JPH05166784A - Cleaning method for substrate - Google Patents
Cleaning method for substrateInfo
- Publication number
- JPH05166784A JPH05166784A JP33026091A JP33026091A JPH05166784A JP H05166784 A JPH05166784 A JP H05166784A JP 33026091 A JP33026091 A JP 33026091A JP 33026091 A JP33026091 A JP 33026091A JP H05166784 A JPH05166784 A JP H05166784A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- foreign matter
- cleaning
- energy
- adhesion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000004140 cleaning Methods 0.000 title claims abstract description 62
- 239000002245 particle Substances 0.000 claims abstract description 52
- 239000000126 substance Substances 0.000 claims abstract description 19
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 230000001678 irradiating effect Effects 0.000 claims abstract 3
- 239000010419 fine particle Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005381 potential energy Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000002305 electric material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004219 molecular orbital method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 240000006413 Prunus persica var. persica Species 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000010062 adhesion mechanism Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003077 quantum chemistry computational method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
(57)【要約】
【目的】従来の洗浄法では十分に除去できない微小粒径
の異物を、効率良く洗浄除去できる新規な基板の洗浄方
法を得ることにある。
【構成】半導体基板に対する異物の付着状態は、図4に
示したように0.1μm以下では異物粒径と付着エネル
ギーとが直線関係になっており、粒径が大となると付着
エネルギーが大きく、小となると付着エネルギーは小さ
くなるということが判った。そこで本発明の洗浄方法に
おいては、半導体基板上の微小異物に対してその付着エ
ネルギーを低減させることにより基板より除去するか、
もしくは付着エネルギーよりも大きなエネルギーを外部
から付与することによって除去する。付着エネルギーを
低減させる方法としては例えばレーザビーム等のエネル
ギービームを異物に照射して微小片に破壊する方法、エ
ネルギーを付与する方法としては洗浄液中で加熱する方
法等がある。
(57) [Summary] [Purpose] To obtain a novel substrate cleaning method capable of efficiently cleaning and removing foreign matter having a minute particle size that cannot be sufficiently removed by a conventional cleaning method. [Constitution] As for the state of adhesion of foreign matter to a semiconductor substrate, as shown in FIG. 4, when the particle size is 0.1 μm or less, the particle size of the foreign matter and the adhesion energy are in a linear relationship. It was found that the smaller the value, the smaller the adhesion energy. Therefore, in the cleaning method of the present invention, whether the fine foreign matter on the semiconductor substrate is removed from the substrate by reducing its adhesion energy,
Alternatively, it is removed by applying energy larger than the adhesion energy from the outside. As a method of reducing the adhesion energy, for example, there is a method of irradiating an energy beam such as a laser beam onto a foreign substance to destroy the particles, and a method of applying energy is a method of heating in a cleaning liquid.
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子の製造プロ
セスに代表される基板の洗浄方法に係り、特に、素子の
高集積化、高密度化に伴い、極微小な異物の除去に好適
な基板の洗浄方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate cleaning method represented by a semiconductor element manufacturing process, and is particularly suitable for removing extremely minute foreign substances as the elements become highly integrated and highly densified. A method for cleaning a substrate.
【0002】[0002]
【従来の技術】昨今の例えば半導体素子、液晶素子と云
った電子部品の高集積化、高密度化に伴う微細加工プロ
セスにおいては、基板洗浄技術の重要課題として微小異
物の除去がある。半導体素子を例にとれば、次世代の1
6MbitDRAMでは最小加工寸法が0.5μmとな
り、除去しなければならない異物の粒径はその10分の
1と言われているので、粒径0.05μmの異物を除去
しなければならなくなる。また、次の64Mでは最小加
工寸法は0.3μmとなるので0.03μmの異物をも
除去しなければならず、さらに256Mになると最小加
工寸法が0.2μmになるので0.02μmの異物まで
もが除去対象となってくる。2. Description of the Related Art In a recent fine processing process for electronic devices such as semiconductor devices and liquid crystal devices, which are highly integrated and have a high density, removal of minute foreign substances is an important task of substrate cleaning technology. Taking semiconductor devices as an example, the next generation
In a 6 Mbit DRAM, the minimum processing size is 0.5 μm, and it is said that the particle size of the foreign matter to be removed is 1/10 of that, so the foreign matter with the particle size of 0.05 μm must be removed. In the next 64M, the minimum processing size will be 0.3 μm, so 0.03 μm foreign matter must be removed. At 256M, the minimum processing size will be 0.2 μm, so even 0.02 μm foreign matter will be removed. The peach will be removed.
【0003】従来の半導体素子製造プロセスにおいて
は、一般に超音波洗浄として知られている洗浄液等によ
って基板に付着した異物に力を与えて、異物を基板から
剥離させて洗浄しようとする技術が採用されている。な
お、この種の技術に関連するものとして、例えば、ジャ
ーナル・オブ・エレクトリック・マテリアル、第8巻、
第885〜864頁(1979年)〔J.Electr
o. Materi.,Vol.8、pp885−86
4(1979)〕が挙げられる。In the conventional semiconductor element manufacturing process, a technique generally known as ultrasonic cleaning is used to apply a force to a foreign substance adhering to a substrate by a cleaning liquid or the like to separate the foreign substance from the substrate for cleaning. ing. Note that, as a technique related to this type of technology, for example, Journal of Electric Material, Volume 8,
Pp. 885-864 (1979) [J. Electr
o. Materi. , Vol. 8, pp885-86
4 (1979)].
