[go: up one dir, main page]

JPH05163180A - Methanol synthesis using hydrocarbon gas as raw material - Google Patents

Methanol synthesis using hydrocarbon gas as raw material

Info

Publication number
JPH05163180A
JPH05163180A JP3351814A JP35181491A JPH05163180A JP H05163180 A JPH05163180 A JP H05163180A JP 3351814 A JP3351814 A JP 3351814A JP 35181491 A JP35181491 A JP 35181491A JP H05163180 A JPH05163180 A JP H05163180A
Authority
JP
Japan
Prior art keywords
gas
methanol
fuel cell
anode
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351814A
Other languages
Japanese (ja)
Inventor
Noboru Kinoshita
登 木之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP3351814A priority Critical patent/JPH05163180A/en
Publication of JPH05163180A publication Critical patent/JPH05163180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】 【目的】 メタノール合成に際してのメタンの改質によ
って発生する水素の余剰分の有効利用を図る。 【構成】 メタンCH4 を改質器1で水蒸気改質して、
CO+3H2 を生成する。生成された水素を溶融炭酸塩
型燃料電池6のアノード9に燃料ガスとして供給し発電
に利用する。しかる後、アノード9から排出されたガス
を冷却器10で冷却した後、圧縮機3で圧縮してメタノ
ール合成器4に送る。メタノール合成器4で上記一酸化
炭素COと炭酸ガスCO2 と水素3H2 を合成し、メタ
ノールCH3 OHを製造する。メタンの改質で発生する
水素を発電に利用するので、有効利用が図れる。
(57) [Abstract] [Purpose] To make effective use of surplus hydrogen generated by the reforming of methane during methanol synthesis. [Structure] Methane CH 4 is steam reformed by the reformer 1,
This produces CO + 3H 2 . The generated hydrogen is supplied as fuel gas to the anode 9 of the molten carbonate fuel cell 6 and used for power generation. Thereafter, the gas discharged from the anode 9 is cooled by the cooler 10, compressed by the compressor 3 and sent to the methanol synthesizer 4. The methanol synthesizer 4 synthesizes the carbon monoxide CO, carbon dioxide CO 2, and hydrogen 3H 2 to produce methanol CH 3 OH. Since hydrogen generated by reforming methane is used for power generation, it can be effectively used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は天然ガス又は石油同伴ガ
スを主成分とするガスを原料とするメタノール製造プラ
ントで用いるメタノール合成法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing methanol used in a methanol production plant using a gas containing natural gas or a gas accompanied by petroleum as a main component.

【0002】[0002]

【従来の技術】天然ガス等を原料とするメタノール合成
法としては、従来、図3に概要を示す如く、天然ガス中
のメタンCH4 を、改質器1で、 CH4 +H2 O→CO+3H2 の如く水蒸気改質を行い、この改質で得られた一酸化炭
素と水素及びシフト反応で生成した炭酸ガスを含むガス
を冷却器2で冷却した後、圧縮機3で圧縮し、しかる
後、メタノール合成器4で上記一酸化炭素COと炭酸ガ
スCO2 と水素3H2 を高圧接触反応させて合成し、C
3 OHのメタノールとするようにしている。
2. Description of the Related Art Conventionally, as a method for synthesizing methanol using natural gas or the like as a raw material, as shown in FIG. 3, methane CH 4 in natural gas is reformed by CH 4 + H 2 O → CO + 3H in a reformer 1. 2 , steam reforming is carried out, and the gas containing carbon monoxide and hydrogen obtained by this reforming and carbon dioxide gas generated by the shift reaction is cooled by the cooler 2 and then compressed by the compressor 3; In the methanol synthesizer 4, carbon monoxide CO, carbon dioxide gas CO 2 and hydrogen 3H 2 are subjected to high pressure contact reaction to synthesize C,
It is set to methanol of H 3 OH.

