth magnets such as Nd-Fe-B system and various ferrite magnets.
【0037】また、ヨークの材質にも特に制限はなく、
高飽和磁束密度で高透磁率の各種軟磁性材料、例えばS
45C等の炭素鋼を用いればよい。The material of the yoke is not particularly limited,
Various soft magnetic materials with high saturation magnetic flux density and high permeability, such as S
Carbon steel such as 45C may be used.
【0038】[0038]
【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。磁歪材と永久磁石とを積層
し、図1〜図7にそれぞれ示される構成の積層体を作製
した。各図において、S1 〜S5 は磁歪材、M1 〜M6
は永久磁石、Y1 〜Y2 はヨークである。磁歪材および
永久磁石の形状は円柱状または円筒状とし、ヨークの形
状は円柱状とした。なお、図7に示される積層体は、磁
歪材の直径と永久磁石の直径とが等しい比較例である。EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention. A magnetostrictive material and a permanent magnet were laminated to produce a laminated body having a structure shown in each of FIGS. 1 to 7. In each figure, S 1 to S 5 are magnetostrictive materials, and M 1 to M 6
Permanent magnets, Y 1 to Y 2 is a yoke. The magnetostrictive material and the permanent magnet were cylindrical or cylindrical in shape, and the yoke was cylindrical in shape. The laminated body shown in FIG. 7 is a comparative example in which the diameter of the magnetostrictive material and the diameter of the permanent magnet are equal.
【0039】図中に、磁歪材、永久磁石、ヨークの寸法
およびSm /Ss を示した。なお、寸法は、直径φ、軸
方向長さLで表わし、円筒状の場合には、(外径−内
径)φで表わした。単位はmmである。なお、各図におい
て、積層体各部の寸法比は実際の寸法比と異なっている
が、磁化分布のグラフとは対応している。In the figure, the dimensions and Sm / Ss of the magnetostrictive material, the permanent magnet and the yoke are shown. The dimensions are represented by a diameter φ and an axial length L, and in the case of a cylindrical shape, (outer diameter-inner diameter) φ. The unit is mm. In each figure, the dimensional ratio of each part of the laminated body is different from the actual dimensional ratio, but it corresponds to the graph of the magnetization distribution.
【0040】磁歪材の組成はTb0.3 Dy0.7 Fe1.95
とし、ゾーンメルト法により作製した。永久磁石にはフ
ェライト磁石(TDK製FB5N)を用いた。ヨークに
は、炭素鋼(S45C)を用いた。The composition of the magnetostrictive material is Tb 0.3 Dy 0.7 Fe 1.95.
Was prepared by the zone melt method. A ferrite magnet (FB5N manufactured by TDK) was used as the permanent magnet. Carbon steel (S45C) was used for the yoke.
【0041】これらの各積層体の磁化分布をシミュレー
ションにより求め、図中右側に示した。磁化分布の測定
位置は、磁歪材が円柱状である場合には積層体の軸上と
し、磁歪材が円筒状である場合には、磁歪材の周壁の中
央を含み積層体の軸と平行な直線上とした。シミュレー
ションには、有限要素法を用いた磁場解析プログラム
(MAGNA FIM)を用いた。The magnetization distribution of each of these laminates was determined by simulation and shown on the right side of the figure. The measurement position of the magnetization distribution is on the axis of the laminated body when the magnetostrictive material is cylindrical, and when the magnetostrictive material is cylindrical, it includes the center of the peripheral wall of the magnetostrictive material and is parallel to the axis of the laminated body. It was on a straight line. A magnetic field analysis program (MAGNA FIM) using the finite element method was used for the simulation.
【0042】これらの図から、本発明の効果が明らかで
ある。すなわち、Sm/Ss >1である図1〜図6の積
層体では、Sm /Ss =1である図7の積層体に比べ、
各磁歪材内の磁化分布の一様性が向上している。また、
図4の積層体は、図1の積層体の両端部にヨークを設け
た構成であるが、最も端部に近い磁歪材S1 およびS5
内の磁化分布の一様性が図1の積層体に比べ向上してい
ることがわかる。From these figures, the effect of the present invention is clear. That is, in the laminated body of FIGS. 1 to 6 with Sm / Ss> 1, as compared with the laminated body of FIG. 7 with Sm / Ss = 1,
The uniformity of the magnetization distribution in each magnetostrictive material is improved. Also,
The laminated body of FIG. 4 has a structure in which yokes are provided at both ends of the laminated body of FIG. 1, but the magnetostrictive materials S 1 and S 5 closest to the ends are formed.
It can be seen that the uniformity of the magnetization distribution in the inside is improved as compared with the laminated body of FIG.
【0043】[0043]
【発明の効果】本発明によれば、永久磁石によりバイア
ス磁界を印加する構成の磁歪素子において、磁歪材内の
磁化分布の均一性を著しく向上させることができるの
で、磁歪材の全域に最適なバイアス磁界を印加すること
ができ、磁歪材の利用効率が向上する。According to the present invention, in a magnetostrictive element having a structure in which a bias magnetic field is applied by a permanent magnet, it is possible to remarkably improve the uniformity of the magnetization distribution in the magnetostrictive material. A bias magnetic field can be applied, and the utilization efficiency of the magnetostrictive material is improved.