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述し
た次世代、次々世代の極微小な粒径の異物に対しては、
現在のところ完全な除去技術は確立しておらず、また、
付着状態や付着メカニズムも研究中であって、まだ明ら
かにされていない。したがって、本発明の目的は、上述
した次世代、次々世代の半導体素子製造プロセスにおけ
る極小さな粒径の異物の洗浄のために、異物の基板に対
する付着状態や付着メカニズムも究明することによっ
て、新規な洗浄技術を確立し、有効な洗浄方法を提供す
ることにある。However, with respect to the above-mentioned next-generation and next-generation foreign particles having extremely small particle sizes,
At present, no complete removal technology has been established, and
The state of attachment and the mechanism of attachment are also under study and have not been clarified yet. Therefore, the purpose of the present invention is to clarify the adhesion state and adhesion mechanism of foreign matter to the substrate by cleaning the foreign matter with a very small particle size in the above-described next-generation and next-generation semiconductor device manufacturing processes. It is to establish a cleaning technique and provide an effective cleaning method.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明者等は、まず、基板に対する異物の付着状態
を量子化学計算によって明らかにし、そして、そこから
得られた知見を基にして、全く新規な洗浄法を見つけだ
すことができた。すなわち、本発明の洗浄方法は、基板
上の微小異物に対してその付着エネルギーを低減させ、
もしくはエネルギーを付与することにより基板より除去
するものである。In order to achieve the above object, the inventors of the present invention first clarified the attachment state of foreign matter on a substrate by quantum chemical calculation, and based on the knowledge obtained from it. I was able to find a completely new cleaning method. That is, the cleaning method of the present invention reduces the adhesion energy of minute foreign matter on the substrate,
Alternatively, it is removed from the substrate by applying energy.
【0006】本発明の原理を説明するために、以下にこ
の知見を得て本発明に至る過程につき図面を用いて詳述
する。今、異物が基板上に付着している状態を考えると
異物表面−基板表面間の距離(異物−基板間距離)と両
表面間のポテンシャルエネルギーの関係は、図1に示さ
れるようなポテンシャルカーブとなる。ここで、異物が
基板に付着しているということはどういう状態であるか
を考えると、それは最もポテンシャルエネルギーが低
い、いわゆる異物が基板の上で安定な状態で存在してい
ることに他ならない。すると、このような付着状態は図
1のポテンシャルカーブの谷底にあたることになる。こ
のことは逆に、異物と基板間のポテンシャルカーブを求
めることにより、異物の付着距離や付着エネルギーが求
められることを意味する。In order to explain the principle of the present invention, the process of obtaining the present invention and reaching the present invention will be described in detail below with reference to the drawings. Considering a state in which a foreign substance is attached to the substrate, the relationship between the distance between the foreign substance surface and the substrate surface (distance between the foreign substance and the substrate) and the potential energy between the two surfaces is as shown in FIG. Becomes Here, considering what kind of state foreign matter is attached to the substrate, it is nothing but the so-called foreign matter having the lowest potential energy, which is present in a stable state on the substrate. Then, such an attached state corresponds to the valley bottom of the potential curve in FIG. On the contrary, this means that the adhesion distance and the adhesion energy of the foreign matter can be obtained by obtaining the potential curve between the foreign matter and the substrate.
【0007】このことから、異物を付着状態から除去す
るためには、この付着エネルギー以上のエネルギーを与
えてやれば良いという結果が導かれる。しかし、実験的
にこれを求めることは極めて困難であり、過去に計測さ
れたという例も見あたらない。また、理論的にも異物−
基板の系に対しての図1のようなポテンシャルカーブを
求めた例もない。This leads to the result that in order to remove the foreign matter from the adhered state, it is sufficient to apply an energy higher than this adhesion energy. However, it is extremely difficult to obtain this experimentally, and there is no example that it was measured in the past. Also, theoretically
There is no example in which the potential curve as shown in FIG. 1 is obtained for the substrate system.
【0008】そこで本発明においては、異物−基板間の
ポテンシャルカーブを求めるために、まず微小な部分同
士のポテンシャルカーブを求めそれらを異物−基板間で
相互作用していると考えられる全ての領域で足し合わせ
ることを実行し、異物−基板間のポテンシャルカーブを
求めた。Therefore, in the present invention, in order to obtain the potential curve between the foreign matter and the substrate, first, the potential curves of minute portions are obtained, and these are calculated in all regions where the interaction between the foreign matter and the substrate is considered. The addition was performed and the potential curve between the foreign substance and the substrate was obtained.
【0009】一般的に異物−基板間の相互作用の大部分
はファンデアワールス相互作用であると言われている。
そのため、微小部分の相互作用の計算には電子相関補正
を含めたab−initio分子軌道法を用いた。本発
明の実験例では、異物および基板の表面はその表面状態
が明確となっているフッ酸処理後のSiウェハ基板面を
用いた。報告されているSi表面には約0.12%の水
酸基(OH)があり一部フッ素(F)が残っており、残
りは全て水素(H)で終端されているとしている〔応用
物理 第59巻、第11号、第1441−1450頁
(1990年11月10日)〕。そこで本実験例では図
2に示したようなOHが0.13%、Hが99.87%
のSi(111)面でのポテンシャルカーブを求めた。It is generally said that most of foreign matter-substrate interactions are van der Waals interactions.
Therefore, the ab-initio molecular orbital method including the electron correlation correction was used for the calculation of the interaction of the minute portion. In the experimental example of the present invention, the surface of the foreign matter and the substrate was the Si wafer substrate surface after the hydrofluoric acid treatment whose surface state was clear. It has been reported that about 0.12% of hydroxyl groups (OH) are present on the surface of Si and some fluorine (F) remains, and the rest is terminated with hydrogen (H) [Applied Physics No. 59. Vol. 11, No. 1441-1450 (November 10, 1990)]. Therefore, in this experimental example, 0.13% of OH and 99.87% of H as shown in FIG.