【0003】上記のメタノール合成法では、改質器1で
の天然ガス等の改質によって発生する水素はメタノール
の製造に必要な量以上となっている。そのため、従来で
は、上記過剰な水素はメタノール分離器5よりパージガ
スとして放出しているのが一般的であるが、放出した水
素を有効に利用しないと原料の利用率が悪くなることか
らパージガスを図3に示す如く改質器1での改質反応の
燃料としたり、精製して水素ガスとして回収したり、あ
るいは、過剰の水素に見合った炭酸ガスを外部より導入
してメタノールとすることが行われている。
In the above-mentioned methanol synthesis method, the amount of hydrogen generated by reforming natural gas or the like in the reformer 1 is more than the amount required for the production of methanol. Therefore, conventionally, the above-mentioned excess hydrogen is generally released as a purge gas from the methanol separator 5, but if the released hydrogen is not effectively used, the utilization rate of the raw material is deteriorated, so that the purge gas is discharged. As shown in Fig. 3, it can be used as fuel for the reforming reaction in the reformer 1, can be purified and recovered as hydrogen gas, or can be introduced as carbon dioxide gas corresponding to excess hydrogen from the outside to produce methanol. It is being appreciated.

【0004】[0004]

【発明が解決しようとする課題】ところが、メタノール
合成に際しての改質反応で生成された水素のうちの過剰
な水素は、従来、上記のように精製して水素として回収
したり、炭酸ガスを外部より持ち込んでメタノールとし
たり、あるいは、パージガスとともに放出して改質反応
の燃料に利用する、等しているが、いずれの場合も、余
剰の水素を効果的に活用しきれているとはいえなかっ
た。
However, the excess hydrogen of the hydrogen produced in the reforming reaction during the synthesis of methanol is conventionally purified as described above and recovered as hydrogen, or carbon dioxide gas is discharged to the outside. They are brought in more as methanol, or they are released together with the purge gas and used as fuel for the reforming reaction. In either case, it cannot be said that the surplus hydrogen can be used effectively. It was

【0005】そこで、本発明は、メタノール合成におい
て改質ガスに含まれる過剰な水素を有効に利用してパー
ジガスを少なくして原料の利用率を高めることができる
ようにしようとするものである。
In view of the above, the present invention intends to effectively utilize the excess hydrogen contained in the reformed gas in the methanol synthesis to reduce the purge gas and increase the utilization rate of the raw material.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、炭化水素ガスを改質器で水蒸気改質し、
改質したガスを、燃料電池のアノードへの燃料ガスとし
て利用した後、冷却し、圧縮し、メタノール合成器にて
メタノール合成を行う方法とする。上記燃料電池として
は、溶融炭酸塩型燃料電池とか、固体電解質型燃料電池
を用いるようにする。又、溶融炭酸塩型燃料電池を用い
る場合は、カソード側へ供給する酸化ガスの一部とし
て、改質器で改質に用いた燃料排ガスを用いることがで
きる。
In order to solve the above-mentioned problems, the present invention steam-reforms a hydrocarbon gas in a reformer,
The reformed gas is used as a fuel gas for the anode of the fuel cell, cooled, compressed, and then subjected to methanol synthesis in a methanol synthesizer. As the fuel cell, a molten carbonate fuel cell or a solid oxide fuel cell is used. When a molten carbonate fuel cell is used, the fuel exhaust gas used for reforming in the reformer can be used as a part of the oxidizing gas supplied to the cathode side.

【0007】[0007]

