[go: up one dir, main page]

JPH0516003B2 - - Google Patents

Info

Publication number
JPH0516003B2
JPH0516003B2 JP62189700A JP18970087A JPH0516003B2 JP H0516003 B2 JPH0516003 B2 JP H0516003B2 JP 62189700 A JP62189700 A JP 62189700A JP 18970087 A JP18970087 A JP 18970087A JP H0516003 B2 JPH0516003 B2 JP H0516003B2
Authority
JP
Japan
Prior art keywords
layer
dielectric thin
thin films
refractive index
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62189700A
Other languages
Japanese (ja)
Other versions
JPS6432201A (en
Inventor
Kyoshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP18970087A priority Critical patent/JPS6432201A/en
Publication of JPS6432201A publication Critical patent/JPS6432201A/en
Publication of JPH0516003B2 publication Critical patent/JPH0516003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、一眼レフカメラやビデオカメラ等
の撮影レンズを介して入射する光束を露光、合焦
制御等に利用するための検出系と撮影範囲を目で
確認するためのフアインダー系とに分割する半透
鏡等に主として利用される誘電体薄膜の積層構造
に関するものである。 従来の技術及びその問題点 従来から、一眼レフカメラの露光制御や焦点位
置検出においては、一眼レフカメラの特徴を最も
生かすとの理由から撮影レンズを透過した光を利
用するTTL方式が用いられている。第4図はそ
のような一眼レフカメラの構成を示したものであ
る。 撮影レンズ1を介して入射した光束は、その一
部が半透鏡から成るメインミラー2で反射されて
焦点板3、ペンタプリズム4及びアイピースレン
ズ5を有するフアインダー系へ進み、残部はメイ
ンミラー2を透過してサブミラー6によつて反射
され、レンズ7を介して受光素子8に導かれる。 なお、フアインダー系は被写体を短時間に明確
に捉えなければならないため、また、受光素子8
は肉眼より感度が高くさほど多くの光量を必要し
ないため、一般的には撮影レンズ1を透過した光
量の60〜80%をフアインダー系に導くようにメイ
ンミラー2を構成することが望ましい。 このようなメインミラー2としては、特開昭53
−110541号公報、特開昭61−243402号公報、ある
いは特開昭62−39801号公報に記載されたような
ものがある。これらのミラーは吸収による損失を
なくすために透明基板上に誘電体から成る光学薄
膜を積層して構成されており、いずれも50〜60%
の反射率を有している。 しかし、上記のミラーの反射率は前述した最適
条件の下限限界付近の特性であるため、望ましく
は反射率を上げてフアインダー系の視野をより明
るく確保したい。 反射率を上げるには一般に誘電体層の層数を増
すという手段がとられるが、層数の増加は平坦な
分光反射特性を示す帯域を狭めて可視像に着色を
生じさせると共に、各層の内部歪の総計を増加さ
せてクラツクの発生や基板のベンデイングを招
き、合焦状態を確認する一眼レフカメラのフアイ
ンダー系にとつてはこれが致命的な欠陥となる。 ところで、TTL方式で焦点位置検出やスポツ
ト測光による露光制御を行う場合には、測光に利
用される光はメインミラー2の中央部を透過した
ほんの一部のみであり、他の周辺部を透過した光
は何ら利用されない。そこでこの利用されない光
をフアインダー系に導くことができれば誘電体層
の層数を増して反射率を上げなくともフアインダ
ー系には略100%に近い光を導き、受光素子8に
はこの受光素子8がレンズ6を介してカバーする
領域にある光の40〜50%の光を導くことができ、
一眼レフカメラのメインミラーとしては望ましい
特性を得ることができる。 このような構成のミラーは特開昭60−57301号
公報に開示されている。この開示例では中央部を
半透鏡とし周辺部を増反射金属鏡としており、そ
の蒸着工程は、 誘電体半透鏡膜構成の下層部をガラス基板上
の全面に蒸着する第1工程、 中央部分を遮蔽するマスクをかけアルミニウ
ム層を蒸着する第2工程、 マスクを外し誘電体半透鏡膜構成の上層部を
蒸着する第3工程、 から成つている。 ところで、真空蒸着における一工程は、基板の
クリーニング、コート枠への基板の枠入れ、真空
排気、真空蒸着、大気への取り出し、コート枠か
らの基板の取り出しの各手順から成つている。 そして、蒸着の工程数が多くなれば、単に処理
時間の長期化による部品単価の高騰を招くばかり
でなく、取扱いの際に基板にチツピングを生じさ
せたり、塵埃等の汚れを付着させる機会がそれだ
け増えることとなる。なお、蒸着膜表面は非常に
清浄であるため、一旦汚れが付着すると簡単なク
リーニングでは落すことができず、これらのこと
は部品単価の上昇を助長する原因となる。 半透鏡部分と増反射金属鏡部分とを有する複合
ミラーは、本来的にはガラス基板をマスキングし
てアルミニウム層を蒸着し、その後マスクを外し
て誘電体層を蒸着する2工程で製造し得る。とこ
ろが、従来の誘電体薄膜の積層構造をとりつつ2
工程の蒸着で複合ミラーを製作した場合には、前
記開示例でも指摘されているように増反射金属鏡
部分の分光反射特性にスパイク状の異常透過帯が
生じ、着色が生じてしまうという問題点がある。
なお、この現象は前記の3つの開示例に示されて
いる全ての膜構成についても生じる。 従つて、従来の誘電体膜構成で特性的に満足の
できる複合ミラーを製作するためには、前述した
工程増によるデメリツトを甘受してであつても3
工程をかける必要があつた。 発明の目的 この発明は、上述した問題点に鑑みてなされた
ものであり、金属層を有するミラーを2工程で製
作した場合にも分光反射特性が可視領域において
平坦で着色を生じさせない誘電体薄膜の積層構造
を提供することを目的とする。 問題点を解決するための手段 この発明は、上記の目的を達成させるため、屈
折率の異なる誘電体薄膜を少なくとも一部に金属
層が設けられた基板上に積層して成る誘電体薄膜
の積層構造において、誘電体薄膜を基板側より第
1層、第2層とし、光入射媒質に接する層を第m
層としたとき、第1層を低屈折率nL層、第2層を
高屈折率nH層(nH>nL)として以下nL層とnH層と
を順次繰り返し積層し、第(m−1)層をnH層と
し、第(m−2)層を中間屈折率nM層とし、第
m層を中間屈折率nM′層とし、かつ、各誘電体薄
膜の光学膜厚を基準波長の1/4とし、 nM=nM′のときには、 nL<nM<nH nL<nM′<nH を満たし、nM≠nM′のときには、 nL<nM≦nH nL≦nM′<nH を満たすことを特徴とする。 実施例 以下、この発明を図面に基づいて説明する。 〔第1実施例〕 第1図は、この発明に係る誘電体薄膜の積層構
造の第1実施例を示したものである。 この例の基板Gは透明な光学ガラス(屈折率nG
=1.52)であり、誘電体薄膜が積層される表面の
中央部Xを除く周辺部Yに金属層A1を有してい
る。 また、誘電体薄膜の全層数m=8であり、基板
G側から数えて第1,3,5番目の層,,
が低屈折率nL層、第2,4,7番目の層,,
が高屈折率nH層、第6,8番目の層,が中
間屈折率nM,nM′層である。 各層の構成は第1表の通りであり、ここでは
nM=nM′となつている。 なお、光入射媒質は空気、基準波長は490nm
としている。