The potential curve on the Si (111) plane of was obtained.
【0010】まず、異物−基板両表面における末端の
H、OHおよび第2層目のSiのそれぞれの間の各距離
におけるポテンシャルエネルギーをab−initio
分子軌道法により求めた。次いで、それらのポテンシャ
ルエネルギーを距離の関数にフィッティングした。ここ
で求めた関数を異物−基板両表面間の相互作用をしてい
ると考えられる全ての部分に当てはめて、加え合わせる
ことによって、図3に示した粒径をパラメータとする異
物−基板ポテンシャルカーブを得た。すなわち、このポ
テンシャルカーブを異物の粒径、0.03μm、0.0
4μm、0.05μm、および0.1μmのそれぞれで
求めた。この図においてカーブの谷底の部分が異物が基
板に付着した状態であり、そのエネルギーの深さが付着
エネルギーとなる。First, the potential energy at each distance between H and OH at the end on both surfaces of the foreign substance and the substrate and Si at the second layer is ab-initio.
It was obtained by the molecular orbital method. Then, their potential energies were fitted as a function of distance. The function obtained here is applied to all the parts that are considered to be interacting between the surface of the foreign substance and the substrate, and the results are added together, so that the foreign substance-substrate potential curve with the particle size shown in FIG. 3 as a parameter. Got That is, this potential curve is calculated by measuring the particle diameter of the foreign matter, 0.03 μm, 0.0
It was determined at 4 μm, 0.05 μm, and 0.1 μm, respectively. In this figure, the bottom of the curve is a state in which foreign matter is attached to the substrate, and the depth of the energy is the attachment energy.
【0011】次に、図3で得られた付着エネルギーを、
異物の各粒径における付着エネルギーとして図4に示し
た。これによると、0.1μm以下では粒径と付着エネ
ルギーが直線関係になっていることがわかる。つまり、
付着エネルギーは粒径が小さくなるほど小さくなる。更
にこの直線を最小二乗法により一次函数で近似すると、
付着エネルギーE(eV)=151.7r−0.442
9となる。ここでrは粒径(μm)である。Next, the adhesion energy obtained in FIG.
The adhesion energy for each particle size of the foreign matter is shown in FIG. According to this, it can be seen that the particle size and the adhesion energy have a linear relationship at 0.1 μm or less. That is,
The adhesion energy decreases as the particle size decreases. Furthermore, if this straight line is approximated by a linear function by the method of least squares,
Adhesion energy E (eV) = 151.7r-0.442
It becomes 9. Here, r is a particle size (μm).
【0012】次に、以上で求めた値の妥当性を確かめる
ために実測値と比較してみた。今までに実験的に付着エ
ネルギーを求めた報告は見あたらないが、微小異物の基
板に対する付着力を求めたものはいくつか報告されてい
る。例えば、金岡千嘉男他:粉体工学会報 24巻,4
号,第233−239頁(1987年)、及び新居田
亨:水中における微粒子の付着制御セミナープログラム
第14−25頁(1991年)等である。Next, in order to confirm the validity of the values obtained above, comparison was made with the actually measured values. Up to now, there has been no report of experimentally obtaining the adhesion energy, but there have been some reports of obtaining the adhesion force of fine foreign matter to the substrate. For example, Chikao Kanaoka et al .: Powder Engineering Bulletin 24, 4
No., pp. 233-239 (1987), and Toru Niida: Seminar Program for Adhesion Control of Fine Particles in Water, pp. 14-25 (1991).
【0013】付着エネルギーから付着力を求めるには、
エネルギーの微分が力であるという理由から、前述した
例の付着力を求めるには本発明においては図3のポテン
シャルカーブの傾きの最大値を求めればよい。図5に粒
径と付着力の関係の実測値(図中で粒径1.0μm以上
のデータ)と本発明の計算値とをまとめて示した。図5
中の白抜きで示したのが気相における周知の実測値であ
る。本発明の実験例で求めた値は図中の黒丸で示してお
り、両者が同一直線上に乗っていることから、本発明の
実験例で求めた値は周知の実測値との繋がりも認めら
れ、その信頼性は高いものと考えられる。また、図中の
黒四角で表示した周知の実測値は液相での実験値であ
り、気相での付着力の10分の1になっていることがわ
かり付着エネルギーも10分の1になると考えられる。
これは、異物と基板の間に水などの溶媒分子が入り込む
ために異物−基板間距離が長くなり図3のポテンシャル
カーブの谷底より右になることで付着エネルギーが小さ
くなると考えられる。To obtain the adhesive force from the adhesive energy,
Since the differential of energy is a force, in the present invention, the maximum value of the slope of the potential curve of FIG. 3 can be obtained in order to obtain the adhesive force in the above-mentioned example. FIG. 5 collectively shows the measured values of the relationship between the particle size and the adhesive force (data with particle sizes of 1.0 μm or more in the figure) and the calculated values of the present invention. Figure 5
Well-known measured values in the vapor phase are shown in white. The value obtained in the experimental example of the present invention is shown by a black circle in the figure, and since both are on the same straight line, the value obtained in the experimental example of the present invention is also recognized to be connected to a known actual measurement value. The reliability is considered to be high. In addition, the well-known actual measurement values indicated by black squares in the figure are experimental values in the liquid phase, and it was found that the adhesive force was 1/10 of the adhesive force in the gas phase, and the adhesion energy was 1/10. It is considered to be.