【作用】改質器で改質されたガスを燃料電池のアノード
に燃料ガスとして供給すると、過剰な水素が燃料電池で
利用することができるので、パージガスによる水素のロ
スを少なくすることができ、原料の利用率を高めること
ができる。
[Function] When the gas reformed by the reformer is supplied to the anode of the fuel cell as the fuel gas, excess hydrogen can be utilized in the fuel cell, so that the loss of hydrogen due to the purge gas can be reduced, The utilization rate of raw materials can be increased.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例を示すもので、図
3に示す従来の天然ガスを原料とするメタノール製造プ
ラントで用いるメタノール合成法と同様に、改質器1、
冷却器2、圧縮機3、メタノール合成器4、メタノール
分離機5をライン方向に順に備えて、原料ガス中のメタ
ンCH4 を改質して得られた一酸化炭素と水素からメタ
ノールを製造するようにしてある方法において、上記改
質器1の出口側の冷却器2と圧縮機3との間に、燃料電
池として、溶融炭酸塩を電解質として含浸させた電解質
板7をカソード8とアノード9の両電極で両面から挾持
してカソード側に酸化ガスを、又、アノード9側に燃料
ガスをそれぞれ供給するようにしたセルを多段に積層し
てスタックとしてなる溶融炭酸塩型燃料電池6と冷却器
10とを設置し、改質器1で改質されたガスを燃料ガス
としてアノード9に供給できるようにし、アノード9か
ら排出されたアノード出口ガスを冷却した後、圧縮して
メタノール合成を行うようにする。
FIG. 1 shows an embodiment of the present invention. Like the conventional methanol synthesis method used in a methanol production plant using natural gas as a raw material shown in FIG. 3, a reformer 1,
A cooler 2, a compressor 3, a methanol synthesizer 4, and a methanol separator 5 are provided in this order in the line direction, and methanol is produced from carbon monoxide and hydrogen obtained by reforming methane CH 4 in a raw material gas. In such a method, between the cooler 2 on the outlet side of the reformer 1 and the compressor 3, as a fuel cell, an electrolyte plate 7 impregnated with molten carbonate as an electrolyte is used as a cathode 8 and an anode 9. A molten carbonate fuel cell 6 which is sandwiched by both electrodes from both sides to supply an oxidizing gas to the cathode side and a fuel gas to the anode 9 side in a multi-tiered stack to form a stack and cooling. Is installed so that the gas reformed by the reformer 1 can be supplied to the anode 9 as a fuel gas, and the anode outlet gas discharged from the anode 9 is cooled and then compressed to perform methanol synthesis. To Migihitsuji.

【0010】メタンを改質器1で水蒸気改質すると、改
質器1では、前記したように CH4 +H2 O→CO+3H2 の反応が行われ、この改質器で改質されたガスを冷却器
2で冷却した後、溶融炭酸塩型燃料電池6のアノード9
に燃料ガスとして供給する。アノード9では、カソード
8側で生じてアノード9側へ電解質板7を通して達した
炭酸イオンCO3 --により、 CO3 --+H2 →H2 O+CO2+2e-- の反応が行われて水素が消費され、反応した水素量に等
しい量の水蒸気H2 Oと炭酸ガスCO2 が改質ガスに増
量され、発電が行われることになる。アノード9から排
出されたガスは、冷却器10で冷却された後、圧縮機3
で圧縮されてメタノール合成器4に供給され、ここで、
改質ガス中の一酸化炭素と炭酸ガスと水素が合成され
て、CO3 OHのメタノールが製造される。メタノール
合成器4を出たガスは、冷却器11で冷却後、メタノー
ル分離機5でメタノールを主成分とする液体Lと、未反
応ガスGに分離され、未反応ガスGの大部分は、リサイ
クルライン12でメタノール合成器4にリサイクルさせ
られ、一部は改質器1の燃焼室へライン13により導入
されて利用される。改質器1に導入された未反応ガス
(パージガス)は、改質器1の燃焼室で燃焼され、この
燃焼熱で改質を行わせた後、燃焼排ガスとして取り出さ
れる。この燃焼排ガスにはCO2 が含まれているので、
この燃焼排ガスを溶融炭酸塩型燃料電池6のカソード8
入口側へライン13にて供給させる。メタノール分離機
5で分離された液体Lは、粗メタノールとして更にメタ
ノール精製装置へ導かれ、純度の高いメタノールとされ
る。
When methane is steam-reformed in the reformer 1, the reaction of CH 4 + H 2 O → CO + 3H 2 is performed in the reformer 1 as described above, and the gas reformed by the reformer is converted into gas. After cooling with the cooler 2, the anode 9 of the molten carbonate fuel cell 6
As fuel gas. In the anode 9, resulting carbonate ion CO 3 was reached through the electrolyte plate 7 to the anode 9 side at the cathode 8 side - by, CO 3 - + H 2 → H 2 O + CO 2 + 2e - reaction is performed is hydrogen The steam H 2 O and the carbon dioxide gas CO 2 in an amount equal to the consumed and reacted hydrogen amount are increased to the reformed gas, and power generation is performed. The gas discharged from the anode 9 is cooled by the cooler 10 and then the compressor 3
And is supplied to the methanol synthesizer 4, where
Carbon monoxide, carbon dioxide gas and hydrogen in the reformed gas are synthesized to produce methanol of CO 3 OH. The gas leaving the methanol synthesizer 4 is cooled in a cooler 11 and then separated in a methanol separator 5 into a liquid L containing methanol as a main component and an unreacted gas G, and most of the unreacted gas G is recycled. It is recycled to the methanol synthesizer 4 in the line 12, and a part thereof is introduced into the combustion chamber of the reformer 1 by the line 13 and used. The unreacted gas (purge gas) introduced into the reformer 1 is burned in the combustion chamber of the reformer 1, reformed by the combustion heat, and then taken out as combustion exhaust gas. Since this combustion exhaust gas contains CO 2 ,
The combustion exhaust gas is used as the cathode 8 of the molten carbonate fuel cell 6.
Line 13 is supplied to the inlet side. The liquid L separated by the methanol separator 5 is further introduced as crude methanol to the methanol purifying device to be highly pure methanol.