【図1】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 1 is a cross-sectional view showing an example of a laminated body of a magnetostrictive element of the present invention and a graph showing a magnetization distribution in the laminated body.
【図2】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 2 is a cross-sectional view showing an example of a laminated body of the magnetostrictive element of the present invention and a graph showing a magnetization distribution in the laminated body.
【図3】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 3 is a cross-sectional view showing an example of a laminated body of the magnetostrictive element of the present invention and a graph showing a magnetization distribution in the laminated body.
【図4】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 4 is a cross-sectional view showing an example of a laminated body of the magnetostrictive element of the present invention, and a graph showing a magnetization distribution in the laminated body.
【図5】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 5 is a cross-sectional view showing an example of a laminated body of the magnetostrictive element of the present invention, and a graph showing a magnetization distribution in the laminated body.
【図6】本発明の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 6 is a cross-sectional view showing an example of a laminated body of the magnetostrictive element of the present invention, and a graph showing a magnetization distribution in the laminated body.
【図7】従来の磁歪素子の積層体の一例を示す断面図
と、前記積層体内の磁化分布を示すグラフである。FIG. 7 is a cross-sectional view showing an example of a laminated body of a conventional magnetostrictive element and a graph showing a magnetization distribution in the laminated body.
Claims (2)
および前記磁歪材にバイアス磁界を印加するための永久
磁石をそれぞれ少なくとも1個有し、前記磁歪材および
前記永久磁石がいずれも柱状または筒状であって、前記
磁歪材と前記永久磁石とがほぼ同軸的に交互に積層され
た積層体を構成しており、 前記磁歪材および前記永久磁石の軸方向に垂直な断面の
面積をそれぞれSs およびSm としたとき、Sm /Ss
>1であることを特徴とする磁歪素子。1. A magnetostrictive material containing a rare earth metal element and iron, and at least one permanent magnet for applying a bias magnetic field to each of the magnetostrictive materials, each of which has a columnar shape or It is cylindrical and constitutes a laminated body in which the magnetostrictive material and the permanent magnet are alternately laminated almost coaxially, and the area of a cross section perpendicular to the axial direction of the magnetostrictive material and the permanent magnet, respectively. If Ss and Sm, then Sm / Ss
A magnetostrictive element characterized by being> 1.
端部に、軟磁性材料からなるヨークが設けられている請
求項1に記載の磁歪素子。2. The magnetostrictive element according to claim 1, wherein a yoke made of a soft magnetic material is provided on at least one end portion in the axial direction of the laminated body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3351480A JPH05167127A (en) | 1991-12-12 | 1991-12-12 | Magnetostriction element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3351480A JPH05167127A (en) | 1991-12-12 | 1991-12-12 | Magnetostriction element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05167127A true JPH05167127A (en) | 1993-07-02 |
Family
ID=18417576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3351480A Withdrawn JPH05167127A (en) | 1991-12-12 | 1991-12-12 | Magnetostriction element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05167127A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196437B2 (en) * | 2003-02-28 | 2007-03-27 | Tdk Corporation | Contraction type actuator |
WO2021192069A1 (en) * | 2020-03-25 | 2021-09-30 | Tdk株式会社 | Reservoir element and neuromorphic device |
-
1991
- 1991-12-12 JP JP3351480A patent/JPH05167127A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7196437B2 (en) * | 2003-02-28 | 2007-03-27 | Tdk Corporation | Contraction type actuator |
WO2021192069A1 (en) * | 2020-03-25 | 2021-09-30 | Tdk株式会社 | Reservoir element and neuromorphic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3119707B2 (en) | Magnetostrictive element | |
US4888506A (en) | Voice coil-type linear motor | |
JPH0975847A (en) | Magnetostrictive vibrator | |
EP0898287A2 (en) | Hard magnetic alloy having supercooled liquid region, sintered or cast product thereof and applications | |
JP4758629B2 (en) | Multi-ring permanent magnet without pole piece and method for manufacturing the same | |
JP2005118559A5 (en) | ||
JP2561591B2 (en) | Magnetic field generator for MRI | |
JPH05167127A (en) | Magnetostriction element | |
JP2764458B2 (en) | Magnetic field generator for MRI | |
JP3315235B2 (en) | Magnetostrictive actuator | |
JP2005509394A (en) | Static electromagnetic generator | |
JP3332125B2 (en) | Magnetostrictive actuator | |
JPS59158574A (en) | Control element for minute displacement | |
JP2006038648A (en) | Sensing method of sensor and magnetostrictive sensor | |
JPH10242543A (en) | Resin bonded type magnetostrictive material | |
JPH0360176A (en) | Magnetostriction element | |
Takemura et al. | Frequency dependence of output voltage generated from bundled compound magnetic wires | |
JP3024996B2 (en) | Magnetostrictive element | |
JPH11195514A (en) | Hard magnetic material | |
JP2006049516A (en) | Magnetostrictive element and bias magnetic field applying method | |
JPH02261575A (en) | Magnetostrictive vibrator | |
JP2535636B2 (en) | Voice coil type linear motor | |
JPH08279415A (en) | Yoke for multipolar magnetization | |
JPS63213907A (en) | Magnetization of permanent magnet | |
KR101870671B1 (en) | Fe-based soft magnetic alloy with high-magnetization and ribbon using the alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990311 |