It is considered that the adhesion energy becomes small because the distance between the foreign substance and the substrate becomes long because the solvent molecules such as water enter between the foreign substance and the substrate, and the distance becomes to the right of the valley bottom of the potential curve in FIG.
【0014】次に、以上に説明した異物の付着状態の新
規な解析に基づいて、異物の除去法について考察するた
めに、従来の洗浄法による異物の除去の基本的な考え方
について述べる。従来の超音波洗浄や流れによる洗浄は
機械的あるいは物理的な力によって異物の除去を達成し
ようとしている。そこで今、例えば0.1μm以下の微
小異物を除去するためにどれだけの力が必要となるかを
計算した。まず、超音波洗浄について検討すると、超音
波で水分子を振動させて異物を動かし、これによって異
物の質量に作用する力によって、異物を除去しようとす
るものである。Next, based on the above-described novel analysis of the adhered state of the foreign matter, the basic concept of the foreign matter removal by the conventional cleaning method will be described in order to consider the foreign matter removal method. Conventional ultrasonic cleaning and cleaning by flow try to achieve removal of foreign matter by mechanical or physical force. Then, for example, how much force is required to remove minute foreign matter of 0.1 μm or less was calculated. First, when ultrasonic cleaning is considered, foreign matter is removed by vibrating water molecules by ultrasonic waves to move foreign matter and thereby exerting a force acting on the mass of foreign matter.
【0015】このような従来の方法では、異物が小さく
なるほどそれに加えられる力は粒径の3乗に反比例して
小さくなる。つまり、異物が小さくなればなるほど除去
が困難になることを示している。そこで、物理的な力に
よる異物の除去を扱う場合には、異物の単位質量あたり
の付着力による除去効果を考える必要がある。このよう
な考えを基にして、図6に異物の粒径と単位質量あたり
の付着力を示した。この図から、異物の粒径が小さくな
るに従って急激に単位質量あたりの付着力は大きくな
り、小さな異物になればなるほどますます力による除去
が困難になることが明確にわかる。このことは、実際の
プロセスにおいて超音波で除去できるのは0.3μmま
でであるという報告、例えば、ジャーナル・オブ・エレ
クトリック・マテリアル、第8巻、第885〜864頁
(1979年)〔J.Electro.Mater
i.,Vol.8、pp885−864(1979)〕
と定性的に一致している。In such a conventional method, the smaller the foreign matter, the smaller the force applied thereto becomes in inverse proportion to the cube of the particle size. That is, it indicates that the smaller the foreign matter, the more difficult it is to remove. Therefore, when dealing with removal of foreign matter by physical force, it is necessary to consider the removal effect of foreign matter due to adhesion force per unit mass. Based on this idea, FIG. 6 shows the particle size of the foreign matter and the adhesive force per unit mass. It is clear from this figure that the adhesive force per unit mass rapidly increases as the particle size of the foreign matter becomes smaller, and the smaller the foreign matter becomes, the more difficult it becomes to remove by force. This means that in the actual process, ultrasonic waves can be removed up to 0.3 μm, for example, Journal of Electric Materials, Volume 8, pp. 885-864 (1979) [J. Electro. Mater
i. , Vol. 8, pp885-864 (1979)]
Qualitatively agrees with.
【0016】また、流体の流れで異物を除去する場合
は、異物の断面積に加わる力を考える必要があるので、
単位断面積あたりの付着力を求めた。図7に異物粒径と
単位断面積あたりの付着力を示した。この場合も超音波
と同様に異物粒径が小さくなるに従って除去しにくくな
ることがわかる。Further, when removing foreign matter by the flow of fluid, it is necessary to consider the force applied to the cross-sectional area of the foreign matter.
The adhesive force per unit cross-sectional area was determined. FIG. 7 shows the particle size of foreign matter and the adhesive force per unit cross-sectional area. Also in this case, it can be seen that the removal becomes more difficult as the particle size of the foreign matter becomes smaller, similar to the ultrasonic wave.
【0017】すなわち従来の物理的な「力」による除去
は、異物の粒径が小さくなるに従ってますます困難とな
る。しかしながら、本発明の洗浄方法においては、図4
からもわかるように付着エネルギーは粒径が小さくなる
に従って小さくなるため、粒径の小さな異物ほど外部か
らのエネルギー付与による除去が有利であるという、従
来考えられていなかった全く新規な知見に基づいてなさ
れたものである。つまり、異物の付着エネルギーよりも
大きなエネルギーを外部から加えることによって除去す
るものであるが、異物の付着エネルギーをさらに小さく
することによって、加えるエネルギーも小さくすること
ができ、微小異物に対して熱や光などのエネルギーを加
えて除去する方法が有効となる。That is, conventional removal by physical “force” becomes more and more difficult as the particle size of the foreign matter becomes smaller. However, in the cleaning method of the present invention, as shown in FIG.
As can be seen from the above, since the adhesion energy decreases as the particle size decreases, it is based on a completely new finding that was not previously considered that foreign particles with smaller particle size are more advantageous to remove by applying energy from the outside. It was made. That is, the energy is removed by externally applying an energy larger than the adhesion energy of the foreign matter. However, by further reducing the adhesion energy of the foreign matter, the applied energy can also be reduced, and heat or minute heat is applied to the minute foreign matter. A method of adding energy such as light to remove it is effective.