Industrial Application Field This invention relates to a detection system for using the light flux incident through the photographing lens of a single-lens reflex camera, video camera, etc. for exposure, focusing control, etc., and a finder for visually confirming the shooting range. This invention relates to a laminated structure of dielectric thin films mainly used in semi-transparent mirrors and the like that divide the system into two parts. Conventional technology and its problems Traditionally, the TTL method, which uses light transmitted through the photographic lens, has been used for exposure control and focal position detection in single-lens reflex cameras because it makes the most of the characteristics of single-lens reflex cameras. There is. FIG. 4 shows the configuration of such a single-lens reflex camera. A part of the light beam incident through the photographing lens 1 is reflected by the main mirror 2 made of a semi-transparent mirror and proceeds to a finder system having a focus plate 3, a pentaprism 4 and an eyepiece lens 5, and the remaining part passes through the main mirror 2. The light is transmitted, reflected by the sub-mirror 6, and guided to the light-receiving element 8 via the lens 7. In addition, since the finder system must clearly capture the subject in a short time, the light receiving element 8
Since the lens has higher sensitivity than the naked eye and does not require a large amount of light, it is generally desirable to configure the main mirror 2 so that 60 to 80% of the light transmitted through the photographic lens 1 is guided to the viewfinder system. For such a main mirror 2, there is a
There are those described in JP-A-110541, JP-A-61-243402, and JP-A-62-39801. These mirrors are constructed by laminating an optical thin film made of dielectric material on a transparent substrate to eliminate loss due to absorption.
It has a reflectance of However, since the reflectance of the mirror described above is near the lower limit of the above-mentioned optimum conditions, it is desirable to increase the reflectance to ensure a brighter field of view for the finder system. Generally speaking, increasing the number of dielectric layers is used to increase the reflectance, but increasing the number of layers narrows the band that exhibits flat spectral reflection characteristics and causes coloration in the visible image, as well as increasing the number of dielectric layers. This increases the total amount of internal distortion, leading to cracks and bending of the circuit board, and is a fatal flaw in the viewfinder system of single-lens reflex cameras that check the focus state. By the way, when performing focus position detection and exposure control using spot photometry using the TTL method, the light used for photometry is only a small portion of the light that has passed through the center of the main mirror 2, and the light that has passed through the other peripheral areas is used for photometry. No light is used. Therefore, if this unused light can be guided to the finder system, almost 100% of the light can be guided to the finder system without increasing the number of dielectric layers to increase the reflectance, and the light receiving element 8 can guide 40-50% of the light in the area covered through lens 6,
Desirable characteristics can be obtained as a main mirror for a single-lens reflex camera. A mirror having such a configuration is disclosed in Japanese Patent Application Laid-Open No. 60-57301. In this disclosed example, the center part is a semi-transparent mirror and the peripheral part is an increased reflection metal mirror, and the vapor deposition process includes a first step of vapor depositing the lower layer of the dielectric semi-transparent film structure on the entire surface of the glass substrate, and a first step in which the central part is vapor-deposited on the entire surface of the glass substrate. The method consists of a second step in which an aluminum layer is deposited using a shielding mask, and a third step in which the mask is removed and an upper layer of the dielectric semi-transparent film structure is deposited. By the way, one step in vacuum evaporation consists of the following steps: cleaning the substrate, placing the substrate in the coating frame, evacuation, vacuum