【0011】図1に示す実施例において、改質器1で改
質されたガスに含まれる水素ガスのうち、メタンの1/
5当量の水素を溶融炭酸塩型燃料電池で利用して発電さ
せ、アノード9から排出されたガスをメタノール合成に
利用したところ、メタン1kg・mol /Hr当り、メタノー
ルが0.83kg・mol /Hr生成され、燃料電池6からは
8KWの電力を取り出すことができた。このメタノール
の生成量は、溶融炭酸塩型燃料電池を利用しないときに
比べ、約15%多くすることができた。
In the embodiment shown in FIG. 1, of hydrogen gas contained in the gas reformed by the reformer 1, 1 / m
When 5 equivalents of hydrogen was used in a molten carbonate fuel cell to generate electricity and the gas discharged from the anode 9 was used for methanol synthesis, 0.83 kg · mol / hr of methanol was obtained per 1 kg · mol / hr of methane. The generated electric power of 8 KW could be extracted from the fuel cell 6. The amount of methanol produced could be increased by about 15% as compared with the case where the molten carbonate fuel cell was not used.

【0012】次に、図2は本発明の他の実施例を示すも
ので、図1に示す溶融炭酸塩型燃料電池6に代えて、た
とえば、ニッケルとイットリア安定化ジルコニアの電解
質を適用した電解質板16をカソード17とアノード1
8で挟んでなる固体電解質型燃料電池15を用い、改質
ガスをアノード18に供給して改質ガスに含まれる水素
を燃料ガスとして利用することによって発電に利用する
ようにしたものである。
Next, FIG. 2 shows another embodiment of the present invention. Instead of the molten carbonate fuel cell 6 shown in FIG. 1, for example, an electrolyte in which an electrolyte of nickel and yttria-stabilized zirconia is applied. Plate 16 as cathode 17 and anode 1
The solid oxide fuel cell 15 sandwiched by 8 is used to supply reformed gas to the anode 18 and use hydrogen contained in the reformed gas as fuel gas for power generation.

【0013】図2の実施例の如く燃料電池として固体電
解質型燃料電池15を用いる場合は、高温で動作するも
のであるため、改質器1で改質されたガスは冷却するこ
となく高温のままアノード18に供給するようにし、ア
ノード18から排出されたガスは、冷却器10で冷却し
た後、圧縮してメタノール合成器4に送り、ここで、一
酸化炭素と炭酸ガスと水素とからなる合成ガスとし、メ
タノール合成器4を出たガスは、冷却器11で冷却し
て、メタノール分離機5に送り、図1の場合と同様にメ
タノールを主成分とする液体Lと未反応ガスGとに分離
させるようにする。
When the solid oxide fuel cell 15 is used as the fuel cell as in the embodiment of FIG. 2, since it operates at a high temperature, the gas reformed by the reformer 1 remains at a high temperature without being cooled. The gas discharged from the anode 18 is supplied to the anode 18 as it is, and the gas discharged from the anode 18 is cooled by the cooler 10 and then compressed and sent to the methanol synthesizer 4, where it is composed of carbon monoxide, carbon dioxide gas and hydrogen. The gas as the synthesis gas, which has exited the methanol synthesizer 4, is cooled by the cooler 11 and sent to the methanol separator 5, and the liquid L containing methanol as the main component and the unreacted gas G are used as in the case of FIG. To be separated.