【0018】本発明の具体的な異物の除去方法として
は、以下に例示する具体的な方法が挙げられる。 (1)図4に示したように0.05μmの異物の気相に
おける付着エネルギーは7eVであるが、液相ではその
1/10の0.7eV程度となるため、それ以下の粒径
の異物は熱エネルギーを与えることにより除去可能であ
る。例えば、図8のようにヒーターや赤外線ランプによ
り加熱することで除去可能となる。 (2)液相において異物−基板間に入り込み易い水より
大きな溶媒分子(例えばアルコールなど分子量の大きな
有機分子)を付加することにより、さらに異物の付着エ
ネルギーを小さくし、その上で熱エネルギーを与えて除
去する。 (3)気相においても粒径の小さな異物ほど付着エネル
ギーは小さいので、まずレーザーなどで異物を崩壊して
小片となし、その後、熱エネルギーを与えて除去する。Specific examples of the foreign matter removing method of the present invention include the following specific examples. (1) As shown in FIG. 4, the adhesion energy of the foreign matter of 0.05 μm in the gas phase is 7 eV, but in the liquid phase it is about 1/10 of that, 0.7 eV. Can be removed by applying heat energy. For example, it can be removed by heating with a heater or an infrared lamp as shown in FIG. (2) In the liquid phase, by adding solvent molecules larger than water (for example, organic molecules having a large molecular weight such as alcohol) that easily enter between the foreign matter and the substrate, the adhesion energy of the foreign matter is further reduced, and then heat energy is applied. To remove. (3) Since foreign matter having a smaller particle size has a smaller adhesion energy even in the gas phase, the foreign matter is first broken down by a laser or the like to form small pieces, and then heat energy is applied to remove the foreign matter.
【0019】以上の方法により、従来の洗浄技術では除
去困難であった微小粒子の異物を容易に除去することが
できるようになった。この洗浄方法は半導体基板に限ら
ずその他、例えば画像表示素子としての液晶基板等につ
いても同様に有効である。By the above method, it has become possible to easily remove the foreign matter of fine particles which has been difficult to remove by the conventional cleaning technique. This cleaning method is not limited to the semiconductor substrate, and is similarly effective for other liquid crystal substrates as image display elements.
【0020】[0020]
【作用】図4に示したように、例えば半導体基板と異物
との付着状態は、0.1μm以下では粒径と付着エネル
ギーが直線関係になっており、つまり、粒径が大となる
と付着エネルギーが大きく、小となると付着エネルギー
は小さくなるということがいえる。そこで本発明におい
ては、基板上の微小異物に対してその付着エネルギーを
低減させることにより基板より除去するものである。ま
た、付着エネルギーよりも大きなエネルギーを付与する
ことによっても同じ目的が達成できる。As shown in FIG. 4, for example, in the state of adhesion between the semiconductor substrate and the foreign matter, the particle size and the adhesion energy have a linear relationship when the particle size is 0.1 μm or less, that is, when the particle size becomes large, the adhesion energy becomes large. It can be said that the larger the value is and the smaller the value, the smaller the attachment energy. Therefore, in the present invention, the fine foreign matter on the substrate is removed from the substrate by reducing its adhesion energy. The same purpose can also be achieved by applying energy larger than the adhesion energy.
【0021】[0021]
【実施例】試料基板としてポリスチレン粒子を異物とし
て付着させたSiウェハを用い、本発明の洗浄効果を調
べた。先ず、評価用Si基板は次の作成方法により準備
した。ポリスチレン粒子を超純水中に分散させ、HCl
を加えpH=2程度の溶液を調製した。次に、この溶液
中にSi基板を10分間浸漬し、スピンナーにより乾燥
した。ポリスチレン粒子の付着密度は1μmから0.2
μmについては光学顕微鏡で求め、0.1μmから0.
08μmについてはレーザ散乱法で、また、0.04μ
m以下の微粒子についてはSEMで求めた。Example A cleaning effect of the present invention was investigated by using a Si wafer having polystyrene particles attached as foreign matter as a sample substrate. First, a Si substrate for evaluation was prepared by the following manufacturing method. Disperse polystyrene particles in ultrapure water and add HCl.
Was added to prepare a solution having a pH of about 2. Next, the Si substrate was immersed in this solution for 10 minutes and dried with a spinner. Adhesion density of polystyrene particles is from 1 μm to 0.2
.mu.m was determined by an optical microscope, and 0.1 .mu.m to 0.
Laser scattering method for 08 μm, 0.04 μm
Fine particles of m or less were obtained by SEM.
【0022】先ず、従来法による洗浄除去効果を調べる
ために評価用Si基板を超純水に浸漬し、超音波をあて
たときのポリスチレン粒子の除去率を求め比較例とし
た。次に、本発明の洗浄効果を調べるために第1の方法
として、評価用Si基板を超純水に浸漬し、加熱を行っ
たときのポリスチレン粒子の除去率を求めた。なお、加
熱条件としてはヒータで加熱し、基板が浸漬された溶液
の温度を約70℃とした。また、第2の方法として、さ
らにエタノールを0.5vol%添加した超純水に評価
用Si基板を浸漬し、第1の方法と同様に加熱したとき
のポリスチレン粒子の除去率を求めた。これらの除去率
を各粒径について表1にまとめた。First, in order to examine the cleaning and removing effect by the conventional method, the evaluation Si substrate was immersed in ultrapure water, and the removal rate of polystyrene particles when ultrasonic waves were applied was obtained and used as a comparative example. Next, as a first method for investigating the cleaning effect of the present invention, the removal rate of polystyrene particles when the Si substrate for evaluation was immersed in ultrapure water and heated was determined. The heating conditions were heating with a heater and the temperature of the solution in which the substrate was immersed was set to about 70 ° C. Further, as a second method, the removal rate of polystyrene particles when the Si substrate for evaluation was immersed in ultrapure water to which 0.5 vol% of ethanol was added and heated as in the first method was obtained. These removal rates are summarized in Table 1 for each particle size.