evaporation, taking it out to the atmosphere, and taking out the substrate from the coating frame. Furthermore, if the number of vapor deposition steps increases, not only will the processing time become longer and the unit price of parts will rise, but there will also be more opportunities for chipping and dirt to adhere to the substrate during handling. This will increase. Note that since the surface of the vapor deposited film is very clean, once dirt adheres to it, it cannot be removed by simple cleaning, and these factors contribute to an increase in the unit cost of parts. A composite mirror having a semi-transparent mirror portion and a reflective metal mirror portion can be manufactured in essentially two steps: masking a glass substrate and depositing an aluminum layer, then removing the mask and depositing a dielectric layer. However, while using the conventional laminated structure of dielectric thin films,
When a composite mirror is manufactured by a vapor deposition process, as pointed out in the disclosed example above, a spike-like abnormal transmission band occurs in the spectral reflection characteristics of the reflective metal mirror portion, resulting in coloring. There is.
Note that this phenomenon also occurs for all the film configurations shown in the three disclosed examples above. Therefore, in order to manufacture a composite mirror with satisfactory characteristics using the conventional dielectric film configuration, it is necessary to accept the disadvantages of the increase in the number of steps described above.
I needed to go through a process. Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and provides a dielectric thin film that has flat spectral reflection characteristics in the visible region and does not cause coloring even when a mirror having a metal layer is manufactured in two steps. The purpose is to provide a laminated structure. Means for Solving the Problems In order to achieve the above object, the present invention provides a stack of dielectric thin films formed by stacking dielectric thin films having different refractive indexes on a substrate at least partially provided with a metal layer. In the structure, the dielectric thin film is the first layer and the second layer from the substrate side, and the layer in contact with the light incident medium is the mth layer.
When made into layers, the first layer is a low refractive index n L layer, the second layer is a high refractive index n H layer (n H > n L ), and the n L layer and the n H layer are sequentially stacked repeatedly. The (m-1) layer is an n H layer, the (m-2) layer is an intermediate refractive index n M layer, the m-th layer is an intermediate refractive index n M ' layer, and the optical film of each dielectric thin film is When the thickness is 1/4 of the reference wavelength, when n M = n M ′, n L < n M < n H n L < n M ′ < n H , and when n M ≠ n M ′, n L It is characterized by satisfying <n M ≦n H n L ≦n M ′<n H. EXAMPLES Hereinafter, the present invention will be explained based on the drawings. [First Embodiment] FIG. 1 shows a first embodiment of a laminated structure of dielectric thin films according to the present invention. The substrate G in this example is a transparent optical glass (refractive index n G
= 1.52), and has a metal layer A1 in the peripheral part Y except for the central part X of the surface where the dielectric thin film is laminated. In addition, the total number of layers of the dielectric thin film is m = 8, and the 1st, 3rd, and 5th layers counting from the substrate G side, .
is the low refractive index n L layer, the 2nd, 4th, 7th layer,,
is a high refractive index n H layer, and the sixth and eighth layers are intermediate refractive index n M and n M ' layers. The composition of each layer is shown in Table 1, and here
n M = n M ′. The light incident medium is air, and the reference wavelength is 490 nm.
It is said that