【0014】図2に示す如く、燃料電池として固体電解
質型燃料電池15を用いた場合において、メタン1kg・
mol /Hr当り、発電に水素を0.38kg・mol /Hr利用
すると、15KWの電力が得られ、メタノールは0.7
2kg・mol /Hr生成された。このメタノール量は、燃料
電池を利用しないで得たものとほぼ当量であった。
As shown in FIG. 2, when a solid oxide fuel cell 15 is used as the fuel cell, 1 kg of methane
When hydrogen of 0.38 kg · mol / Hr is used for power generation per mol / Hr, 15 kW of electric power is obtained, and methanol is 0.7
2 kg · mol / Hr was produced. This amount of methanol was almost equivalent to that obtained without using the fuel cell.

【0015】[0015]

【発明の効果】以上述べた如く、本発明のメタノール合
成法によれば、メタンを改質器で改質したガスに含まれ
る過剰の水素を燃料電池のアノードへ供給して発電に使
用するようにし、上記アノードから排出されたガスをメ
タノール合成器でメタノール合成するので、メタンの改
質によって発生する水素のうち、余剰の水素の有効利用
が図れてパージガスを少なくすることができて原料の利
用率を高めることができ、又、燃料電池として溶融炭酸
塩型燃料電池を用いることにより、カソードでの反応に
より生成された炭酸ガスをメタノール合成器に送ること
ができて、メタノール合成器での炭酸ガスを増加させる
ことができるため、合成メタノールの増量を図ることが
できる、という優れた効果を奏し得る。
As described above, according to the methanol synthesis method of the present invention, excess hydrogen contained in the gas obtained by reforming methane in the reformer is supplied to the anode of the fuel cell for use in power generation. Since the gas discharged from the anode is synthesized by the methanol synthesizer with methanol, surplus hydrogen of the hydrogen generated by the reforming of methane can be effectively used and the purge gas can be reduced to use the raw material. Rate, and by using a molten carbonate fuel cell as the fuel cell, the carbon dioxide gas generated by the reaction at the cathode can be sent to the methanol synthesizer, and the carbon dioxide in the methanol synthesizer can be increased. Since the amount of gas can be increased, the excellent effect that the amount of synthetic methanol can be increased can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概要図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す概要図である。FIG. 2 is a schematic view showing another embodiment of the present invention.

【図3】従来のメタノール合成法の概要図である。FIG. 3 is a schematic diagram of a conventional methanol synthesis method.

【符号の説明】[Explanation of symbols]

1 改質器 4 メタノール合成器 5 メタノール分離機 6 溶融炭酸塩型燃料電池 7 電解質板 8 カソード 9 アノード 15 固体電解質型燃料電池 16 電解質板 17 カソード 18 アノード 1 Reformer 4 Methanol Synthesizer 5 Methanol Separator 6 Molten Carbonate Fuel Cell 7 Electrolyte Plate 8 Cathode 9 Anode 15 Solid Electrolyte Fuel Cell 16 Electrolyte Plate 17 Cathode 18 Anode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素ガスを改質器で水蒸気改質し、
改質ガスを燃料電池のアノードに供給して、改質ガス中
の水素を発電に利用した後、メタノール合成器に送りメ
タノール合成を行わせることを特徴とする炭化水素ガス
を原料とするメタノール合成法。
1. A hydrocarbon gas is steam-reformed by a reformer,
Methanol synthesis using hydrocarbon gas as a raw material, characterized in that reformed gas is supplied to the anode of a fuel cell, hydrogen in the reformed gas is used for power generation, and then sent to a methanol synthesizer for methanol synthesis. Law.
【請求項2】 燃料電池に溶融炭酸塩型燃料電池を用
い、改質ガスを溶融炭酸塩型燃料電池のアノードに供給
し且つ改質器を出た燃焼排ガスをカソードに供給する請
求項1記載の炭化水素ガスを原料とするメタノール合成
法。
2. The molten carbonate fuel cell is used as the fuel cell, the reformed gas is supplied to the anode of the molten carbonate fuel cell, and the flue gas discharged from the reformer is supplied to the cathode. The method for synthesizing methanol using the above hydrocarbon gas as a raw material.
【請求項3】 燃料電池に固体電解質型燃料電池を用
い、改質ガスを高温のまま固体電解質型燃料電池のアノ
ードに供給する請求項1記載の炭化水素ガスを原料とす
るメタノール合成法。
3. The methanol synthesis method using a hydrocarbon gas as a raw material according to claim 1, wherein a solid oxide fuel cell is used as the fuel cell, and the reformed gas is supplied to the anode of the solid oxide fuel cell at a high temperature.
JP3351814A 1991-12-16 1991-12-16 Methanol synthesis using hydrocarbon gas as raw material Pending JPH05163180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351814A JPH05163180A (en) 1991-12-16 1991-12-16 Methanol synthesis using hydrocarbon gas as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351814A JPH05163180A (en) 1991-12-16 1991-12-16 Methanol synthesis using hydrocarbon gas as raw material