【0023】[0023]
【表1】 [Table 1]
【0024】上記表1より粒径の小さな異物に対して、
本発明の洗浄効果が大きいことがわかる。また、溶媒添
加によって更に効果が上がっていることがわかる。本発
明は異物の粒径が小さくなるほど(0.1μm以下)有
効となることがわかった。ただし、実験条件は必ずしも
最適ではないため条件によってはさらに大きな除去効果
が見られる可能性がある。したがって、従来の洗浄法で
大きな粒子径の異物を除去し、微粒子は本発明で除去す
るようにすれば有効な洗浄が行なえる。As shown in Table 1 above, for foreign matter having a smaller particle size,
It can be seen that the cleaning effect of the present invention is great. Further, it can be seen that the effect is further improved by adding the solvent. It was found that the present invention becomes more effective as the particle size of the foreign matter becomes smaller (0.1 μm or less). However, since the experimental conditions are not always optimal, a larger removal effect may be seen depending on the conditions. Therefore, effective cleaning can be performed by removing foreign matters having a large particle size by the conventional cleaning method and removing fine particles by the present invention.
【0025】また、レーザ照射によって異物を破壊する
方法は異物の粒径を小さくし、付着エネルギーを小さく
する方法であるから表1の結果から類推して除去効果が
十分に期待できることが理解できよう。Further, since the method of destroying a foreign substance by laser irradiation is a method of reducing the particle size of the foreign substance and reducing the adhesion energy, it can be understood by analogy from the results in Table 1 that a sufficient removal effect can be expected. ..
【0026】以下、実際の半導体素子製造プロセスに適
応した場合を代表例として本発明の洗浄方法の具体例を
従来の洗浄方法と比較しながら説明する。図9にインプ
ラ(イオンインプランテーションの略)、拡散、酸化、
CVDプロセスの中における洗浄工程を示す。図中の洗
浄、、について以下に詳細を示す。Hereinafter, a specific example of the cleaning method of the present invention will be described as a representative example in the case of being applied to an actual semiconductor element manufacturing process, in comparison with a conventional cleaning method. In Fig. 9, implantation (abbreviation of ion implantation), diffusion, oxidation,
The cleaning process in a CVD process is shown. The details of the cleaning in the figure are shown below.
【0027】洗浄において、従来のインプラ後の洗浄
プロセスは、図10の(a)〜(h)に示すように、先
ずアッシングを行い、次いでアンモニア、過酸化水素お
よび水を適当な割合で混合した溶液で洗浄し、次いで水
洗を行い、次いで塩酸、過酸化水素および水を適当な割
合で混合した溶液で洗浄し、水洗を行い、次いでHF水
溶液(1:99)で洗浄し、水洗を行い、乾燥するもの
である。In the conventional cleaning process after implantation, as shown in FIGS. 10 (a) to 10 (h), ashing was first performed, and then ammonia, hydrogen peroxide and water were mixed at an appropriate ratio. Washing with a solution, followed by washing with water, then with a mixed solution of hydrochloric acid, hydrogen peroxide and water in an appropriate ratio, washing with water, then washing with an aqueous HF solution (1:99), washing with water, It dries.
【0028】一方、本発明の洗浄プロセスは、従来の洗
浄プロセスの後に、上記「課題を解決するための手段」
の項で説明した本発明の(3)の除去法により、除去さ
れずに残っている微小異物をさらに小さくし、次いで上
記本発明の(1)と(2)の除去法を用いて微小異物を
除去するものである。On the other hand, the cleaning process of the present invention has the above-mentioned "means for solving the problem" after the conventional cleaning process.
By the removal method of (3) of the present invention described in the section 1), the fine foreign matters remaining without being removed are further reduced, and then the fine foreign materials of the above (1) and (2) of the present invention are used. Is to be removed.
【0029】洗浄おいて、従来の酸化拡散前の洗浄プ
ロセスは、図11の(a)〜(e)に示すように、先ず
アンモニア、過酸化水素および水を適当な割合で混合し
た溶液で洗浄し、次いで水洗を行い、次いでHF水溶液
(1:99)で洗浄し、次いで水洗を行い、乾燥するも
のである。In the conventional cleaning process before oxidative diffusion, as shown in FIGS. 11A to 11E, first, cleaning is performed with a solution in which ammonia, hydrogen peroxide and water are mixed at an appropriate ratio. Then, it is washed with water, then with an HF aqueous solution (1:99), then with water, and dried.
【0030】一方、本発明の洗浄プロセスでは、従来の
洗浄プロセスの後に、除去されずに残っている微小異物
を上記本発明の(3)の除去法によりさらに小さくし、
次いで上記本発明の(1)と(2)の除去法を用いて微
小異物を除去するものである。 洗浄において、従来
のCVD前の洗浄プロセスは、図12の(a)〜(c)
に示すように、先ずHF水溶液(1:99)で洗浄し、
次いで水洗を行い、乾燥するものである。一方、本発明
の洗浄プロセスは、従来の洗浄プロセスの後に、除去さ
れずに残っている微小異物を上記本発明の(3)除去法
によりさらに小さくし、次いで上記本発明の(1)と
(2)の除去法を用いて微小異物を除去するものであ
る。以上の洗浄プロセスにより、従来法では除去困難で
あった微小粒径の異物を本発明により除去することがで
きるようになった。なお、この例では洗浄する基板を半
導体基板としたが、その他、例えばガラス基板上に薄膜
トランジスタを含む回路素子、表示画素等を形成する液
晶表示素子基板等についても同様に有効であることは云
うまでもない。On the other hand, in the cleaning process of the present invention, after the conventional cleaning process, the fine foreign matters remaining without being removed are further reduced by the removing method (3) of the present invention,
Then, the minute foreign matter is removed by using the removal methods (1) and (2) of the present invention. In the cleaning, the conventional cleaning process before CVD is as shown in (a) to (c) of FIG.