【表】【table】

〔第2実施例〕[Second example]

次ページの第2表はこの発明に係る誘電体薄膜
の積層構造の第2実施例の構成を示している。 この例では誘電体薄膜の全層数m=6とし、基
板G側から数えて第1,3番目の層,を低屈
折率nL層、第2,5番目の層,Vを高屈折率nH
層、第4,6番目の層,を中間屈折率nM
nM′層としている。金属層等の他の構成について
は第1実施例と同様であるので説明を省略する。
Table 2 on the next page shows the structure of a second embodiment of the laminated structure of dielectric thin films according to the present invention. In this example, the total number of dielectric thin film layers m = 6, counting from the substrate G side, the first and third layers are low refractive index n L layers, and the second and fifth layers, V are high refractive index layers. n H
The fourth and sixth layers have an intermediate refractive index n M ,
n M ′ layers. Other structures such as the metal layer are the same as those in the first embodiment, so their explanation will be omitted.

【表】【table】

【表】 第3図Eはこの構成による複合ミラーの反射率
を示している(なお、第3図E,Fでは実線が金
属層の設けられていない中央部X、破線が金属層
を有する周辺部Yの反射率をそれぞれ示してお
り、入射角はいずれも45°としている)。 層数が少ないために反射率自体は第1実施例よ
り低下するが、可視領域における分光反射特性は
中央部X及び周辺部Y共に平坦なものとなる。反
射率は中央部Xが約40%、周辺部YがA1単体の
反射率(90%)より高く約95%となる。 次に、上記第2実施例の変形例を1つ挙げてお
く。 この変形例では、第4層をTiO2(屈折率nM
nH=2.35)とし、第6層をMgF2(屈折率nM′=
nL=1.38)としている。 第4層と第5層Vとの屈折率が等しくなつて
いるため、結果的には第4層の光学膜厚がλ/2
の5層の積層構造と等価になる。 第3図Fにこの変形例の分光反射特性を示して
いる。この図から理解できるように分光反射特性
は第2実施例より更に平坦となり、帯域幅も可視
領域を充分にカバーしている。 以上で実施例の説明を終了する。なお、上記の
各実施例においては基準波長を全ての層について
490nmとしているが、基板及び各層の物質は屈
折率分散を有しているため実際の分光反射特性は
一般に短波長側の反射率が高くなつた形となる。
そして、これを修正するには各層の膜厚を若干変
更する必要があるため、基準波長は可視領域400
〜700nmの範囲内で変動することとなる。 効 果 以上、説明してきたように、この発明に係る誘
電体薄膜の積層構造をガラス基板上に積層して半
透鏡とした場合には、可視領域における分光反射
特性が平坦なものとなり、反射光及び透過光に着
色を生じさせない。 また、アルミニウム等の金属反射面上に積層し
た場合には、増反射効果を発揮するのに加え、従
来3工程の蒸着でしか回避できなかつたスパイク
状の異常透過帯を2工程の蒸着で解消することが
でき、可視領域の全域に渡つて平坦な高い反射率
を得ることができるため、工程数を減少させて部
品単価の上昇を抑えることができる。 従つて、上記積層構造を表面の中央部を除く周
辺部に金属層を有する透明なガラス板上に積層し
た場合には、TTL方式で焦点位置検出やスポツ
ト測光による露光制御を行う一眼レフカメラのメ
インミラーとして理想的な複合ミラーを最短の工
程で得ることができる。また、この場合大気中の
酸素等に侵され易い金属層を大気に接触させない
構成となるため、金属層の保護を有効に図ること
ができる。 なお、中間屈折率nM,nM′層に使用される物質
は実施例からも明らかなように選択の自由度が大
きいため、使用物質の制限が少なく製造が容易で
あるという利点も有する。
[Table] Figure 3 E shows the reflectance of a composite mirror with this configuration (in Figures 3 E and F, the solid line is the central part X where no metal layer is provided, and the broken line is the periphery where the metal layer is provided) The reflectance of part Y is shown, and the incident angle is 45° in both cases). Although the reflectance itself is lower than in the first embodiment due to the small number of layers, the spectral reflection characteristics in the visible region are flat in both the central portion X and the peripheral portion Y. The reflectance is approximately 40% in the central part X, and approximately 95% in the peripheral part Y, which is higher than the reflectance of A1 alone (90%). Next, one modification of the second embodiment will be mentioned. In this variant, the fourth layer is TiO 2 (refractive index n M =
n H = 2.35), and the sixth layer is MgF 2 (refractive index n M ′ =
n L = 1.38). Since the fourth layer and the fifth layer V have the same refractive index, the optical thickness of the fourth layer is λ/2.
It is equivalent to a five-layer laminated structure. FIG. 3F shows the spectral reflection characteristics of this modification. As can be understood from this figure, the spectral reflection characteristics are even flatter than in the second embodiment, and the bandwidth sufficiently covers the visible region. This concludes the description of the embodiment. In addition, in each of the above examples, the reference wavelength is set for all layers.