Publications (1)

Publication Number Publication Date
JPH05163180A true JPH05163180A (en) 1993-06-29

Family

ID=18419789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351814A Pending JPH05163180A (en) 1991-12-16 1991-12-16 Methanol synthesis using hydrocarbon gas as raw material

Country Status (1)

Country Link
JP (1) JPH05163180A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498229A (en) * 2008-01-31 2009-08-05 普拉德研究及开发股份有限公司 Zero discharge natural gas power generation and liquefaction apparatus
WO2014151189A1 (en) * 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9774053B2 (en) 2013-03-15 2017-09-26 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
JP2020024917A (en) * 2018-08-01 2020-02-13 日本碍子株式会社 Power generation system
JP2020024918A (en) * 2018-08-01 2020-02-13 日本碍子株式会社 Power generation system
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498229A (en) * 2008-01-31 2009-08-05 普拉德研究及开发股份有限公司 Zero discharge natural gas power generation and liquefaction apparatus
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
WO2014151214A1 (en) * 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
WO2014151216A1 (en) * 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
WO2014151225A1 (en) * 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
WO2014151189A1 (en) * 2013-03-15 2014-09-25 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9774053B2 (en) 2013-03-15 2017-09-26 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
JP2020024917A (en) * 2018-08-01 2020-02-13 日本碍子株式会社 Power generation system
JP2020024918A (en) * 2018-08-01 2020-02-13 日本碍子株式会社 Power generation system
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US12095129B2 (en) 2018-11-30 2024-09-17 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
US6531243B2 (en) Solid oxide fuel operating with an excess of fuel
US5380600A (en) Fuel cell system
US20210091398A1 (en) Reformer-electrolyzer-purifier (rep) assembly for hydrogen production, systems incorporating same and method of producing hydrogen
AU2006222723B2 (en) Fuel processing method and system
JP2602994B2 (en) Fuel cell power plant
US6736955B2 (en) Methanol production process
JPH05163180A (en) Methanol synthesis using hydrocarbon gas as raw material
EP0401834B1 (en) Solid electrolyte fuel cell
US5169717A (en) Method of preparing ammonia
JP4318920B2 (en) Fuel cell system
US20050123810A1 (en) System and method for co-production of hydrogen and electrical energy
CN108604695B (en) Energy storage with engine REP
US20230046387A1 (en) Method and plant for producing hydrogen
JP2024500221A (en) Method and plant for the production of synthesis gas
JP2791568B2 (en) Fuel cell power generation system
KR101239118B1 (en) Fuel processing method and system
US6669923B2 (en) Gas generator
JP3784751B2 (en) Solid oxide fuel cell system
JPS59224074A (en) Treating method of fuel for full cell
US20090068509A1 (en) Process for Operating a Fuel Cell Arrangement and Fuel Cell Arrangement
JPH0665060B2 (en) Molten carbonate fuel cell power generation system
JPH06203864A (en) Fuel cell system
EP4489152A1 (en) Reversible solid oxide cell system
JP3947266B2 (en) Hydrogen production method and apparatus used therefor
JPH03280360A (en) Fuel cell power-generating system