First, as shown in, washed with an HF aqueous solution (1:99),
Then, it is washed with water and dried. On the other hand, in the cleaning process of the present invention, after the conventional cleaning process, the fine foreign matter remaining without being removed is further reduced by the removing method (3) of the present invention, and then (1) and () of the present invention. The minute foreign matter is removed by using the removal method of 2). By the cleaning process described above, it becomes possible to remove foreign matters having a fine particle diameter, which were difficult to remove by the conventional method, by the present invention. In this example, the substrate to be cleaned is the semiconductor substrate, but it is needless to say that the same is also applicable to a liquid crystal display device substrate for forming a circuit element including a thin film transistor, a display pixel and the like on a glass substrate. Nor.
【0031】[0031]
【発明の効果】本発明においては、従来の「力」を用い
た異物除去では、粒径が小さくなるほど微小異物除去は
ますます困難になってくるのに対し、異物粒径が小さく
なるほど付着エネルギーは小さくなることから、それ以
上のエネルギーを異物に加え異物と基板の結合を切るこ
とによって異物を除去することから、極微小の異物でも
除去可能であるという効果を有する。EFFECTS OF THE INVENTION In the present invention, in the conventional foreign matter removal using "force", it becomes more difficult to remove fine foreign matter as the particle size becomes smaller, while as the foreign particle size becomes smaller, the adhesion energy becomes smaller. Since the particle size becomes smaller, more foreign energy is applied to the foreign material and the foreign material is removed by breaking the bond between the foreign material and the substrate, so that even a minute foreign material can be removed.
【図1】異物が基板上に付着している状態の異物表面−
基板表面間の距離と両表面間のポテンシャルエネルギー
の関係を示すポテンシャルカーブ。FIG. 1 Foreign material surface with foreign matter attached on the substrate
A potential curve showing the relationship between the distance between the substrate surfaces and the potential energy between both surfaces.
【図2】異物が基板上に付着している状態の異物および
基板の表面状態を示す図。FIG. 2 is a diagram showing a foreign substance and a surface state of the substrate when the foreign substance is attached to the substrate.
【図3】本発明の原理を説明する異物−基板ポテンシャ
ルカーブ。FIG. 3 is a particle-substrate potential curve for explaining the principle of the present invention.
【図4】本発明の原理を説明する異物の各粒径における
付着エネルギーを示す図。FIG. 4 is a diagram showing the adhesion energy at each particle size of a foreign substance for explaining the principle of the present invention.
【図5】異物付着力と粒径の関係を示す図。FIG. 5 is a diagram showing a relationship between a foreign matter adhesion force and a particle size.
【図6】単位質量あたりの付着力と粒径との関係を示す
図。FIG. 6 is a diagram showing the relationship between the adhesive force per unit mass and the particle size.
【図7】単位断面積あたりの付着力と粒径の関係を示す
図。FIG. 7 is a diagram showing the relationship between the adhesive force per unit cross-sectional area and the particle size.
【図8】ウェハを加熱する方法を説明する図。FIG. 8 is a diagram illustrating a method of heating a wafer.
【図9】半導体製造プロセスフロー図(インプラからC
VDまで)。FIG. 9 is a semiconductor manufacturing process flow chart (from implantation to C
Up to VD).
【図10】半導体製造プロセスにおけるインプラ後の洗
浄プロセスフロー図。FIG. 10 is a cleaning process flow chart after implantation in a semiconductor manufacturing process.
【図11】半導体製造プロセスにおける酸化、拡散前の
洗浄プロセスフロー図。FIG. 11 is a cleaning process flow chart before oxidation and diffusion in a semiconductor manufacturing process.
【図12】半導体製造プロセスにおけるCVD前の洗浄
プロセスフロー図。FIG. 12 is a cleaning process flow chart before CVD in a semiconductor manufacturing process.
1…ウェハ、 2…ヒーター、 3…
赤外線ランプ。1 ... Wafer, 2 ... Heater, 3 ...
Infrared lamp.
フロントページの続き (72)発明者 岡 齊 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内Front page continuation (72) Inventor, Osamu Oka, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefectural Institute of Industrial Technology, Hitachi, Ltd.
Claims (8)
−を低減させる洗浄工程を有して成る基板の洗浄方法。1. A method for cleaning a substrate, comprising a cleaning step for reducing the adhesion energy of minute foreign matter adhered on the substrate.
る洗浄工程を、レーザを基板の異物に照射して異物を微
小粒子に崩壊する工程で構成して成る請求項1記載の基
板の洗浄方法。2. The method for cleaning a substrate according to claim 1, wherein the cleaning step for reducing the adhesion energy of the minute foreign matter comprises the step of irradiating the foreign matter on the substrate with a laser to break the foreign matter into fine particles. ..
る洗浄工程を、基板表面に洗浄液を薄く広がらせてお
き、レーザを全反射条件で照射し、洗浄液と共に異物を
基板より除去する工程で構成して成る請求項1もしくは
2記載の基板の洗浄方法。3. A cleaning step for reducing the adhesion energy of the minute foreign matter comprises a step of spreading a cleaning solution thinly on the substrate surface, irradiating a laser under the condition of total reflection, and removing the foreign matter from the substrate together with the cleaning solution. The method for cleaning a substrate according to claim 1 or 2, further comprising:
る洗浄工程を、基板上の微小異物に対して、その付着エ
ネルギーよりも大きなエネルギーを付与することにより
異物を基板より除去する工程で構成して成る基板の洗浄
方法。4. A cleaning step for reducing the adhesion energy of the minute foreign matter is constituted by a step of removing the foreign matter from the substrate by applying energy larger than the adhesion energy to the minute foreign matter on the substrate. A method of cleaning a substrate.
して151.7r−0.4429以上のエネルギー(e
V)を付与する工程を有して成る請求項4記載の基板の
洗浄方法。5. An energy (e) of 151.7r-0.4429 or more for a minute foreign matter having a particle size r of 0.05 μm or less.
The method for cleaning a substrate according to claim 4, further comprising the step of applying V).
05μm以下の小さな粒子に崩壊した後、その付着エネ
ルギーよりも大きなエネルギーを付与して異物を基板よ
り除去する工程を有して成る請求項4記載の基板の洗浄
方法。6. A substrate is irradiated with a laser to reduce the particle diameter of foreign matter to 0.
5. The method for cleaning a substrate according to claim 4, further comprising the step of applying a larger energy than the adhesion energy to remove the foreign matter from the substrate after the particles are disintegrated into small particles of 05 μm or less.
全反射条件で照射し洗浄液と共に異物を基板より除去す
る請求項4もしくは6記載の基板の洗浄方法。7. The method for cleaning a substrate according to claim 4, wherein the cleaning liquid is thinly applied to the surface of the substrate, and a laser is irradiated under the condition of total reflection to remove foreign substances from the substrate together with the cleaning liquid.
1乃至7何れか記載の基板の洗浄方法。8. The method for cleaning a substrate according to claim 1, wherein the substrate is a semiconductor substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33026091A JPH05166784A (en) | 1991-12-13 | 1991-12-13 | Cleaning method for substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33026091A JPH05166784A (en) | 1991-12-13 | 1991-12-13 | Cleaning method for substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05166784A true JPH05166784A (en) | 1993-07-02 |
Family
ID=18230653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33026091A Pending JPH05166784A (en) | 1991-12-13 | 1991-12-13 | Cleaning method for substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05166784A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996041370A1 (en) * | 1995-06-07 | 1996-12-19 | Cauldron Limited Partnership | Removal of material by polarized radiation and back side application of radiation |
US6048588A (en) * | 1988-07-08 | 2000-04-11 | Cauldron Limited Partnership | Method for enhancing chemisorption of material |
US8709163B2 (en) | 2004-11-18 | 2014-04-29 | Samsung Display Co., Ltd. | Method of descaling a mask |
-
1991
- 1991-12-13 JP JP33026091A patent/JPH05166784A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048588A (en) * | 1988-07-08 | 2000-04-11 | Cauldron Limited Partnership | Method for enhancing chemisorption of material |
WO1996041370A1 (en) * | 1995-06-07 | 1996-12-19 | Cauldron Limited Partnership | Removal of material by polarized radiation and back side application of radiation |
US5958268A (en) * | 1995-06-07 | 1999-09-28 | Cauldron Limited Partnership | Removal of material by polarized radiation |
US8709163B2 (en) | 2004-11-18 | 2014-04-29 | Samsung Display Co., Ltd. | Method of descaling a mask |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW301669B (en) | ||
JP5315596B2 (en) | Manufacturing method of bonded SOI wafer | |
KR20060119807A (en) | Nitride-based compound semiconductors and methods for cleaning compound semiconductors, methods for their preparation and substrates | |
TW440945B (en) | Cleaning method for electronic material | |
JPS6336535A (en) | Method of removing undersirable particles from substrate surface | |
JP2841627B2 (en) | Semiconductor wafer cleaning method | |
JPH05166784A (en) | Cleaning method for substrate | |
Adam et al. | Technology development for nano structure formation: Fabrication and characterization | |
Ljungberg et al. | The effects of HF cleaning prior to silicon wafer bonding | |
JPH0745600A (en) | Solution for preventing adhesion of foreign matter in liquid and etching method and apparatus using the same | |
JP2004200653A (en) | Method and apparatus for forming adhesive surface of substrate | |
JP3350627B2 (en) | Method and apparatus for removing foreign matter from semiconductor element | |
JPH01313930A (en) | Semiconductor substrate processing | |
Hossain et al. | Heated SC1 solution for selective etching and resist particulate removal | |
JP2021082828A (en) | Method for reducing metallic contamination on surface of substrate | |
Ye et al. | Dynamics of Hydrides on Hydrogen-Terminated Silicon (111)−(1× 1) Surface | |
JP2008006575A (en) | Metal structure | |
JPH05129264A (en) | Cleaning liquid and cleaning method | |
JPH09281474A (en) | Liquid crystal device and production of liquid crystal device | |
JPH0374845A (en) | Method of controlling adhesion of particles in liquid | |
JPH03278461A (en) | Method of implanting organic molecules onto silicon solid surface | |
TWI236724B (en) | Method of wafer defect monitoring | |
JPH10163178A (en) | How to remove resist | |
CN102592996A (en) | Preparation method for Schottky diode based on core/shell structure silicon nanowire set | |
Bodlaki et al. | Photoreactivity of Si (111)− H in Ambient |