Although it is assumed to be 490 nm, since the substrate and the materials of each layer have refractive index dispersion, the actual spectral reflection characteristics generally have a higher reflectance on the shorter wavelength side.
To correct this, it is necessary to slightly change the film thickness of each layer, so the reference wavelength is set to 400 in the visible region.
It will vary within a range of ~700 nm. Effects As explained above, when the laminated structure of dielectric thin films according to the present invention is laminated on a glass substrate to form a semi-transparent mirror, the spectral reflection characteristics in the visible region are flat, and the reflected light is and does not cause coloring in transmitted light. In addition, when laminated on a metal reflective surface such as aluminum, it not only exhibits an increased reflection effect, but also eliminates the spike-like abnormal transmission band that could only be avoided with conventional three-step vapor deposition by using two-step vapor deposition. Since it is possible to obtain a flat high reflectance over the entire visible region, it is possible to reduce the number of steps and suppress an increase in the unit cost of parts. Therefore, if the above laminated structure is laminated on a transparent glass plate with a metal layer on the periphery except for the center of the surface, it will be difficult to use a single-lens reflex camera that uses the TTL method to detect the focus position and control exposure using spot photometry. A composite mirror ideal as a main mirror can be obtained in the shortest process. Further, in this case, since the metal layer, which is easily attacked by oxygen in the atmosphere, is not brought into contact with the atmosphere, the metal layer can be effectively protected. Note that, as is clear from the examples, there is a large degree of freedom in selecting the materials used for the intermediate refractive index n M and n M ' layers, so there is also an advantage that there are few restrictions on the materials used and manufacturing is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る誘電体薄膜の積層構造
を利用した複合ミラーの第1実施例の構成を示す
説明図である。第2図はこの第1実施例及びその
変形例の複合ミラーの分光反射特性を示すグラフ
である。第3図はこの発明に係る誘電体薄膜の積
層構造を利用した複合ミラーの第2実施例及びそ
の変形例の分光反射特性を示すグラフである。第
4図は一眼レフカメラの光学部品の配列を示す概
略図である。 {,,V……低屈折率nL層、,,…
…高屈折率nH層、,……中間屈折率nM
nM′層、}誘電体薄膜、G……ガラス基板、A1
……金属層。
FIG. 1 is an explanatory diagram showing the structure of a first embodiment of a composite mirror using a laminated structure of dielectric thin films according to the present invention. FIG. 2 is a graph showing the spectral reflection characteristics of the composite mirror of the first embodiment and its modified example. FIG. 3 is a graph showing the spectral reflection characteristics of a second embodiment of a composite mirror using a laminated structure of dielectric thin films according to the present invention and a modification thereof. FIG. 4 is a schematic diagram showing the arrangement of optical components of a single-lens reflex camera. {,,V...Low refractive index n L layer,,,...
...high refractive index n H layer, ... middle refractive index n M ,
n M ′ layer, }Dielectric thin film, G...Glass substrate, A1
...Metal layer.

Claims (1)

【特許請求の範囲】 1 屈折率の異なる誘電体薄膜を少なくとも一部
に金属層が設けられた基板上に積層して成る誘電
体薄膜の積層構造において、 前記誘電体薄膜を前記基板側より第1層、第2
層とし、光入射媒質に接する層を第m層としたと
き、第1層を低屈折率nL層、第2層を高屈折率
nH層(nH>nL)として以下nL層とnH層とを順次
繰り返し積層し、第(m−1)層をnH層とし、第
(m−2)層を中間屈折率nM層とし、第m層を中
間屈折率nM′層とし、かつ、前記各誘電体薄膜の
光学膜厚を基準波長の1/4とし、 nM=nM′のときには、 nL<nM<nH nL<nM′<nH を満たし、nM≠nM′のときには、 nL<nM≦nH nL≦nM′<nH を満たすことを特徴とする誘電体薄膜の積層構
造。 2 前記基板は、透明なガラス基板であることを
特徴とする特許請求の範囲第1項に記載の誘電体
薄膜の積層構造。 3 前記金属層は、前記誘電体薄膜が積層される
前記基板の表面の中央部を除く周辺部に設けられ
ていることを特徴とする特許請求の範囲第1項に
記載の誘電体薄膜の積層構造。 4 前記誘電体薄膜の全層数m=8であることを
特徴とする特許請求の範囲第1項〜第3項のいず
れか1項に記載の誘電体薄膜の積層構造。 5 前記誘電体薄膜の全層数m=6であることを
特徴とする特許請求の範囲第1項〜第3項のいず
れか1項に記載の誘電体薄膜の積層構造。
[Scope of Claims] 1. A laminated structure of dielectric thin films in which dielectric thin films having different refractive indexes are laminated on a substrate on which at least a portion is provided with a metal layer, wherein the dielectric thin film is laminated from the substrate side. 1st layer, 2nd layer
layer, and the layer in contact with the light incident medium is the m-th layer, the first layer is a low refractive index nL layer, and the second layer is a high refractive index layer.
As an nH layer (n H > n L ), the following n L layer and n H layer are repeatedly laminated in sequence, the (m-1)th layer is the n H layer, and the (m-2) layer is the intermediate refractive index n. M layer, the m-th layer is a layer with an intermediate refractive index n M ′, and the optical thickness of each dielectric thin film is 1/4 of the reference wavelength, and when n M = n M ′, n L < n A dielectric which satisfies M < n H n L < n M ′ < n H , and when n M ≠ n M ′, satisfies n L < n M ≦n H n L ≦ n M ′ < n H. Laminated structure of body membranes. 2. The laminated structure of dielectric thin films according to claim 1, wherein the substrate is a transparent glass substrate. 3. The lamination of dielectric thin films according to claim 1, wherein the metal layer is provided in a peripheral part of the surface of the substrate on which the dielectric thin film is laminated, excluding a central part. structure. 4. The laminated structure of dielectric thin films according to any one of claims 1 to 3, wherein the total number of layers of the dielectric thin films is m=8. 5. The laminated structure of dielectric thin films according to any one of claims 1 to 3, wherein the total number of layers of the dielectric thin films is m=6.
JP18970087A 1987-07-28 1987-07-28 Laminated structure of thin dielectric film Granted JPS6432201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18970087A JPS6432201A (en) 1987-07-28 1987-07-28 Laminated structure of thin dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18970087A JPS6432201A (en) 1987-07-28 1987-07-28 Laminated structure of thin dielectric film

Publications (2)

Publication Number Publication Date
JPS6432201A JPS6432201A (en) 1989-02-02
JPH0516003B2 true JPH0516003B2 (en) 1993-03-03

Family

ID=16245727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18970087A Granted JPS6432201A (en) 1987-07-28 1987-07-28 Laminated structure of thin dielectric film

Country Status (1)

Country Link
JP (1) JPS6432201A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581235Y2 (en) * 1991-11-08 1998-09-21 株式会社ミドリ十字 Isothiocyanate ester sustained release sheet
US6330047B1 (en) 1997-07-28 2001-12-11 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US6195140B1 (en) 1997-07-28 2001-02-27 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region
US8882267B2 (en) 2006-03-20 2014-11-11 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
US20120075577A1 (en) 2006-03-20 2012-03-29 Ishak Andrew W High performance selective light wavelength filtering providing improved contrast sensitivity
ES2668994T3 (en) * 2006-06-12 2018-05-23 High Performance Optics, Inc. Color balanced ophthalmic system with selective light inhibition
US7903339B2 (en) * 2007-08-12 2011-03-08 Toyota Motor Engineering & Manufacturing North America, Inc. Narrow band omnidirectional reflectors and their use as structural colors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926704A (en) * 1982-08-05 1984-02-13 Hoya Corp Multilayered film reflecting mirror
JPS6155602A (en) * 1984-08-27 1986-03-20 Canon Inc Beam splitter
JPS61219004A (en) * 1985-03-25 1986-09-29 Canon Inc Multilayer film reflecting mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926704A (en) * 1982-08-05 1984-02-13 Hoya Corp Multilayered film reflecting mirror
JPS6155602A (en) * 1984-08-27 1986-03-20 Canon Inc Beam splitter
JPS61219004A (en) * 1985-03-25 1986-09-29 Canon Inc Multilayer film reflecting mirror

Also Published As

Publication number Publication date
JPS6432201A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
US20050018302A1 (en) Optical multilayer-film filter, method for fabricating optical multilayer-film filter, optical low-pass filter, and electronic apparatus
KR102104081B1 (en) Camera structure, information and communication equipment
CN103718070A (en) Optical member
JP2004354735A (en) Ray cut filter
CN216900993U (en) Camera module, electronic device and vehicle tool
US11422295B2 (en) Image capture device, optical filter film, and method for manufacturing optical filter film
JP4768995B2 (en) Optical filter and imaging device
JP2020109496A (en) Optical filter and near-infrared cut filter
JPH0516003B2 (en)
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JP2002286934A (en) Optical filter, imaging device using the same, and imaging device using the same
US20070153115A1 (en) Image pickup device
US6522464B2 (en) Diffraction optical element, optical system and optical device
JP2004258494A (en) Nd filter
JP2014032330A (en) Half mirror and digital single-lens reflex camera
US6661579B2 (en) Beam splitting for camera using a multilayer film
JP5305799B2 (en) Lens barrel and optical apparatus having the same
JPS6028603A (en) Prism type beam splitter
JP2004246018A (en) Light quantity adjusting device and optical equipment
JPS6133167B2 (en)
JPS6057802A (en) Half-mirror for single-lens reflex camera
JPS6032001A (en) Reflection preventing film
JP6268691B2 (en) Beam splitting optical element and digital single lens reflex camera
JPS5811901A (en) Multilayered semipermeable mirror

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees